(1 point) Evaluate the integral
(1 point) Evaluate the integral [T Note: Use an upper-case "C" for the constant of integration. 7 cos(x) In (sin(x)) dx, 0

Answers

Answer 1

The integral of 7cos(x)ln(sin(x)) dx evaluated from 0 is -7πln(2).

To evaluate the integral ∫ 7cos(x)ln(sin(x)) dx from 0, we first apply the integration by parts method. By selecting u = ln(sin(x)) and dv = 7cos(x) dx, we differentiate u and integrate dv to obtain du = (1/sin(x))cos(x) dx and v = 7sin(x), respectively.

Using the integration by parts formula ∫ u dv = uv - ∫ v du, we can calculate the integral:

∫ 7cos(x)ln(sin(x)) dx = 7sin(x)ln(sin(x)) - ∫ 7sin(x)(1/sin(x))cos(x) dx

= 7sin(x)ln(sin(x)) - 7∫ cos(x) dx

= 7sin(x)ln(sin(x)) - 7sin(x) + C

Now we substitute the limits of integration:

∫[0] 7cos(x)ln(sin(x)) dx = [7sin(x)ln(sin(x)) - 7sin(x)]|[0]

= 7sin(0)ln(sin(0)) - 7sin(0) - (7sin(π)ln(sin(π)) - 7sin(π))

= 0 - 0 - (0 - 0)

= -7πln(2)

learn more about Integral here:

https://brainly.com/question/18125359

#SPJ4


Related Questions

please help, will give thumbs up
Find the equation of the plane passing through the three given points P(4,-1,2), Q(1.-1, 1). R(3, 1, 1) OX-y-32-1 Ox+y3z-3 O x + y + 3z - 9 O x-3y + z = 9 x + 3y + 2 - 3

Answers

The equation of the plane passing through the points P(4, -1, 2), Q(1, -1, 1), and R(3, 1, 1) is: 2x - 2y + 6z - 22 = 0

To find the equation of the plane passing through three points, we can use the formula for a plane in three-dimensional space. The equation of a plane can be expressed as:

Ax + By + Cz + D = 0

where A, B, and C are the coefficients of the variables x, y, and z, respectively, and D is a constant.

Let's use the points P(4, -1, 2), Q(1, -1, 1), and R(3, 1, 1) to find the equation of the plane.

To determine the coefficients A, B, C, and D, we can substitute the coordinates of any of the given points into the equation and solve for D. Let's use point P(4, -1, 2) as an example:

A(4) + B(-1) + C(2) + D = 0

4A - B + 2C + D = 0

Now we need to find the values of A, B, and C. To do this, we can use the direction vectors formed by two pairs of points on the plane (PQ and PR). The direction vectors can be found by subtracting the coordinates of one point from the other.

Direction vector PQ = Q - P = (1 - 4, -1 - (-1), 1 - 2) = (-3, 0, -1)

Direction vector PR = R - P = (3 - 4, 1 - (-1), 1 - 2) = (-1, 2, -1)

Now we have two direction vectors (-3, 0, -1) and (-1, 2, -1) on the plane. We can find the cross product of these two vectors to obtain the normal vector of the plane, which will give us the values of A, B, and C in the equation.

Normal vector = (PQ) x (PR) = (-3, 0, -1) x (-1, 2, -1)= (2, -2, 6)

Now we have the values A = 2, B = -2, and C = 6. To find D, we substitute the coordinates of point P into the equation:

4(2) - (-1)(-2) + 2(6) + D = 0

8 + 2 + 12 + D = 0

D = -22

To know more about solving equation passing through plane refer to this link-

https://brainly.com/question/29798120#

#SPJ11

Evaluate the integral by malong the given substitution. (Remember to use absolute values where appropriate. Use for the constant of integration) dx =-

Answers

The solution to the integral [tex]\(\int \frac{x^3}{x^4-6}dx\)[/tex] using the substitution [tex]\(u=x^4-6\)[/tex] is [tex]\(\frac{1}{4}\ln|x^4-6| + C\)[/tex], where [tex]\(C\)[/tex] represents the constant of integration.

To evaluate the integral [tex]\(\int \frac{x^3}{x^4-6}dx\)[/tex] by making the substitution [tex]\(u=x^4-6\)[/tex], we can follow these steps:

1. Differentiate the substitution variable \(u\) with respect to \(x\) to find \(du\):

 [tex]\(\frac{du}{dx} = \frac{d}{dx}(x^4-6)\) \\ \(\frac{du}{dx} = 4x^3\)[/tex]

  Rearranging, we have [tex]\(dx = \frac{du}{4x^3}\)[/tex].

2. Substitute the expression for [tex]\(dx\)[/tex] and the new variable [tex]\(u\)[/tex] into the original integral:

 [tex]\(\int \frac{x^3}{x^4-6}dx = \int \frac{x^3}{u}\cdot\frac{du}{4x^3}\)[/tex]

  Simplifying, we get [tex]\(\int \frac{1}{4u} du\)[/tex].

3. Integrate the new expression with respect to [tex]\(u\)[/tex]:

[tex]\(\int \frac{1}{4u} du = \frac{1}{4}\int \frac{1}{u} du\)[/tex]

  Taking the antiderivative, we have [tex]\(\frac{1}{4}\ln|u| + C\)[/tex].

4. Substitute the original variable [tex]\(x\)[/tex] back in terms of [tex]\(u\)[/tex]:

  [tex]\(\frac{1}{4}\ln|u| + C = \frac{1}{4}\ln|x^4-6| + C\).[/tex]

Therefore, the solution to the integral [tex]\(\int \frac{x^3}{x^4-6}dx\)[/tex] using the substitution [tex]\(u=x^4-6\)[/tex] is [tex]\(\frac{1}{4}\ln|x^4-6| + C\)[/tex], where [tex]\(C\)[/tex] represents the constant of integration.

The complete question must be:

Evaluate the integral by making the given substitution. (Use C for the constant of integration. Remember to use absolute values where appropriate.)

[tex]\int \:\frac{x^3}{x^4-6}dx,\:u=x^4-6[/tex]

Learn more about integration:

https://brainly.com/question/31744185

#SPJ11

Let f(x) = 25(x - 2) (x2 + 3) Use logarithmic differentiation to determine the derivative. f'(x) =

Answers

The derivative of f(x) = 25(x - 2)(x^2 + 3) using logarithmic differentiation is f'(x) = 25(3x^2 - 4x + 3).

