18. Expand each of the following logarithmic expressions: (49.23 (a) log7 y (b) In (x2(2 + x)) (c) In 81x8y

Answers

Answer 1

The expanded forms are:(a) log7 y(b) 2 ln x + ln (2 + x)(c) ln 81 + 8 ln x + ln y.

(a) expand log7 y:using the logarithmic property logb(xⁿ) = n logb(x), we have:log7 y = log7 (y¹) = 1 log7 y = log7 y.

(b) expand ln (x²(2 + x)):using the logarithmic property ln (ab) = ln a + ln b, we have:ln (x²(2 + x)) = ln (x²) + ln (2 + x) = 2 ln x + ln (2 + x).

(c) expand ln 81x⁸y:using the logarithmic property ln (aⁿ) = n ln a, we have:ln 81x⁸y = ln 81 + ln (x⁸y) = ln 81 + ln (x⁸) + ln y = ln 81 + 8 ln x + ln y.

logarithmic expressions: (49.23 (a) log7 y (b) In (x2(2 + x)) (c) In 81x8y

Learn more about logarithmic here:

https://brainly.com/question/30226560

#SPJ11


Related Questions

Given that events A and B are independent with P(A) = 0.8 and P(B) = 0.5, determine the value of P(A n B), rounding to the nearest thousandth, if necessary

Answers

The Probability of the intersection of independent events A and B is calculated by multiplying the individual probabilities of the events ,the value of P(A ∩ B) is 0.4.

The value of P(A ∩ B), we need to use the formula for the intersection of two independent events. For independent events A and B, the probability of their intersection is given by:

P(A ∩ B) = P(A) * P(B)

Given that P(A) = 0.8 and P(B) = 0.5, we can substitute these values into the formula:

P(A ∩ B) = 0.8 * 0.5

         = 0.4

Therefore, the value of P(A ∩ B) is 0.4.

The probability of the intersection of independent events A and B is calculated by multiplying the individual probabilities of the events. In this case, since A and B are independent, the occurrence of one event does not affect the probability of the other event. As a result, their intersection is simply the product of their probabilities.

By multiplying 0.8 and 0.5, we find that the probability of both events A and B occurring simultaneously is 0.4. This means that there is a 40% chance that both events A and B will happen together.

To know more about Probability .

https://brainly.com/question/25870256

#SPJ8

A particular computing company finds that its weekly profit, in dollars, from the production and sale of x laptop computers is P(x) = -0.007x3 – 0.1x² + 500x – 700. Currently the company builds a

Answers

The company should produce and sell 416 laptops weekly to maximize its weekly profit.

The given computing company's weekly profit function isP(x) = -0.007x³ – 0.1x² + 500x – 700. The number of laptops produced and sold weekly is x units. To maximize the weekly profit of the company, we need to find the value of x at which the profit function P(x) attains its maximum value.

Now, differentiate the given function, we get:P′(x) = (-0.007) * 3x² – 0.1 * 2x + 500= -0.021x² – 0.2x + 500To find the value of x, we set P′(x) = 0 and solve for x.

So,-0.021x² – 0.2x + 500 = 0

Multiplying both sides by -1, we get0.021x² + 0.2x - 500 = 0.

To solve this quadratic equation, we can use the quadratic formula: x = (-b ± √(b² - 4ac)) / 2a where a = 0.021, b = 0.2, and c = -500

Substituting the values of a, b, and c in the above formula, we get: x = (-0.2 ± √(0.2² - 4 * 0.021 * (-500))) / 2 * 0.021≈ 416.1 or -2385.7

Since the number of laptops produced and sold cannot be negative, we take the positive root x = 416.1 (approx.) as the required value.

Therefore, the company should produce and sell 416 laptops weekly to maximize its weekly profit.

To know more about profit click on below link

https://brainly.com/question/32385889#

#SPJ11

what is the area of the sector in square units determined by an arc with measure 50° in a circle with radius 10? round to the nearest 10th

Answers

answer:

To find the area of the sector determined by an arc with a measure of 50° in a circle with a radius of 10, we can use the formula for the area of a sector:

Area of Sector = (θ/360°) * π * r^2

where θ is the central angle in degrees, π is a mathematical constant approximately equal to 3.14159, and r is the radius of the circle.

Plugging in the given values:

θ = 50°

r = 10

Area of Sector = (50°/360°) * 3.14159 * (10)^2

Area of Sector ≈ (0.1389) * 3.14159 * 100

Area of Sector ≈ 43.98 square units

Rounded to the nearest tenth, the area of the sector determined by the 50° arc in a circle with a radius of 10 is approximately 44.0 square units.








17-20 Find the points on the curve where the tangent is hori- zontal or vertical. If you have a graphing device, graph the curve to check your work. 17. x = 13 – 31, y = 12 - 3 18. x = p3 – 31, y=

Answers

17. The curve defined by x = 13 - 31 and y = 12 - 3 does not have any horizontal or vertical tangents since the equations do not vary with respect to x or y.

18. The given equation x = p³ - 31 and y = (empty) does not provide enough information to determine any points on the curve or the presence of horizontal or vertical tangents as the equation for y is missing.

17. The given curve is defined by x = 13 - 31 and y = 12 - 3. To find the points where the tangent is horizontal or vertical, we need to determine the values of x and y that satisfy these conditions. However, there seems to be some confusion in the provided equations as they do not represent a valid curve. It is unclear what the intended equation is for the curve, and without further information, we cannot determine the points where the tangent is horizontal or vertical.

18. The given curve is defined by x = p3 - 31 and y = ?. Similarly to the previous case, the equation for the curve is incomplete, as the value of y is not provided. Therefore, we cannot determine the points where the tangent is horizontal or vertical for this curve. If you have additional information or clarification regarding the equations, please provide them so that we can assist you further.

Without the complete and accurate equations for the curves, it is not possible to identify the points where the tangent is horizontal or vertical. Graphing the curve using a graphing device or providing additional information would be necessary to analyze the curve and determine those points accurately.