To find the derivative of the function f(x) = 25(x - 2)(x^2 + 3) using logarithmic differentiation, we follow these steps: Take the natural logarithm of both sides of the equation: ln(f(x)) = ln[25(x - 2)(x^2 + 3)]. Apply the logarithmic property of multiplication: ln(f(x)) = ln(25) + ln(x - 2) + ln(x^2 + 3)

Differentiate both sides of the equation with respect to x: (1/f(x)) * f'(x) = 0 + (1/(x - 2))(1) + (1/(x^2 + 3))(2x). Simplify the expression: f'(x)/f(x) = (1/(x - 2)) + (2x/(x^2 + 3)). Multiply both sides of the equation by f(x): f'(x) = f(x) * [(1/(x - 2)) + (2x/(x^2 + 3))]. Substitute the expression of f(x): f'(x) = 25(x - 2)(x^2 + 3) * [(1/(x - 2)) + (2x/(x^2 + 3))]. Simplifying further, we have: f'(x) = 25[(x^2 + 3) + 2x(x - 2)]. Expanding and simplifying: f'(x) = 25(x^2 + 3 + 2x^2 - 4x), f'(x) = 25(3x^2 - 4x + 3).

Therefore, the derivative of f(x) = 25(x - 2)(x^2 + 3) using logarithmic differentiation is f'(x) = 25(3x^2 - 4x + 3).

To learn more about derivative, click here: brainly.com/question/2159625

#SPJ11

if (xn) is bounded and diverges, then there exist two subsequences of (xn) that converge to dierent limits.

Answers

If the sequence (xn) is bounded but diverges, then there exist two subsequences of (xn) that converge to different limits.

Suppose (xn) is a bounded sequence that diverges. This means that the sequence does not have a single limit as n approaches infinity. However, since the sequence is bounded, it remains within a certain range of values.

By the Bolzano-Weierstrass theorem, any bounded sequence has a convergent subsequence. Therefore, we can select a subsequence (xnk) that converges to some limit L1.

Since the original sequence (xn) diverges, there must exist values in the sequence that are arbitrarily far from the limit L1. We can select another subsequence (xnm) such that the terms in this subsequence are far away from L1.

By the definition of convergence, any subsequence that converges to a limit L is also convergent to L. Therefore, the subsequence (xnk) converges to L1, while the subsequence (xnm) does not converge to L1.

Learn more about sequence here:

https://brainly.com/question/30262438

#SPJ11

Evaluate. (Be sure to check by differentiating!) 5 (629 - 4)** abitat dt ... Determine a change of variables from t to u. Choose the correct answer below. O A. u=t4 OB. u= 6t - 4 OC. U = 61-4 OD. u=t4-4 Write the integral in terms of u. 5 (62 - 4) ** dt = So du (Type an exact answer. Use parentheses to clearly denote the argument of each function.) Evaluate. (Be sure to check by differentiating!) (2-a)/** .. OC. u = 64- 4 OD. u=t4 - 4 Write the integral in terms of u. 5 (62 - 4)t* dt = SO du (Type an exact answer. Use parentheses to clearly denote the argument of each function.) Evaluate the integral 5 (62 - 4)** dt = (Type an exact answer. Use parentheses to clearly denote the argument of each function.)

Answers

First, let's clarify the given expression:

1) 5(6² - 4) ** abitat dt

It appears that you are trying to evaluate an integral, but there seems to be some missing information or incorrect notation.

is not clear, and the notation "**" is typically used to represent exponentiation, but it seems out of place in this context.

If you could provide more information or clarify the notation, I would be happy to assist you further in evaluating the integral.

2) Determine a change of variables from t to u.

The given options for the change of variables from t to u are:A. u = t⁴

B. u = 6t - 4C. u = 6⁽ᵗ ⁻ ⁴⁾

D. u = t⁴ - 4

Without additional context or information, it is difficult to determine the correct change of variables. However, based on the given options, the most likely choice would be A. u = t⁴.

3) Write the integral in terms of u.

To write the integral in terms of u, we would substitute the appropriate expression for u in place of t and adjust the limits of integration accordingly. However, since there is no specific integral given in the question, I cannot provide a direct answer.

4) Evaluate the integral 5(6² - 4) ** dt

Similar to the previous point, without a specific integral given, it is not possible to evaluate it directly. If you provide the integral or any further details, I will be glad to assist you in evaluating it.

Learn more about variables here:

https://brainly.com/question/31866372

#SPJ11

2. Using the minor and cofactor method, find the inverse of the given 3x3 matrix [4 2 1 3 5 2. 1 3-3 ]

Answers

The inverse of the given 3x3 matrix [4 2 1; 3 5 2; 1 3 -3] using the minor and cofactor method is [1/23 -1/23 1/23; -1/23 8/23 1/23; 1/23 1/23 -2/23].

To find the inverse of a 3x3 matrix using the minor and cofactor method, we follow these steps:

Calculate the determinant of the given matrix.

Find the cofactor matrix by calculating the determinants of the 2x2 matrices formed by excluding each element of the original matrix.

Create the adjugate matrix by transposing the cofactor matrix.

Divide each element of the adjugate matrix by the determinant of the original matrix to obtain the inverse matrix.

Applying these steps to the given matrix [4 2 1; 3 5 2; 1 3 -3], we calculate the determinant to be -23. Then, we find the cofactor matrix and transpose it to obtain the adjugate matrix. Finally, dividing each element of the adjugate matrix by -23 gives us the inverse matrix [1/23 -1/23 1/23; -1/23 8/23 1/23; 1/23 1/23 -2/23].


To learn more about matrix click here: brainly.com/question/28180105

#SPJ11

Given sec(0) = -4 and tan(0) > 0, draw a sketch of and then determine the value of cos () You may need to refer to the resource sheet. (6 pts) Solve the following equation, which is quadratic in form, on the interval 0 SO <21. 2cos? (0) - V3 cos(O) = 0

Answers

The value of cos(θ) can be determined using the given information. The equation 2cos²(θ) - √3cos(θ) = 0 can be solved on the interval 0 ≤ θ < 2π.

To find the value of cos(θ), we need to analyze the given information and solve the equation 2cos²(θ) - √3cos(θ) = 0.

First, we are given that sec(0) = -4, which means the reciprocal of cos(0) is -4. From this, we can deduce that cos(0) = -1/4. Additionally, we know that tan(0) > 0, which implies that sin(0) > 0.

Next, let's solve the equation 2cos²(θ) - √3cos(θ) = 0. We can factor out the common term cos(θ) and rewrite the equation as cos(θ)(2cos(θ) - √3) = 0. From this equation, we have two possibilities: either cos(θ) = 0 or 2cos(θ) - √3 = 0.