Learn more about tangent here:

https://brainly.com/question/31617205

#SPJ11

I actually need help with this, not a fake answer. So please, help. I will give you more if I can but I need to answer this

Answers

Answer:

Step-by-step explanation:

the sequence is arithmetic it goes up consistently

You put 15 where n is so the problem would look like an=32(0.98)^n-1

The pants converge

His pants will be very long it is not reasonable

A company estimates that it will sell N(x) units of a product after spending x thousand dollars on advertising, as given by N(x)=−3x^3+250x^2−3200x+17000, 10≤x≤40.
(A) Use interval notation to indicate when the rate of change of sales N′(x) is increasing. Note: When using interval notation in WeBWorK, remember that: You use 'I' for [infinity] [infinity] and '-I' for −[infinity] − [infinity] , and 'U' for the union symbol. If you have extra boxes, fill each in with an 'x'. N′(x) N ′ ( x ) increasing:
(B) Use interval notation to indicate when the rate of change of sales N′(x) N ′ ( x ) is decreasing. N′(x) N ′ ( x ) decreasing:
(C) Find the average of the x x values of all inflection points of N(x) N ( x ) . Note: If there are no inflection points, enter -1000. Average of inflection points =
(D) Find the maximum rate of change of sales. Maximum rate of change of sales =

Answers

(A) N'(x) increasing: (10, 27.78)

(B) N'(x) decreasing: (27.78, 40)

(C) Average of inflection points: 27.78

(D) Maximum rate of change of sales: x ≈ 27.78

(A) To determine when the rate of change of sales N'(x) is increasing, we need to find the intervals where the derivative N'(x) is positive.

First, let's find the derivative of N(x):

N'(x) = d/dx (-3x^3 + 250x^2 - 3200x + 17000)

= -9x^2 + 500x - 3200

To find the intervals where N'(x) is increasing, we need to find the intervals where N''(x) > 0, where N''(x) is the second derivative of N(x).

Taking the derivative of N'(x):

N''(x) = d/dx (-9x^2 + 500x - 3200)

= -18x + 500

To find when N''(x) > 0, we solve the inequality -18x + 500 > 0:

-18x > -500

x < 500/18

x < 27.78

Therefore, the rate of change of sales N'(x) is increasing for the interval (10, 27.78) in interval notation.

(B) To determine when the rate of change of sales N'(x) is decreasing, we need to find the intervals where the derivative N'(x) is negative.

From the previous calculation, we know that N'(x) = -9x^2 + 500x - 3200.

To find the intervals where N'(x) is decreasing, we need to find the intervals where N''(x) < 0.

N''(x) = -18x + 500

To find when N''(x) < 0, we solve the inequality -18x + 500 < 0:

-18x < -500

x > 500/18

x > 27.78

Therefore, the rate of change of sales N'(x) is decreasing for the interval (27.78, 40) in interval notation.

(C) To find the inflection points of N(x), we need to find when the second derivative N''(x) changes sign.

From our previous calculations, we know that N''(x) = -18x + 500.

To find the inflection points, we set N''(x) = 0 and solve for x:

-18x + 500 = 0

-18x = -500

x = 500/18

x ≈ 27.78

Since N''(x) is linear, it changes sign at x = 27.78, which is the inflection point of N(x).

(D) To find the maximum rate of change of sales, we look for the maximum of the derivative N'(x).

From our previous calculations, we have N'(x) = -9x^2 + 500x - 3200.

To find the maximum, we take the derivative of N'(x) and set it equal to zero:

N''(x) = -18x + 500 = 0

-18x = -500

x = 500/18

x ≈ 27.78

Therefore, the maximum rate of change of sales occurs at x ≈ 27.78.

Read more about rates at:

brainly.com/question/18576593

#SPJ11

Score on last try: 0 of 2 pts. See Details for more. > Next question You can retry this question below Find the radius of convergence for: (2n)!xn n2n n=1 X Check Answer

Answers

The radius of convergence for the given series is infinity.

The given series can be written as ∑(2n)!x^n / (n^n), n=1 to infinity. To find the radius of convergence, we can use the ratio test.

Applying the ratio test, we have:

lim |a_n+1 / a_n| = lim [(2n+2)!x^(n+1) / ((n+1)^(n+1))] / [(2n)!x^n / (n^n)]

= lim (2n+2)(2n+1)x / (n+1)n

= lim (4x/3) * ((2n+1)/n) * ((n+1)/(n+2))

As n approaches infinity, the second and third terms in the above limit approach 1, giving us:

lim |a_n+1 / a_n| = (4x/3) * 1 * 1 = 4x/3

For the series to converge, the above limit must be less than 1. Solving for x, we get:

4x/3 &lt; 1

x &lt; 3/4

Therefore, the radius of convergence is less than or equal to 3/4.

However, we also need to consider the endpoint x=3/4. When x=3/4, the series becomes:

∑(2n)! (3/4)^n / (n^n)

This series converges, because the ratio of consecutive terms approaches a value less than 1. Therefore, the radius of convergence is infinity.

Learn more about consecutive terms here.

https://brainly.com/questions/14171064

#SPJ11

9. Use formula to find Laplace Transform and Its Inverse a. Find L {3t2 + 5e4t + sin 2t } b. Find 8 L-1{ } X4 – 16

Answers

a. The  Laplace Transform of the given function is  L{3t^2 + 5e^(4t) + sin(2t)} = 6 / s^3 + 5 / (s - 4) + 2 / (s^2 + 4)

b. The Inverse Laplace of the given function is L^-1{8 / (s^4 - 16)} = 2sin(2t) + e^(2t) + 5e^(-2t)

a. To find the Laplace transform of the function 3t^2 + 5e^(4t) + sin(2t), we can use the linearity property and the standard Laplace transform formulas.

Using the linearity property, we can take the Laplace transform of each term separately:

L{3t^2} = 3 * L{t^2} = 3 * (2! / s^3) = 6 / s^3

L{5e^(4t)} = 5 * L{e^(4t)} = 5 / (s - 4)

L{sin(2t)} = 2 / (s^2 + 4)

Putting it all together:

L{3t^2 + 5e^(4t) + sin(2t)} = 6 / s^3 + 5 / (s - 4) + 2 / (s^2 + 4)

b. To find the inverse Laplace transform of the function 8 / (s^4 - 16), we can use partial fraction decomposition and the standard inverse Laplace transform formulas.

First, we factor the denominator:

s^4 - 16 = (s^2 + 4)(s^2 - 4) = (s^2 + 4)(s - 2)(s + 2)

Now, we can decompose the fraction:

8 / (s^4 - 16) = A / (s^2 + 4) + B / (s - 2) + C / (s + 2)

To find the values of A, B, and C, we can multiply both sides by the denominator and equate the coefficients of like powers of s. After solving for A, B, and C, let's say we find:

A = 2, B = 1, C = 5

Now, we can rewrite the fraction:

8 / (s^4 - 16) = 2 / (s^2 + 4) + 1 / (s - 2) + 5 / (s + 2)

Using the standard inverse Laplace transform formulas, the inverse Laplace transform of each term can be found:

L^-1{2 / (s^2 + 4)} = 2sin(2t)

L^-1{1 / (s - 2)} = e^(2t)

L^-1{5 / (s + 2)} = 5e^(-2t)

Putting it all together:

L^-1{8 / (s^4 - 16)} = 2sin(2t) + e^(2t) + 5e^(-2t)

To know more about inverse Laplace transform refer here:

brainly.com/question/1675085

#SPJ11

Show theorems used
15. Find (F-1)(3) if f(x) = % +2 +1. x3 = (a) 0. (b) 4. (c) 1/4. (d) 27. (e) 1/27

Answers

Using theorems related to inverse functions, the value of (F-1)(3) is :

(F-1)(3) = (2 - √30)/3^(1/3)

To find (F-1)(3), we first need to find the inverse of f(x).
To do this, we switch x and y in the equation f(x) = x^3 + 2x + 1:
x = y^3 + 2y + 1
Then we solve for y:
y^3 + 2y + 1 - x = 0

Using the cubic formula or factoring techniques, we can solve for y:

y = (-2 + √(4-4(1)(1-x^3)))/2(1)  OR  y = (-2 - √(4-4(1)(1-x^3)))/2(1)

Simplifying, we get:

y = (-1 + √(x^3 + 3))/x^(1/3)  OR  y = (-1 - √(x^3 + 3))/x^(1/3)

Thus, the inverse function of f(x) is:

F-1(x) = (-1 + √(x^3 + 3))/x^(1/3)  OR  F-1(x) = (-1 - √(x^3 + 3))/x^(1/3)

Now, to find (F-1)(3), we plug in x = 3 into the inverse function:

F-1(3) = (-1 + √(3^3 + 3))/3^(1/3)  OR  F-1(3) = (-1 - √(3^3 + 3))/3^(1/3)

Simplifying, we get:

F-1(3) = (2 + √30)/3^(1/3)  OR  F-1(3) = (2 - √30)/3^(1/3)

Therefore, (F-1)(3) = (2 + √30)/3^(1/3)  OR  (F-1)(3) = (2 - √30)/3^(1/3).

This solution involves the use of theorems related to inverse functions, including switching x and y in the original equation and solving for y, as well as the cubic formula or factoring techniques to solve for y.

To learn more about inverse functions visit : https://brainly.com/question/3831584

#SPJ11

please show clear work. thanks
1. (1 pt) Plot the point whose polar coordinates are given. Then find two other ways to express this point. (3, -3) a.

Answers

The point with polar coordinates (3, -3) can be expressed in Cartesian coordinates as (-3√2/2, -3√2/2) and in exponential form as 3e^(i(-3π/4)).

To plot the point with polar coordinates (3, -3), we start at the origin and move 3 units in the direction of the angle -3 radians (or -3π/4). This gives us the point (-3√2/2, -3√2/2) in Cartesian coordinates.

Alternatively, we can express the point in exponential form using Euler's formula: r e^(iθ), where r is the magnitude and θ is the angle. In this case, the magnitude is 3 and the angle is -3π/4. So, the point can also be written as 3e^(i(-3π/4)), where e is the base of the natural logarithm and i is the imaginary unit.

Learn more about polar coordinates:

https://brainly.com/question/31904915

#SPJ11

At a price of x dollars, the supply function for a music player is q = 60e0.0054, where q is in thousands of units. How many music players will be supplied at a price of 150? (Round to the nearest thousand.) thousand units Find the marginal supply Marginal supply(x) Which is the best interpretation of the derivative? The rate of change of the quantity supplied as the price increases The rate of change of the price as the quantity supplied increases The quantity supplied if the price increases The price at a given supply of units The number of units that will be demanded at a given price

Answers

To find the number of music players supplied at a price of 150, we substitute x = 150 into the supply function q = 60e^(0.0054x) and round the result to the nearest thousand. The marginal supply is found by taking the derivative of the supply function with respect to x. The best interpretation of the derivative is the rate of change of the quantity supplied as the price increases.

1. To find the number of music players supplied at a price of 150, we substitute x = 150 into the supply function q = 60e^(0.0054x):

  q(150) = 60e^(0.0054 * 150) ≈ 60e^0.81 ≈ 60 * 2.246 ≈ 134.76 ≈ 135 (rounded to the nearest thousand).

2. The marginal supply is found by taking the derivative of the supply function with respect to x:

  Marginal supply(x) = d/dx(60e^(0.0054x)) = 0.0054 * 60e^(0.0054x) = 0.324e^(0.0054x).

3. The best interpretation of the derivative (marginal supply) is the rate of change of the quantity supplied as the price increases. In other words, it represents how many additional units of the music player will be supplied for each unit increase in price.

Therefore, at a price of 150 dollars, approximately 135 thousand units of music players will be supplied. The marginal supply function is given by 0.324e^(0.0054x), and its interpretation is the rate of change of the quantity supplied as the price increases.

Learn more about derivative :

https://brainly.com/question/29020856

#SPJ11







=T ++5 (x=1+31+5 Determine the arc-length of the curve: TER 1*-}(21+4)*7+2iter (7 pts) Find the slope of the tangent line to the r = 2-3 cose in polar coordinate at 0 = 1 le

Answers

To determine the arc length of the curve, we can use the formula for arc length: L = ∫√(1 + (dy/dx) ²) dx. To find the slope of the tangent line at θ = 1, we can first express the curve in Cartesian coordinates using the transformation equations r = √(x ² + y ²) and cosθ = x/r.