Considering the interval 0 ≤ θ < 2π, we can determine the values of θ where cos(θ) = 0. These values occur at θ = π/2 and θ = 3π/2.

To learn more about equation click here: brainly.com/question/22364785

#SPJ11

Let A = (0, 0, −3, 0) and B = (2, −1, −2, 1) be points in Rª (Use <,,,> notation for your vector entry in this question.) a. Determine the vector AB. help (vectors) b. Find a vector in the direction of AB that is 2 times as long as AB. help (vectors) c. Find a vector in the direction opposite AB that is 2 times as long as AB. help (vectors) d. Find a unit vector in the direction of AB. help (vectors) e. Find a vector in the direction of AB that has length 2.

Answers

Let A = (0, 0, −3, 0) and B = (2, −1, −2, 1) be points in Rª. (A) a vector in the direction of AB that is 2 times as long as AB is (4, -2, 2, 2), (B)  a vector in the direction of AB that is 2 times as long as AB is (4, -2, 2, 2). (C)  a vector in the direction opposite AB that is 2 times as long as AB is (-4, 2, -2, -2),

a. To determine the vector AB, we subtract the coordinates of point A from the coordinates of point B.

AB = B – A = (2, -1, -2, 1) – (0, 0, -3, 0) = (2, -1, 1, 1).

Therefore, the vector AB is (2, -1, 1, 1).

b. To find a vector in the direction of AB that is 2 times as long as AB, we simply multiply each component of AB by 2.

2AB = 2(2, -1, 1, 1) = (4, -2, 2, 2).

Therefore, a vector in the direction of AB that is 2 times as long as AB is (4, -2, 2, 2).

c. To find a vector in the direction opposite AB that is 2 times as long as AB, we multiply each component of AB by -2.

-2AB = -2(2, -1, 1, 1) = (-4, 2, -2, -2).

Therefore, a vector in the direction opposite AB that is 2 times as long as AB is (-4, 2, -2, -2).

d. To find a unit vector in the direction of AB, we need to normalize AB by dividing each component by its magnitude.

Magnitude of AB = sqrt(2^2 + (-1)^2 + 1^2 + 1^2) = sqrt(7).

Unit vector in the direction of AB = AB / |AB| = (2/sqrt(7), -1/sqrt(7), 1/sqrt(7), 1/sqrt(7)).

Therefore, a unit vector in the direction of AB is (2/sqrt(7), -1/sqrt(7), 1/sqrt(7), 1/sqrt(7)).

e. To find a vector in the direction of AB that has a length of 2, we need to multiply the unit vector in the direction of AB by 2.

2 * (2/sqrt(7), -1/sqrt(7), 1/sqrt(7), 1/sqrt(7)) = (4/sqrt(7), -2/sqrt(7), 2/sqrt(7), 2/sqrt(7)).

Therefore, a vector in the direction of AB that has a length of 2 is (4/sqrt(7), -2/sqrt(7), 2/sqrt(7), 2/sqrt(7)).

Learn more about  unit vector here:

https://brainly.com/question/28028700

#SPJ11

thank you for your time!
For the function 2 2 f (x) = x² x3 find the value of f'(1). You don't have to use the limit definition of the derivative to find f'(x): you can use any rules we have learned so far. 1. Report the val

Answers

The value of f'(1) for the function f(x) = x^2 * x^3 is 15.

To find the derivative of the given function, we can use the power rule and the product rule.

The power rule states that the derivative of x^n is n * x^(n-1), and the product rule states that the derivative of the product of two functions u(x) and v(x) is u'(x) * v(x) + u(x) * v'(x).

Applying the power rule to the first term, we have f'(x) = 2x^(2-1) * x^3 = 2x^2 * x^3 = 2x^5.

Then, applying the product rule to the second term, we have f'(x) = x^2 * 3x^(3-1) = 3x^2 * x^2 = 3x^4.

Combining the derivatives of both terms, we have f'(x) = 2x^5 + 3x^4. Now, to find f'(1), we substitute x = 1 into the derivative expression: f'(1) = 2(1^5) + 3(1^4) = 2 + 3 = 5.

Therefore, the value of f'(1) for the given function is 5.

Learn more about the power rule:

https://brainly.com/question/23418174

#SPJ11

Set up an integral that represents the length of the curve. Then use your calculator to find the length correct to four decimal places. x = V - 4y, 1sys 4 dy =

Answers

Using a numerical integration tool, the length of the curve is approximately 4.3766 (rounded to four decimal places) when evaluated over the interval 1 ≤ y ≤ 4.

To find the length of the curve represented by the equation x = √y - 4y, over the interval 1 ≤ y ≤ 4, we can set up an integral using the arc length formula:

L = ∫[a, b] sqrt(1 + (dx/dy)^2) dy

First, let's find dx/dy by differentiating x with respect to y:

dx/dy = (1/2) * (1/sqrt(y)) - 4

Now, let's substitute dx/dy into the arc length formula:

L = ∫[1, 4] sqrt(1 + ((1/2) * (1/sqrt(y)) - 4)^2) dy

We can simplify the integrand:

L = ∫[1, 4] sqrt(1 + (1/4y) - 4(1/2)(1/sqrt(y)) + 16) dy

= ∫[1, 4] sqrt(17/4 - 2/sqrt(y) + 1/4y) dy

To find the length numerically, we can use a calculator or software that supports numerical integration. The integral can be evaluated using numerical methods such as Simpson's rule, the trapezoidal rule, or any other appropriate numerical integration technique.

Using a numerical integration tool, the length of the curve is approximately 4.3766 (rounded to four decimal places) when evaluated over the interval 1 ≤ y ≤ 4.

The question should be:

Set up an integral that represents the length of the curve. Then use your calculator to find the length correct to four decimal places. x = y^(1/2) − 4y, 1 ≤ y ≤ 4

To learn more about integral: https://brainly.com/question/22008756

#SPJ11








Evaluate the indefinite integral. (Use C for the constant of integration.) (In(x))40 dx Х x

Answers

[tex]\int\limits (In(x))^{40}xdx=\frac{1}{40} (ln(x))^{40}+C.[/tex] where C represents the constant of integration.

What is the indefinite integral?

The indefinite integral, also known as the antiderivative, of a function represents the family of functions whose derivative is equal to the original function (up to a constant).

The indefinite integral of a function f(x) is denoted as ∫f(x)dx and is computed by finding an expression that, when differentiated, gives f(x).

To evaluate the indefinite integral [tex]\int\limits (In(x))^{40}xdx[/tex], we can use integration by substitution.