What is the approach to determine the arc length of the curve T = √(1 + 3x + 5) and find the slope of the tangent line to the curve r = 2 - 3cosθ at θ = 1?

The given expression, T = √(1 + 3x + 5), represents a curve in Cartesian coordinates. To determine the arc length of the curve, we can use the formula for arc length: L = ∫√(1 + (dy/dx) ²) dx.

However, since the function T is not provided explicitly, we need more information to proceed with the calculation.

For the second part, the polar coordinate equation r = 2 - 3cosθ represents a curve in polar coordinates.

To find the slope of the tangent line at θ = 1, we can first express the curve in Cartesian coordinates using the transformation equations r = √(x ² + y ²) and cosθ = x/r.

Then, differentiate the equation with respect to x to find dy/dx. Finally, substitute θ = 1 into the derivative to find the slope at that point.

Learn more about arc length

brainly.com/question/31762064

#SPJ11

Compute the area under the graph of y=4-x²2 over the interval [0, 2] on the x-axis as a line integral. Set the problem up to demonstrate the elements that comprise the line integral -ydx that computes this area, and find the exact area. Compute the area under the graph of y=4-x²2 over the interval [0, 2] on the x-axis as a line integral. Set the problem up to demonstrate the elements that comprise the line integral -ydx that computes this area, and find the exact area.

Answers

Therefore, The area under the graph of y=4-x²/2 over the interval [0,2] on the x-axis as a line integral is -∫(4-x²/2)dx from 0 to 2, which equals 8/3.

Explanation:
To compute the area under the graph of y=4-x²/2 over the interval [0,2], we can use the line integral -ydx. The line integral represents the area of a curve, which can be computed by breaking the curve into infinitesimal segments and adding up the areas of the segments. In this case, we can break the curve into small rectangles, each with a height of y and a width of dx. Thus, the line integral becomes -∫(4-x²/2)dx from 0 to 2, which equals the exact area of the region under the curve. Solving this integral gives us the answer: 4-4/3 = 8/3.

Therefore, The area under the graph of y=4-x²/2 over the interval [0,2] on the x-axis as a line integral is -∫(4-x²/2)dx from 0 to 2, which equals 8/3.

To know more about quadrilateral visit :

https://brainly.com/question/29635320

#SPJ11


please answer A-D
Na Aut A chemical substance has a decay rate of 6.8% per day. The rate of change of an amount of the chemical after t days is dN Du given by = -0.068N. La a) Let No represent the amount of the substan

Answers

The equation describes the rate of change of the amount of the substance, which decreases by 6.8% per day.

The equation dN/dt = -0.068N represents the rate of change of the amount of the chemical substance, where N represents the amount of the substance and t represents the number of days. The negative sign indicates that the amount of the substance is decreasing over time.

By solving this differential equation, we can determine the behavior of the substance's decay. Integrating both sides of the equation gives:

∫ dN/N = ∫ -0.068 dt

Applying the integral to both sides, we get:

ln|N| = -0.068t + C

Here, C is the constant of integration. By exponentiating both sides, we find:

|N| = e^(-0.068t + C)

Since the absolute value of N is used, both positive and negative values are possible for N. The constant C represents the initial condition, or the amount of the substance at t = 0 (N₀). Therefore, the general solution for the decay of the substance is:

N = ±e^(-0.068t + C)

This equation provides the general behavior of the amount of the chemical substance as it decays over time, with the constant C and the initial condition determining the specific values for N at different time points.

Learn more about differential equation here:

https://brainly.com/question/32538700

#SPJ11

Triangular base container: CONTAINER C
Clearly show your dimensions on your diagram.
Sketch a triangular base container with dimensions to hold exactly one litre of liquid.
For example, a Toblerone container.
1. Calculate the volume of this container in terms of above dimensions.
2. Calculate the surface area of the container in terms of above dimensions Calculate the value of the dimensions for this container for the surface area to be a
minimum.

Answers

We are asked to sketch a triangular base container with dimensions that can hold exactly one liter of liquid.

To sketch a triangular base container that can hold one liter of liquid, we need to consider its dimensions. Let's assume the base of the container is an equilateral triangle with side length 's' and the height of the container is 'h'.

To calculate the volume of the container, we need to find the area of the base and multiply it by the height. The area of an equilateral triangle is given by (sqrt(3)/4) * s^2, so the volume of the container is V = (sqrt(3)/4) * s^2 * h. Since we want the volume to be one liter (1000 cm^3), we set this equal to 1000 and solve for 'h' in terms of 's': h = [tex](4000 / (sqrt(3) * s^2)).[/tex]

The surface area of the container consists of the area of the base and the area of the three identical triangular sides. The area of the base is [tex](sqrt(3)/4) * s^2[/tex], and each triangular side has an area of (s * sqrt(3) * s) / 2 = [tex](sqrt(3)/2) * s^2[/tex]. Therefore, the total surface area is A = (sqrt(3)/4) * s^2 + 3 * (sqrt(3)/2) * s^2 = (5sqrt(3)/4) * s^2.

Learn more about equilateral here:

https://brainly.com/question/2456591

#SPJ11

According to Dan's trail mix recipe, 3 cups of dried fruit should be used for every 4 1/2 (four and a half) cups of chocolate.

At this rate, how many cups of fruit should be used if 6 cups of chocolate are used?

Answers

Answer:

4 cups of dried fruit.

Step-by-step explanation:

What is a ratio?

A ratio has two or more numbers that symbolize relation to each other. Ratios are used to compare numbers, and you can compare them using division.

According to Dan’s trail mix recipe, the ratio of dried fruit to chocolate is 3:4.5. This can be simplified to 2:3 by dividing both sides by 1.5.

3 ÷ 1.5 = 24.5 ÷ 1.5 = 3

This means that for every 3 cups of chocolate, 2 cups of dried fruit should be used.

If 6 cups of chocolate are used, which is twice the amount in the ratio, then twice the amount of dried fruit should be used as well.

2 × 2 = 43 × 2 = 6

Therefore, 4 cups of dried fruit should be used if 6 cups of chocolate are used.