Let's start by applying the substitution  u=ln(x). Taking the derivative of u with respect to x, we have [tex]du=\frac{1}{x}dx.[/tex]

Now, we can rewrite the integral in terms of u and du:

[tex]\int\limits (In(x))^{40}xdx=\int\limits u^{40}xdx[/tex]

Next, we substitute du and x in terms of u into the integral:

[tex]\int\limits u^{40}xdx=\int\limits u^{40}\frac{1}{u}du[/tex]

Simplifying further:

[tex]\int\limits u^{40}\frac{1}{u} du=\int\limits u^{39}du[/tex]

Now, we can integrate [tex]u^{39}[/tex] with respect to u:

[tex]\int\limits u^{39}du=\frac{1}{40} u^{40}+C,[/tex]

where C is the constant of integration.

Finally, substituting back u=ln(x):

[tex]\frac{1}{40} (ln(x))^{40}+C.[/tex]

So, the indefinite integral of [tex]\int\limits (In(x))^{40}xdx[/tex] is[tex]\frac{1}{40} (ln(x))^{40}+C.[/tex]

To learn more about the indefinite integral  from the given link

brainly.com/question/27419605

#SPJ4

11) The Alternating Series Test (-1)" 12) Ratio Test n!n 3 gh (2n+3)! 3n+5 13) Find the first four terms of the Taylor Series expansion about Xo = 0 for f(x) = 1-x

Answers

The first four terms of the Taylor series expansion of f(x) = 1 - x about x₀ = 0 are 1, -x, 0, and 0.

The Alternating Series Test is used to determine whether an alternating series converges or diverges. If a series satisfies the alternating sign condition (the terms alternate between positive and negative) and the terms decrease in magnitude as the series progresses, then the series converges. This means that the sum of the series approaches a finite value.

The Ratio Test is a convergence test that involves calculating the limit of the ratio of consecutive terms in a series. If the limit is less than 1, the series converges absolutely. If the limit is greater than 1 or infinite, the series diverges. If the limit is exactly 1, the test is inconclusive and does not provide information about the convergence or divergence of the series.

To find the first four terms of the Taylor series expansion of f(x) = 1 - x about x₀ = 0, we need to calculate the derivatives of f(x) and evaluate them at x₀. The Taylor series expansion is given by:

f(x) = f(x₀) + f'(x₀)(x - x₀) + f''(x₀)(x - x₀)²/2! + f'''(x₀)(x - x₀)³/3! + ...

Since x₀ = 0, f(x₀) = 1. The first derivative of f(x) is f'(x) = -1, the second derivative is f''(x) = 0, and the third derivative is f'''(x) = 0. Substituting these values into the Taylor series expansion, we have:

f(x) = 1 - 1(x - 0) + 0(x - 0)²/2! + 0(x - 0)³/3! + ...

Simplifying this expression gives:

f(x) = 1 - x

Therefore, the first four terms of the Taylor series expansion of f(x) = 1 - x about x₀ = 0 are 1, -x, 0, and 0.

Learn more about Taylor series here:

https://brainly.com/question/32235538

#SPJ11


Use
the first derivative test to determine the maximum/minimum of
y=(x^2 - 1)/e^x

Answers

We first find the critical points by setting the derivative equal to zero and solving for x. Then, we analyze the sign changes of the derivative around these critical points to identify whether they correspond to local maxima or minima.

The first step is to find the derivative of y with respect to x. Taking the derivative of (x^2 - 1)/e^x, we get (2x - 2e^x - x^2)/e^x. Setting this equal to zero and solving for x, we find the critical points. However, in this case, the equation is not easily solvable algebraically, so we may need to use numerical methods or a graphing tool to estimate the critical points.

Next, we analyze the sign changes of the derivative around the critical points. If the derivative changes from positive to negative, we have a local maximum, and if it changes from negative to positive, we have a local minimum. By evaluating the sign of the derivative on either side of the critical points, we can determine whether they correspond to a maximum or minimum.

In conclusion, to determine the maximum or minimum of the function y = (x^2 - 1)/e^x, we find the critical points by setting the derivative equal to zero and then analyze the sign changes of the derivative around these points using the first derivative test.

To learn more about derivative: -brainly.com/question/29144258#SPJ11

suppose in a random sample of 800 students from the university of x, 52% said that they plan to watch the super bowl. the 95% confidence interval has a margin of error of 3.5% points. does the confidence interval suggest that that the majority of students at the university of x plan to watch the super bowl? why?

Answers

The majority of students at the University of X plan to watch the Super Bowl.

To determine if the majority of students at the University of X plan to watch the Super Bowl based on the given information, we need to analyze the 95% confidence interval and its margin of error.

The sample size is 800 students, and 52% of them said they plan to watch the Super Bowl. The 95% confidence interval has a margin of error of 3.5% points.

To calculate the confidence interval, we can subtract the margin of error from the sample proportion and add the margin of error to the sample proportion:

Lower bound = 52% - 3.5% = 48.5%

Upper bound = 52% + 3.5% = 55.5%

The 95% confidence interval for the proportion of students who plan to watch the Super Bowl is approximately 48.5% to 55.5%.

Now, to determine if the majority of students plan to watch the Super Bowl, we need to check if the interval contains 50% or more. In this case, the lower bound of the confidence interval is above 50%, which suggests that the majority of students at the University of X plan to watch the Super Bowl.

Since the lower bound of the confidence interval is 48.5% and is above the 50% threshold, we can conclude with 95% confidence that the majority of students at the University of X plan to watch the Super Bowl.

Therefore, based on the given information and the confidence interval, it does suggest that the majority of students at the University of X plan to watch the Super Bowl.

For more questions on margin

https://brainly.com/question/30459935

#SPJ8

Please help asap, my semester ends in less then 2 weeks and I’m struggling

Answers

The probability that, in a random sample of 6 parts produced by this machine, exactly 1 is defective is 0.371.

How to calculate the probability

In this case, we have n = 6 (the number of parts) and p = 0.13 (the probability of producing a defective part). We want to find the probability of exactly 1 defective part, so k = 1.

Plugging in the values into the formula, we get:

P(X = 1) = C(6, 1) * 0.13 * (1 - 0.13)⁵

= 6 * 0.13 * 0.87⁵

Calculating this expression:

P(X = 1) ≈ 0.371

Therefore, the probability that, in a random sample of 6 parts produced by this machine, exactly 1 is defective is approximately 0.371

Learn more about probability on

https://brainly.com/question/24756209

#SPJ1

At a certain auto parts manufacturer, the Quality Control division has determined that one of the machines produces defective parts 13% of the time. If this percentage is correct, what is the probability that, in a random sample of 6 parts produced by this machine, exactly 1 is defective?