1. Find the G.S. ......... Xy' + y = x’y? In(x) 2. Solve the L.V.P. - y - 5y +6y=(2x-5)e, (0) = 1, y(0) = 3

Answers

In(x) is given by:y = C1 x^[{1 + i√3}/2] + C2 x^[{1 - i√3}/2]; where C1 and C2 are constants of integration. The solution to the given initial value problem is given by:y = (1/3)e^(3x) + 2e^(2x) - (1/3)e^(-x) + (1/3)x - (4/3)'

1. Find the G.S. ......... Xy' + y = x’y?

In(x)To find the General Solution (G.S.) of the differential equation xy' + y = x'y In(x), we shall make use of the Integrating factor method given by the following steps:

First, obtain the Integrating factor which is the exponential function of the integral of coefficient of y which is given by ∫(1/x)dx = ln(x). So, I.F. = exp[∫(1/x)dx] = exp[ln(x)] = x.

Secondly, multiply both sides of the given differential equation by I.F. as shown below:x(xy') + xy = x(x'y)I.F. * xy' + I.F. * y = I.F. * x'yx²y' + xy = x'y

Let us re-arrange the above equation as follows:x^2y' - x'y + xy = 0To solve for y, we shall assume that y = x^k, where k is a constant.Then, y' = kx^(k-1) and y'' = k(k-1)x^(k-2)

Substituting into the above equation, we obtain: k(k-1)x^k - kx^k + x^(k+1) = 0

Simplifying the above equation, we get: x^k (k^2 - k + 1) = 0Since x ≠ 0, then k^2 - k + 1 = 0 which implies that k = [-b ± √(b^2 - 4ac)]/2a

Therefore,k = [1 ± √(1 - 4(1)(1))]/2(1)k = [1 ± √(-3)]/2

Hence, we have two cases:

Case 1: k1 = [1 + i√3]/2; andy1 = x^(k1) = x^[{1 + i√3}/2]

Case 2: k2 = [1 - i√3]/2; andy2 = x^(k2) = x^[{1 - i√3}/2]

Therefore, the General Solution (G.S.) of the differential equation xy' + y = x'y

In(x) is given by:y = C1 x^[{1 + i√3}/2] + C2 x^[{1 - i√3}/2]; where C1 and C2 are constants of integration.

2. Solve the L.V.P. - y - 5y +6y=(2x-5)e, (0) = 1, y(0) = 3

First, we obtain the characteristic equation as shown below:r^2 - 5r + 6 = 0

Solving the quadratic equation, we get:r = (5 ± √(5^2 - 4(1)(6)))/2(1)r = (5 ± √(1))/2r1 = 3 and r2 = 2

Therefore, the Complementary Function (C.F.) of the given differential equation is given by:y_c = C1 e^(3x) + C2 e^(2x)

Next, we assume that y_p = Ae^(mx) + Bx + C; where A, B, and C are constants to be determined, and m is the root of the characteristic equation that is also a coefficient of x in the non-homogeneous part of the differential equation.

Then,y'_p = Ame^(mx) + B; andy''_p = Am² e^(mx)

Therefore, substituting into the given differential equation, we obtain:Am² [tex]e^(mx) + Bm e^(mx) - 5(Ame^(mx) + B) + 6(Ae^(mx)[/tex] + Bx + C) = (2x - 5)e

Simplifying, we obtain:(A m² + (B - 5A) m + 6A)e^(mx) + 6Bx + (6C - 5B) = (2x - 5)e

Therefore, comparing coefficients, we get:6B = 2, therefore B = 1/3;6C - 5B = -5, therefore C = -4/3;A m² + (B - 5A) m + 6A = 0,

Therefore, m = -1;A - 4A + 2/3 = -4/3, therefore A = -1/3

Therefore, the Particular Integral (P.I.) of the given differential equation is given by:y_p = (-1/3)e + (1/3)x - (4/3)

Hence, the General Solution (G.S.) of the given differential equation is given by:y = y_c + y_p = C1[tex]e^(3x) + C2 e^(2x)[/tex]- (1/3)[tex]e^(-x)[/tex] + (1/3)x - (4/3)

Since (0) = 1, we substitute into the above equation to get:C1 + C2 - (4/3) = 1C1 + C2 = 1 + (4/3)C1 + C2 = 7/3

Solving the above simultaneous equation, we obtain:C1 = 1/3 and C2 = 2

Therefore, the solution to the given initial value problem is given by:y = (1/3)[tex]e^(3x) + 2e^(2x) - (1/3)e^(-x)[/tex]+ (1/3)x - (4/3)

To know more about differential equation

https://brainly.com/question/25731911

#SPJ11

"
Use
logarithmic differentiation to find the derivative of the below
equation. show work without using the Product Rule or Quotient
Rule.
"y = Y x 3 4√√√x²+1 (4x+5)7

Answers

Using logarithmic differentiation, the derivative of the equation y = Y * 3^(4√(√(√(x^2+1)))) * (4x+5)^7 can be found. The result is given by y' = y * [(4√(√(√(x^2+1))))' * ln(3) + (7(4x+5))' * ln(4x+5) + (ln(Y))'], where ( )' denotes the derivative of the expression within the parentheses.

To find the derivative of the equation y = Y * 3^(4√(√(√(x^2+1)))) * (4x+5)^7 using logarithmic differentiation, we take the natural logarithm of both sides: ln(y) = ln(Y) + (4√(√(√(x^2+1)))) * ln(3) + 7 * ln(4x+5).

Next, we differentiate both sides with respect to x. On the left side, we have (ln(y))', which is equal to y'/y by the chain rule. On the right side, we differentiate each term separately.

The derivative of ln(Y) with respect to x is 0, since Y is a constant. For the term (4√(√(√(x^2+1)))), we use the chain rule and obtain [(4√(√(√(x^2+1))))' * ln(3)]. Similarly, for the term (4x+5)^7, the derivative is [(7(4x+5))' * ln(4x+5)].

Combining these derivatives, we get y' = y * [(4√(√(√(x^2+1))))' * ln(3) + (7(4x+5))' * ln(4x+5) + (ln(Y))'].

By applying logarithmic differentiation, we obtain the derivative of the given equation without using the Product Rule or Quotient Rule. The resulting expression allows us to calculate the derivative for different values of x and the given constants Y, ln(3), and ln(4x+5).

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

Determine whether the series is convergent or divergent by
expressing the nth partial sum Sn as a telescoping sum. if it is
convergent, find its sum.
10. 0/1 Points DETAILS PREVIOUS ANSWERS SCALCET9 11.XP.2.031.3/100 Submissions Used MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Determine whether the series es convergent or divergent by expressing the

Answers

To determine if the series is convergent or divergent by expressing the nth partial sum Sn as a telescoping sum, we need the specific series or its general form.

Identify the specific series or its general form, usually denoted as Σ aₙ.

Express the nth partial sum Sn as a telescoping sum by writing out a few terms and observing cancellations that occur when terms are subtracted.

Simplify the expression for Sn to obtain a formula that depends only on the first term and the nth term of the series.

If the formula for Sn simplifies to a finite value as n approaches infinity, then the series is convergent, and the sum is the finite value obtained.

If the formula for Sn does not simplify to a finite value as n approaches infinity or tends to positive or negative infinity, then the series is divergent, meaning it does not have a finite sum.

learn more about:- convergent or divergent  here

https://brainly.com/question/30726405

#SPJ11

(26 points) Lot = (42 + 4x4) 7 + (4y +62 +6 sin(y)) 7 + (4x + 6y + 4e7") { (a) Find curl F. curl = 0 (b) What does your answer to part (a) tell you about ſe dr where is the circle (x – 35)2 + -25)2

Answers

(a). The curl of F is given by curl F = (4e^7z) i - 4 j - 4x^3 k.

(b). The work done by the vector field F along the closed curve of the circle is zero.

To find the curl of the vector field

[tex]F = (42 + 4x^4) i + (4y + 62 + 6sin(y)) j + (4x + 6y + 4e^{7z})[/tex]k, we'll compute the curl as follows:

(a) Curl F:

The curl of a vector field F = P i + Q j + R k is given by the following determinant:

curl F = (∂R/∂y - ∂Q/∂z) i + (∂P/∂z - ∂R/∂x) j + (∂Q/∂x - ∂P/∂y) k

Let's compute the partial derivatives:

∂P/∂x = [tex]16x^3[/tex]

∂Q/∂y = 4

∂R/∂z = [tex]4e^{7z[/tex]

∂Q/∂z = 0 (as there is no z term in Q)

∂R/∂x = 4

∂P/∂y = 0 (as there is no y term in P)

Now, we can calculate the components of the curl:

curl F =[tex](4e^{7z} - 0) i + (0 - 4) j + (0 - 4x^3) k[/tex]

 

   = [tex](4e^{7z}) i - 4 j - 4x^3 k[/tex]

(b) Regarding the line integral ∮ F · dr, where r is the circle

[tex](x - 3)^2 + (y - 5)^2 = 25[/tex] :

Since the curl of F is zero (curl F = 0), it implies that F is a conservative vector field. This means that the line integral ∮ F · dr around any closed curve will be zero.

For the circle given by [tex](x - 3)^2 + (y - 5)^2 = 25[/tex], it is a closed curve. Therefore, we can conclude that the line integral ∮ F · dr around this circle is zero.

To know more about vector field refer here

https://brainly.com/question/14122594#

#SPJ11

2. [10pts] Compute the derivative for the following. a. f(x) = x + 3ex - sin(x) [2pts] b. f(x) = sin(x² + 5) + In(x² + 5) [4pts] c. f(x) = sin-¹(x) + tan-¹(2x) [4pts]

Answers

The derivatives of the given functions can be computed using differentiation rules. For function f(x) = x+3ex - sin(x), the derivative is 1+ 3ex-cos(x),  f(x)=sin(x² + 5) + ln(x² + 5) the derivative is 2xcos(x² + 5) + (2x / (x² + 5), f(x) = asin(x) + atan(2x), the derivative is 1/√(1 - x²) + 2 / (1 + 4x²).

To compute the derivative of the given functions, we apply differentiation rules and techniques.

a. For f(x) = x + 3ex - sin(x), we differentiate each term separately. The derivative of x with respect to x is 1. The derivative of 3ex with respect to x is 3ex. The derivative of sin(x) with respect to x is -cos(x). Therefore, the derivative of f(x) is 1 + 3ex - cos(x).

b. For f(x) = sin(x² + 5) + ln(x² + 5), we use the chain rule and derivative of the natural logarithm. The derivative of sin(x² + 5) with respect to x is cos(x² + 5) times the derivative of the inner function, which is 2x. The derivative of ln(x² + 5) with respect to x is (2x / (x² + 5)). Therefore, the derivative of f(x) is 2xcos(x² + 5) + (2x / (x² + 5)).

c. For f(x) = asin(x) + atan(2x), we use the derivative of the inverse trigonometric functions. The derivative of asin(x) with respect to x is 1 / √(1 - x²) using the derivative formula of arcsine. The derivative of atan(2x) with respect to x is 2 / (1 + 4x²) using the derivative formula of arctangent. Therefore, the derivative of f(x) is 1 / √(1 - x²) + 2 / (1 + 4x²).

By applying the differentiation rules and formulas, we can find the derivatives of the given functions.


Learn more about derivatives here:

https://brainly.com/question/25324584

#SPJ11

Problem 1. Use Riemann sums, using the midpoints of each subrectangle, with n = 6 and m=3 to approximate the integral [](#*+33°y + 3xy? +x") dA, ) + R where R=(3,5] x [7,8).

Answers

To approximate the given integral using Riemann sums, we need to divide the region of integration into smaller  sub-rectangles and evaluate the function at the midpoints of each  sub-rectangles.

Given that n = 6 and m = 3, we'll divide the region into 6 subintervals in the x-direction and 3 subintervals in the y-direction.