Round your answer to three decimal places.

The difference between the roots of the equation 2x^2 -7x+c=0, what is c

Answers

The difference between the roots of the equation 2x² - 7x + c = 0 is determined by the value of c being less than or equal to 49/8.

The difference between the roots of the equation 2x² - 7x + c = 0 is determined by finding the roots of the equation first. To find the roots, the equation can be rewritten by using the quadratic formula as follows:

x = [-b ± √(b² - 4ac)]/2a

Plugging in the values of a = 2, b = -7, and c = c, we get

x = [-(-7) ± √(72 - 4(2)(c))]/4

x = [7 ± √(49 - 8c)]/4

For x to be real, the term under the square root must be greater than or equal to 0. So,

49 - 8c ≥ 0

This simplifies to

8c ≤ 49

Therefore, c must be less than or equal to 49/8 for the roots of the equation to be real.

Hence, the difference between the roots of the equation 2x² - 7x + c = 0 is determined by the value of c being less than or equal to 49/8.

To learn more about the roots of quadratic equation visit:

https://brainly.com/question/18305483.

#SPJ1

Select the values that make the inequality-2 true. Then write an equivalent
inequality, in terms of s.
(Numbers written in order from least to greatest going across.)
00
07
011
04
08
12
Equivalent Inequality: 828
05
D9
16

Answers

The solution to the given Inequality expression is: s ≥ -8

How to solve the Inequality problem?

Inequalities could be in the form of greater than, less than, greater than or equal to and less than or equal to.

We are given the inequality expression as:

s/-2 ≤ 4

Divide both sides by -1/2 and this changes the inequality sign to give us:

s ≥ 4 * -2

s ≥ -8

Thus, all values greater than or equal to -8 are possible values of s in the inequality.

Read more about Inequalities at: https://brainly.com/question/25275758

#SPJ1

Complete question is:

Select the values that make the inequality s/-2 ≤ 4 true. Then write an equivalent inequality, in terms of s.

A man starts walking south at 5 ft/s from a point P. Thirty minute later, a woman starts waking north at 4 ft/s from a point 100 ft due west of point P. At what rate are the people moving apart 2 hours after the man starts walking?

Answers

The rate at which the people are moving apart 2 hours after the man starts walking is 0 ft/s.

Let's set up a coordinate system to solve the problem. We'll place point P at the origin (0, 0) and the woman's starting point at (-100, 0). The man starts walking south, so his position at any time t can be represented as (0, -5t).

The woman starts walking north, so her position at any time t can be represented as (-100, 4t).

After 2 hours (or 2 * 3600 seconds), the man's position is (0, -5 * 2 * 3600) = (0, -36000), and the woman's position is (-100, 4 * 2 * 3600) = (-100, 28800).

To find the distance between them, we can use the distance formula:

Distance = √((x2 - x1)^2 + (y2 - y1)^2)

where (x1, y1) and (x2, y2) are the coordinates of the two points.

Distance = √((-100 - 0)^2 + (28800 - (-36000))^2)

        = √(10000 + 12960000)

        = √(12970000)

        ≈ 3601.2 feet

To find the rate at which the people are moving apart, we need to find the rate of change of distance with respect to time. We differentiate the distance equation with respect to time:

d(Distance)/dt = d(√((x2 - x1)^2 + (y2 - y1)^2))/dt

Since the x-coordinates of both people are constant (0 and -100), their derivatives with respect to time are zero. Therefore, we only need to differentiate the y-coordinates:

d(Distance)/dt = d(√((0 - (-100))^2 + ((-36000) - 28800)^2))/dt

              = d(√(100^2 + (-64800)^2))/dt

              = d(√(10000 + 4199040000))/dt

              = d(√(4199050000))/dt

              = (1/2) * (4199050000)^(-1/2) * d(4199050000)/dt

              = (1/2) * (4199050000)^(-1/2) * 0

              = 0

Therefore, the rate at which the people are moving apart 2 hours after the man starts walking is 0 ft/s.

To know more about rate refer here:

https://brainly.com/question/25565101#

#SPJ11

Find the standard matrices A and A' for T = T2 ∘
T1 and T' = T1 ∘ T2. T1: R2 → R2, T1(x, y) = (x − 2y, 3x + 4y)
T2: R2 → R2, T2(x, y) = (0, x)
A =
A' =

Answers

The standard matrix A for the transformation T1 is given by A = [[1, -2], [3, 4]]. The standard matrix A' for the transformation T' is given by A' = [[0, 1], [0, 3]].

To find the standard matrix A for the transformation T1, we need to determine how T1 affects the standard basis vectors in R2. The standard basis vectors in R2 are e1 = (1, 0) and e2 = (0, 1). Applying T1 to these vectors, we get T1(e1) = (1, -2) and T1(e2) = (3, 4). These resulting vectors become the columns of the matrix A.

Similarly, to find the standard matrix A' for the transformation T', we need to determine how T' affects the standard basis vectors in R2. Applying T2 to these vectors, we get T2(e1) = (0, 1) and T2(e2) = (0, 0). These resulting vectors become the columns of the matrix A'.

Therefore, the standard matrix A for T1 is A = [[1, -2], [3, 4]], and the standard matrix A' for T' is A' = [[0, 1], [0, 3]]. These matrices represent the linear transformations T1 and T' respectively, mapping vectors from R2 to R2.

Learn more about linear transformations here:

https://brainly.com/question/13595405

#SPJ11

When a number is raised to a power, is the result always larger than the original number? Support your answer with some examples.

Answers

Answer:

That actually kind of depends. If it is raised to a negative exponent, it will be a fraction of its original value. However, to answer your question, it will be a bigger number because you are basically multiplying the number by another number, x amount of times. For example, 6^3 is equal to the equation 6x6x6. Using GEMDAS, our answer is 216. Essentially, you're following the basic rules of multiplication...

I'm not if this will help. Hopefully, it does though...

Step-by-step explanation:

The result of raising a number to power can be larger or smaller than the original number depending on the value of the power.

Whether a number raised to a power is larger than the original number depends on the power that the number is raised to.

If the power is 1, then the result will be the same as the original number. For example, 5 to the power of 1 is 5.

However, if the power is greater than 1, then the result will be larger than the original number. For example, 5 to the power of 2 (written as 5²) is 25, which is larger than 5.

On the other hand, if the power is between 0 and 1, then the result will be smaller than the original number. For example, 5 to the power of 0.5 (written as √5) is approximately 2.236, which is smaller than 5.