Let's proceed with the calculations:

Determine the width of each sub-interval in the x-direction:

Δx = (b - a) / n = (5 - (-3)) / 6 = 8 / 6 = 4/3

Determine the width of each sub-interval in the y-direction:

Δy = (d - c) / m = (8 - 7) / 3 = 1 / 3

Construct the sub-rectangles and find the midpoint of each  sub-rectangles:

Subintervals in the x-direction: [-3, -3 + 4/3], [-3 + 4/3, -3 + 8/3], [-3 + 8/3, -3 + 4], [-3 + 4, -3 + 16/3], [-3 + 16/3, -3 + 20/3], [-3 + 20/3, 5]

Midpoints in the x-direction: [-3 + 2/3], [-3 + 4/3 + 2/3], [-3 + 8/3 + 2/3], [-3 + 4 + 2/3], [-3 + 16/3 + 2/3], [-3 + 20/3 + 2/3]

Subintervals in the y-direction: [7, 7 + 1/3], [7 + 1/3, 7 + 2/3], [7 + 2/3, 8]

Midpoints in the y-direction: [7 + 1/6], [7 + 1/3 + 1/6], [7 + 2/3 + 1/6]

Evaluate the function at the midpoints of each  sub-rectangles and multiply by the corresponding  sub-rectangles area:

Approximation of the integral = Σ f(xi, yj) * ΔA

where Σ represents the sum over all  sub-rectangles, f(xi, yj) is the function evaluated at the midpoint of the  sub-rectangles, and ΔA is the area of the sub-rectangles.

Now, substituting the function f(x, y) = (#*+33°y + 3xy? +x") into the approximation formula, we can proceed with the calculations.

Since R = (3,5] × [7,8], which means x ranges from 3 to 5 and y ranges from 7 to 8, we only need to consider the  sub-rectangles that intersect with this region.

Let's calculate the approximation:

Approximation of the integral = f(x1, y1) * ΔA1 + f(x2, y1) * ΔA2 + f(x3, y1) * ΔA3

+ f(x1, y2) * ΔA4 + f(x2, y2) * ΔA5 + f(x3, y2) * ΔA6

where ΔA1, ΔA2, ΔA3, ΔA4, ΔA5, ΔA6 are the areas of the corresponding  sub-rectangles.

Note: Without the specific function values and the definition of the region R, it is not possible to provide the exact calculations and the approximation result. The above steps outline the general procedure to approximate the integral using Riemann sums, but the actual numerical values require the specific function and region information.

To learn more about  Riemann sums

https://brainly.com/question/31396540

#SPJ11

A candy-maker makes 500 pounds of candy per week, while his large family eats the candy 10% of the candy present each week. Let (t) be the amount of candy present at time t. Initially, there is 250
pounds of candy.
a. Express the scenario described above as an initial value problem.
b. Solve the initial value problem.

Answers

The solution to the initial value problem is: t(t) = [tex]500t - 0.05t^2 + 250[/tex].

In this scenario, the candy maker produces 500 pounds of candy each week and the family uses 10% of the candy available each week. Let t be the amount of candy available at time t.

The rate of change of candy present, d(t)/dt, can be expressed as the difference between the rate of candy production and the rate of candy consumption. Confectionery production rate is constant at 500 pounds per week. The candy consumption rate is 10% of the existing candy and can be expressed as 0.1 * t. So the differential equation that determines the amount of candy present over time is:

[tex]d(t)/dt = 500 - 0.1 * t[/tex]

The initial condition is t(0) = 250 pounds. This means you have 250 pounds of candy to start with.

Separate and combine variables to solve the initial value problem. Rearranging the equation gives:

[tex]d(t) = (500 - 0.1 * t) * dt[/tex]

Integrating both aspects gives:

[tex]∫d(t) = \int\limits {(500 - 0.1 * t) * dt}[/tex]. Integrating the left-hand side gives t as the constant of integration. On the right, we can use the power integration rule to find the inverse derivative of (500 - 0.1 * t).

Integrating and evaluating the bounds yields the following solutions:

[tex]t(t) = 500t - 0.05t^2 + C[/tex]

You can solve for the constant of integration C using the initial condition t(0) = 250 pounds. After substituting the values:

[tex]250 = 500 * 0 - 0.05 * 0^2 + C[/tex]

C=250. So the solution for the initial value problem would be:

[tex]t(t) = 500t - 0.05t^2 + 250[/tex]

This equation describes the amount of candy available at a given time t, taking into account candy production rates and family consumption rates

Learn more about initial value problem here:
https://brainly.com/question/30466257


#SPJ11

Find the volume of the composite figures (plsss) (show work too)

Answers

The volume of the figure (1) is 942 cubic inches.

1) Given that, height = 13 inches and radius = 6 inches.

Here, the volume of the figure = Volume of cylinder + Volume of hemisphere

= πr²h+2/3 πr³

= π(r²h+2/3 r³)

= 3.14 (6²×13+ 2/3 ×6³)

= 3.14 (156+ 144)

= 3.14×300

= 942 cubic inches

So, the volume is 942 cubic inches.

2) Volume = 4×4×5+4×4×6

= 176 cubic inches

Therefore, the volume of the figure (1) is 942 cubic inches.

To learn more about the volume visit:

https://brainly.com/question/13338592.

#SPJ1

Suppose that f(x,y) = x+4y' on the domain 'D = \{ (x,y)| 1<=x<=2, x^2<=y<=41}'. D Then the double integral of 'f(x,y)' over 'D' is "Nint int_D f(x,y) d x dy =

Answers

The limit of the given expression as h approaches 6 is -11/6. This means that as h gets arbitrarily close to 6, the value of the expression approaches Answer : -11/6.

To find the limit, we first simplified the expression by combining like terms and distributing the negative sign. Then, we substituted the value h = 6 into the expression. Finally, we evaluated the resulting expression to obtain -11/6 as the limit.

To evaluate the limit, let's rewrite the expression in a more readable format:

lim (h -> 6) [(12 - 100)/(4 + 2 + 30t - 100(6 - h))]

We can simplify the expression:

lim (h -> 6) [-88/(6h + 112 - 100)]

Now, let's substitute the value of h = 6 into the expression:

lim (h -> 6) [-88/(36 + 112 - 100)]

= lim (h -> 6) [-88/48]

= -88/48

This expression can be further simplified:

-88/48 = -11/6

Therefore, the limit of the given expression as h approaches 6 is -11/6.