To summarize, the result of raising a number to power can be larger or smaller than the original number depending on the value of the power.

Know more about the power here:

https://brainly.com/question/28782029

#SPJ11

Let U1, U2,... be IID Uniform(0, 1) random variables. Let M n = prod i = 1 to n U i be the product of the first n of them.
(a) Show that ;= -log U; is distributed as an Exponential random variable with a certain rate.
Hint: If U is Uniform(0, 1), then so is 1-U.
(b) Find the PDF of S n = Sigma i = 1 ^ n xi i .
(c) Finally, find the PDF of Mn. Hint: M₁ = exp(-S)

Answers

(a) We need to show that the random variable Y = -log(U) follows an Exponential distribution with a certain rate parameter. (b) We are asked to find the probability density function (PDF) of the random variable S_n, which is the sum of n random variables x_i. (c) Lastly, we need to find the PDF of the random variable M_n, which is the product of the first n random variables U_i.

(a) To show that Y = -log(U) follows an Exponential distribution, we can use the fact that if U is a Uniform(0, 1) random variable, then 1-U is also Uniform(0, 1). We can calculate the cumulative distribution function (CDF) of Y and show that it matches the CDF of an Exponential distribution with the appropriate rate parameter.

(b) To find the PDF of S_n, we can use the fact that the sum of independent random variables follows the convolution of their individual PDFs. We need to convolve the PDF of x_i n times to obtain the PDF of S_n.

(c) Lastly, to find the PDF of M_n, we note that M_1 = exp(-S) follows an Exponential distribution. Using this as a starting point, we can derive the PDF of M_n by considering the product of n independent exponential random variables.

By following these steps, we can determine the PDFs of Y, S_n, and M_n and provide a complete solution to the problem.

Learn more about Exponential distribution here:

https://brainly.com/question/22692312

#SPJ11




Solve the problem. 7) Assume that the temperature of a person during an illness is given by: 7) T(t) = 5t +98.6, 2+1 7 5(? - 1) where T = the temperature, in degrees Fahrenheit, at time t, in hours. F

Answers

The missing value represented by the question mark is 108.6. The temperature at t = 2 hours is 108.6 degrees Fahrenheit.

To solve the problem, we are given the temperature function T(t) = 5t + 98.6, where T represents the temperature in degrees Fahrenheit and t represents time in hours. We need to find the value of the temperature at a specific time.

To find the temperature at a specific time, we substitute the given time into the equation. In this case, we are looking for the temperature at t = 2 hours. Thus, we substitute t = 2 into the equation:

T(2) = 5(2) + 98.6

    = 10 + 98.6

    = 108.6

Therefore, the missing value represented by the question mark is 108.6. The temperature at t = 2 hours is 108.6 degrees Fahrenheit. By plugging in the value of t into the temperature function, we can determine the corresponding temperature at that specific time.

To learn more about equation click here

brainly.com/question/29657983

#SPJ11








6. Find the parametric and symmetric equations of the line passing through the point A(4.-5.-2) and normal to the plane of equation: -2x - y +3==8

Answers

The parametric equation of the line passing through point A(4, -5, -2) and normal to the plane -2x - y + 3 = 8 is x = 4 - 2t, y = -5 + t, z = -2 + 3t. The symmetric equation of the line is (x - 4) / -2 = (y + 5) / 1 = (z + 2) / 3.

To find the parametric equation of the line passing through point A and normal to the given plane, we first need to find the direction vector of the line.

The direction vector of a line normal to the plane is the normal vector of the plane.

The given plane has the equation -2x - y + 3 = 8.

We can rewrite it as -2x - y + 3 - 8 = 0, which simplifies to -2x - y - 5 = 0.

The coefficients of x, y, and z in this equation represent the components of the normal vector of the plane.

Therefore, the normal vector is N = (-2, -1, 0).

Now, we can write the parametric equation of the line using the point A(4, -5, -2) and the direction vector N.

Let t be a parameter representing the distance along the line.

The parametric equations are:

x = 4 - 2t

y = -5 - t

z = -2 + 0t (since the z-component of the direction vector is 0)

Simplifying these equations, we obtain:

x = 4 - 2t

y = -5 + t

z = -2

These equations represent the parametric equation of the line passing through A and normal to the given plane.

To find the symmetric equation of the line, we can rewrite the parametric equations in terms of ratios:

(x - 4) / -2 = (y + 5) / 1 = (z + 2) / 0

However, since the z-component of the direction vector is 0, we can ignore it in the equation.

Therefore, the symmetric equation becomes:

(x - 4) / -2 = (y + 5) / 1

This is the symmetric equation of the line passing through A and normal to the given plane.

Learn more about Equation here:

brainly.com/question/29018878

#SPJ11

Second Order Homogeneous Equation. Consider the differential equation E : x(t) – 4.x'(t) + 4x(t) = 0. (i) Find the solution of the differential equation E. (ii) Assume x(0) = 1 and x'(0) = 2 and find the solution of E associated to these conditions.

Answers

The solution to the differential equation E: x(t) - 4x'(t) + 4x(t) = 0 is given by x(t) = c₁e^(2t) + c₂te^(2t).

What is the solution to the given second-order homogeneous differential equation E?

The solution to the given second-order homogeneous differential equation E is x(t) = c₁e^(2t) + c₂te^(2t).

To find the solution to the second-order homogeneous differential equation E, we can assume a solution of the form x(t) = e^(rt), where r is a constant. Substituting this into the differential equation, we get the characteristic equation r^2 - 4r + 4 = 0. Solving this quadratic equation, we find that r = 2 is a repeated root.

When we have a repeated root, the general solution takes the form x(t) = (c₁ + c₂t)e^(rt). Plugging in the value r = 2, the solution becomes x(t) = (c₁ + c₂t)e^(2t).

To find the specific solution associated with the initial conditions x(0) = 1 and x'(0) = 2, we substitute these values into the general solution. From x(0) = 1, we get c₁ = 1. Differentiating the general solution, we have x'(t) = (c₂ + 2c₂t)e^(2t). Plugging in x'(0) = 2, we obtain c₂ = 2.

Substituting the values of c₁ and c₂ into the general solution, we get the particular solution x(t) = e^(2t) + 2te^(2t) associated with the given initial conditions.

Learn more about Second-order homogeneous.

brainly.com/question/30351720

#SPJ11

The
average value of y= k(x) equals 4 for 1 <_x <_6 and equals 5
for 6 <_x <_ 8. Find the average value of k(x) for 1 <_x
<_8.

Answers

The average value of the function k(x) over the interval 1 ≤ x ≤ 8 is 9/7. This means that on average, the function k(x) takes the value of 9/7 over the entire interval.

To find the average value of the function k(x) over the interval 1 ≤ x ≤ 8, we need to consider the two subintervals: 1 ≤ x ≤ 6 and 6 ≤ x ≤ 8, where the function has different average values.

Given that the average value of k(x) is 4 for 1 ≤ x ≤ 6, we can express this as an integral:

∫[1,6] k(x) dx = 4.

Similarly, the average value of k(x) is 5 for 6 ≤ x ≤ 8:

∫[6,8] k(x) dx = 5.

To find the average value of k(x) over the entire interval 1 ≤ x ≤ 8, we can combine these two integrals:

∫[1,6] k(x) dx + ∫[6,8] k(x) dx = 4 + 5.

Now, we want to find the average value of k(x) over the interval 1 ≤ x ≤ 8, which can be expressed as:

∫[1,8] k(x) dx = ?

To find this value, we need to divide the combined integral of k(x) over the entire interval by the length of the interval.

The length of the interval 1 ≤ x ≤ 8 is 8 - 1 = 7.

So, the average value of k(x) over the interval 1 ≤ x ≤ 8 is:

(∫[1,6] k(x) dx + ∫[6,8] k(x) dx) / (8 - 1).

Substituting the known values of the two integrals:

(4 + 5) / 7 = 9 / 7.

Therefore, the average value of k(x) for 1 ≤ x ≤ 8 is 9/7.

Learn more about function at: brainly.com/question/30721594

#SPJ11

Consider the following function: f(x) = V9 - 12 -X For parts (a) and (b), give your answer in interval notation using STACK's interval functions. For example, enter co(2,5) for 2

Answers

a) The domain of f(x) is (-∞, 9]. This can be written in interval notation as co(-inf, 9].

b) The range of f(x) is (-∞, -3]. This can be written in interval notation as co(-inf, -3].

Based on the assumption that the function is f(x) = √(9 - x²).

To find the domain of this function using interval notation, we need to determine the values of x for which the function is defined. The function is defined as long as the expression under the square root is non-negative, i.e., 9 - x² ≥ 0. To solve this inequality, we can rewrite it as: x² ≤ 9 Taking the square root of both sides, we get: -3 ≤ x ≤ 3 Now, using interval notation, we can represent this domain as: [-3, 3] So, the domain of the given function f(x) = √(9 - x²) is [-3, 3] in interval notation.

For f(x) = V9 - 12 -X,

to know more about interval notation, please visit;

https://brainly.com/question/29184001

#SPJ11

7. (8 pts) The monthly cost and demand functions for a new company are given by C(x)= 75+2x and p(x)= 50 -0.1x where x is the number of units made. a. Calculate the marginal revenue function. Explain the meaning of this function in a sentence. b. Calculate the marginal revenue when x = 200. Summarize your results in a sentence.

Answers

When the company produces 200 units, the marginal revenue for each additional unit remains constant at -$0.1.

a. The marginal revenue function represents the rate of change of revenue with respect to the number of units produced. It can be calculated by taking the derivative of the demand function, p(x).

To find the marginal revenue function, we need to differentiate the demand function p(x) with respect to x:

p'(x) = -0.1

Therefore, the marginal revenue function is constant and equal to -0.1.

In summary, the marginal revenue function in this case is a constant value of -0.1, indicating that for each additional unit produced, the revenue decreases by $0.1.

b. To calculate the marginal revenue when x = 200, we can directly substitute the value of x into the marginal revenue function.

Since the marginal revenue is constant in this case, it will remain the same regardless of the value of x.

Therefore, the marginal revenue when x = 200 is -0.1.

To know more about marginal revenue refer here:

https://brainly.com/question/30236294#

#SPJ11

9 Find an equation of the Langent plane to the given surface at specified point. ryz-6 PC3.2.2) 10 Find the linearization of the function - 4yxy? at (1.1) and use it to approximate F(0.9.1.01).

Answers

The equation of the tangent plane to the surface at the point (3, 2, 4) is -162x + 4y + 2z + 470 = 0.

The linear approximation of the function -4xy at (1, 1) yields an approximation of -3.64 for F(0.9, 1.01).

To find the equation of the tangent plane to the given surface at the specified point, we need to determine the gradient vector and then use it in the equation of a plane.

The given surface is r = yz - 6x^3 + 2.

To find the gradient vector, we differentiate each term with respect to x, y, and z:

∂r/∂x = -18x^2

∂r/∂y = z

∂r/∂z = y

At the specified point (x, y, z) = (3, 2, 4):

∂r/∂x = -18(3)^2 = -162

∂r/∂y = 4

∂r/∂z = 2

So the gradient vector at (3, 2, 4) is <∂r/∂x, ∂r/∂y, ∂r/∂z> = <-162, 4, 2>.

Now we can use the point-normal form of the equation of a plane:

A(x - x₀) + B(y - y₀) + C(z - z₀) = 0,

where (x₀, y₀, z₀) is the specified point and <A, B, C> is the normal vector (gradient vector).

Substituting the values (x₀, y₀, z₀) = (3, 2, 4) and <A, B, C> = <-162, 4, 2>:

-162(x - 3) + 4(y - 2) + 2(z - 4) = 0.

Simplifying further, we get the equation of the tangent plane:

-162x + 486 + 4y - 8 + 2z - 8 = 0,

-162x + 4y + 2z + 470 = 0.

Therefore, the equation of the tangent plane to the given surface at the point (3, 2, 4) is -162x + 4y + 2z + 470 = 0.

To find the linearization of the function F(x, y) = -4xy at the point (1, 1) and use it to approximate F(0.9, 1.01), we need to compute the linear approximation.

The linear approximation of a function F(x, y) at a point (a, b) is given by:

L(x, y) = F(a, b) + ∂F/∂x(a, b)(x - a) + ∂F/∂y(a, b)(y - b),

where ∂F/∂x and ∂F/∂y represent the partial derivatives of F with respect to x and y, respectively.

For the function F(x, y) = -4xy, we have:

∂F/∂x = -4y,

∂F/∂y = -4x.

At the point (a, b) = (1, 1):

∂F/∂x(a, b) = -4(1) = -4,

∂F/∂y(a, b) = -4(1) = -4.

Plugging these values into the linear approximation formula:

L(x, y) = F(1, 1) - 4(x - 1) - 4(y - 1),

Simplifying further:

L(x, y) = -4 - 4(x - 1) - 4(y - 1),

L(x, y) = -4 - 4x + 4 - 4y + 4,

L(x, y) = -4x - 4y + 4.

Now, we can approximate F(0.9, 1.01) using the linearization:

F(0.9, 1.01) ≈ L(0.9, 1.01) = -4(0.9) - 4(1.01) + 4,

F(0.9, 1.01) ≈ -3.6 - 4.04 + 4,

F(0.9, 1.01) ≈ -3.64.

Therefore, the approximation for F(0.9, 1.01) using the linearization is approximately -3.64.

To learn more about tangent planes visit : https://brainly.com/question/30619505

#SPJ11

a diver jump off a pier at angle of 25 with an initial velocity of 3.2m/s. haw far from the pier will the diver hit the water?

Answers

Answer:

Step-by-step explanation:

0.80m

thank you for your time!
Let f (x) = x-1 Use the limit definition of the derivative to find f'(x) . Show what the limit definition is, and either show your work or explain how to find the limit. Finally, write out f'(x)

Answers

The derivative of f(x) = x - 1 is f'(x) = 1. The limit definition of the derivative is given by: f'(x) = lim(h->0) [(f(x + h) - f(x))/h]

To find the derivative of the function f(x) = x - 1 using the limit definition, we first write out the limit definition and then apply it to the function.

The derivative, f'(x), represents the rate of change of the function at any given point.

The limit definition of the derivative is given by:

f'(x) = lim(h->0) [(f(x + h) - f(x))/h]

Applying this definition to the function f(x) = x - 1, we have:

f'(x) = lim(h->0) [(f(x + h) - f(x))/h]

= lim(h->0) [(x + h - 1 - (x - 1))/h]

= lim(h->0) [h/h]

= lim(h->0) 1

= 1

Therefore, the derivative of f(x) = x - 1 is f'(x) = 1. This means that the rate of change of the function f(x) = x - 1 is constant, and for any value of x, the slope of the tangent line to the graph of f(x) is 1.

Learn more about limit definition of a derivative:

https://brainly.com/question/30782259

#SPJ11

Other Questions
Xavier is taking a math course in which four tests are given. To get a B, he must average at least 80 on the four tests. He got scores of 83, 71, and 73 on the first threetests. Determine (in terms of an inequality) what scores on the last test will allow him to get at least a B The grantee receives greatest protection with what type of deed? A. Quitclaim B. General warranty. C. Bargain and sale with covenant. D. Executor's. A bond portfolio consists of a two-year zero-coupon bond with a face value of $4,000 and a 15-year zero-coupon bond with a face value of $8,000. The current yield on these bonds is 10% per annum (continuously compounded). Assume a 2% per annum increase in yields, please calculate the actual percentage change in the portfolio value and compare it with the estimated percentage changes in the portfolio value using two methods: (1) applying duration alone, (2) applying duration and convexity. Select one: O a. Actual change = -11.6896; estimated changes: (1) - -13.17%, (2) - -11.53% b. Actual change = -12.73%; estimated changes: (1) = -11.97%, (2) = -12.57% Oc. Actual change = -13-35%; estimated changes: (1) = -13.47%, (2) = -13.22% d. Actual change = -14.21%; estimated changes: (1) = -14.78%, (2) = -14.56%Previous question a turn consists of rolling a standard die and tossing a fair coin. the game is won when the die shows a or a and the coin shows heads. what is the probability the game will be won before the fourth turn? express your answer as a common fraction. A ball is kicked into the air and follows the path described by h(t) = -4.9t2 + 6t + 0.6, where t is the time in seconds, and h is the height in meters above the ground. Find the maximum height of the ball. What value would you have to change in the equation if the maximum height of the ball is more than 2.4 meters? A critical assumption of the net operating income approach to valuation is that the overall capitalization rate leverage increases. insurance applications must contain which of these disclosure requirements What are the three primary challenges facing global businesses?A. Cultural, environmental, developmentalB. Cultural, political, geoeconomicC. Political, environmental, complianceD. Political, cultural, architecture part a what is the subshell structure for the ground state of a neon atom? what is the subshell structure for the ground state of a neon atom? [2,8] [2,(2,6)] [2,(2,5)] [2,(3,5)]\ Use the Divergence Theorem to compute the net outward flux of the following field across the given surface S F- (3y - 3x, 2z -y, 5y - 2x) S consists of the faces of the cube {(x, y, z) |x|52 ly|s2, (s Please tell the answer for these three questions. Thanks.Average Revenue A company sells two products whose demand functions are given by x1 = 400 - 3p, and x2 = 550 - 2.4p. The total revenue is given by R = XP. + XP2 Estimate the average revenue when price Consider the ordered bases B = {1,2,2%) and C = {1, (4-1), (x - 1)^} for P. (a) Find the transition matrix from C to B. (b) Find the transition matrix from B to C (e) Write p(x) = a + b + c" Calculate Expected Value (EV) based on the following assumptions. Based on EV calculations alone, what is Nike's better option? Assumptions: Basic (Option 1) / Complex (Option2) (Costs and revenue are in thousands) a. Costs: i. Option 1: $7,000 ii. Option 2: $95,000 b. Probabilities of Success: i. Option 1: Basic: 80% ii. Option 2: Complex: 45% c. Resulting Revenues if successful: i. Option 1: $10,000 ii. Option 2: $180,000 d. Resulting patent revenues from sales of patent if failure: i. Option 1: $5,000 ii. Option 2: $32,000 18. [-/0.47 Points] DETAILS SCALCET8 10.2.041. Find the exact length of the curve. x = 2 + 6t, y = 4 + 4t, 0 st 3 Need Help? Read It Submit Answer Watch It MY NOTES ASK YOUR TEACHER PRACTICE AN 4. The dimensions of a beanbag toss game are given in the diagram below.At what angle, , is the target platform attached to the frame, to the nearest degree?a. 19 b. 36 c. 65 d. 25 the area of the triangle is 28 square yards and 10 yards and 7 yards Select the correct conjugation for La familiaA) aprendoB) aprendesc) aprendeD) aprendemosE) aprenden match the spanish translation to the english question 2 options: they/you all just (did something) he/she/you (formal) just (did something) you (familiar) just (did something) i just (did something) we just (did something) 1. acabo de 2. acabas de 3. acaba de 4. acabamos de 5. acaban de Question 1Your company has identified a potentially profitable investmentopportunity. An initial investment of 6,000 is required toundertake the project. The project is expected to generate a cas T/F a cell phone emits the most radiation during a call, but it also emits small amounts periodically whenever it's turned on.