Learn more about  limit : brainly.com/question/12211820

#SPJ11

solve for x using the quadratic formula 3x^2+10=8

Answers

X equals i √6/3 and -i √6/3

Represent the function f(x) = 2.0.3 as a power series: cn (x - 1)n=0 Find the following coefficients: CO= 1^(3/10) C1 = 3/10*1^(-7/10) C2 = C3 = Find the interval of convergence

Answers

The first three coefficients are calculated as CO = 1^(3/10), C1 = (3/10) * 1^(-7/10), and C2 = C3 = 0. The interval of convergence for the power series representation of f(x) = 2.0.3 is (-∞, +∞), meaning it converges for all real values of x.

The power series representation of a function involves expressing the function as an infinite sum of terms, where each term is a multiple of x raised to a power. In this case, the function f(x) = 2.0.3 is a constant function with the value of 2.0.3 for all x. To represent it as a power series, we need to find the coefficients cn.

The coefficients cn can be calculated by substituting the corresponding values of n into the formula cn = f^(n)(a) / n!, where f^(n)(a) represents the nth derivative of f(x) evaluated at a, and n! denotes the factorial of n. In this case, since f(x) is a constant function, all its derivatives are zero except for the zeroth derivative, which is simply the function itself.

Calculating the coefficients:

CO: Plugging in n = 0, we get CO = f^(0)(1) / 0! = f(1) = 2.0.3 = 1.

C1: Substituting n = 1, we have C1 = f^(1)(1) / 1! = 0.

C2 and C3: As the function f(x) is a constant, all higher-order derivatives are zero, so C2 = C3 = 0.

The interval of convergence of a power series represents the range of x values for which the series converges. In this case, since all coefficients after C1 are zero, the power series reduces to a constant term, and it converges for all x.

Therefore, the interval of convergence for the power series representation of f(x) = 2.0.3 is (-∞, +∞), meaning it converges for all real values of x.

Learn more about interval of convergence here:

https://brainly.com/question/31972874

#SPJ11

Iready Math Lesson: Solve Systems of Linear Equations : Elimination
(answer: X coordinate) what is -2x - 3y = 8

(answer: Y coordinate) what is 5x + y = 6

Answers

The solution to the system of linear equations is:

x = 26/17

y = -28/17

To solve the system of linear equations using the elimination method, we'll eliminate the variable y by adding the two equations together. Here are the steps:

Write down the two equations:

2x - 3y = 8 ...(Equation 1)

5x + y = 6 ...(Equation 2)

Multiply Equation 2 by 3 to make the coefficients of y in both equations cancel each other out:

3 × (5x + y) = 3 × 6

15x + 3y = 18 ...(Equation 3)

Add Equation 1 and Equation 3 together to eliminate y:

(2x - 3y) + (15x + 3y) = 8 + 18

2x + 15x - 3y + 3y = 26

17x = 26

Solve for x by dividing both sides of the equation by 17:

17x/17 = 26/17

x = 26/17

Substitute the value of x back into one of the original equations to solve for y.

Let's use Equation 2:

5(26/17) + y = 6

130/17 + y = 6

Solve for y by subtracting 130/17 from both sides of the equation:

y = 6 - 130/17

Simplify the right side of the equation:

y = -28/17

So, the solution to the system of linear equations is:

x = 26/17

y = -28/17

Learn more about system of linear equations click;

https://brainly.com/question/20379472

#SPJ1

question 36
In Exercises 35, 36, 37, 38, 39, 40, 41 and 42, find functions f and g such that h = gof. (Note: The answer is not unique.) 37. h (x) = V2 – 1

Answers

To find functions f and g such that h = gof, we need to determine how the composition of these functions can produce [tex]h(x) = √(2 - 1).[/tex]

Let's choose [tex]f(x) = √x and g(x) = 2 - x.[/tex] Now we can check if gof = h.

First, compute gof:

[tex]gof(x) = g(f(x)) = g(√x) = 2 - √x.[/tex]

Now compare gof with h:

[tex]gof(x) = 2 - √x = h(x) = √(2 - 1).[/tex]

We can see that gof matches h, so the functions [tex]f(x) = √x and g(x) = 2 - x[/tex]satisfy the condition h = gof.

learn more about:-  functions here

https://brainly.com/question/31062578

#SPJ11




C9: "Find derivatives using Implicit Differentiation and Logarithmic Differentiation." Use Logarithmic Differentiation to help you find the derivative of the Tower Function y=(cot(3x))* = Note: Your

Answers

The derivative of the Tower Function using Logarithmic Differentiation is dy/dx = -3cot(3x)(cot(3x)ln(cot(3x)) - 1).

To find the derivative using logarithmic differentiation, we start with the equation:

[tex]y = (cot(3x))^(cot(3x))[/tex]

Taking the natural logarithm of both sides:

ln(y) = cot(3x) * ln(cot(3x))

Now, we differentiate implicitly with respect to x:

d/dx [ln(y)] = d/dx [cot(3x) * ln(cot(3x))]

Using the chain rule, the derivative of ln(y) with respect to x is:

(1/y) * dy/dx

For the right side, we have:

d/dx [cot(3x) * ln(cot(3x))] = -3csc²(3x) * ln(cot(3x)) - 3cot(3x) * csc²(3x)

Now, equating the derivatives:

(1/y) * dy/dx = -3cot(3x) * (csc²(3x) * ln(cot(3x)) + cot(3x) * csc²(3x))

Multiplying both sides by y:

dy/dx = -3cot(3x) * (cot(3x) * csc²(3x) * ln(cot(3x)) + cot(3x) * csc²(3x))

Simplifying:

dy/dx = -3cot(3x) * (cot(3x)ln(cot(3x)) - 1)

learn more about derivative here:

https://brainly.com/question/32597407

#SPJ4t

the complete question is:

C9: "Find derivatives using Implicit Differentiation and Logarithmic Differentiation." Use Logarithmic Differentiation to help you find the derivative of the Tower Function y=(cot(3x))* =? Note: Your final answer should be expressed only in terms of x.

Other Questions
Part B, Detail please!3. (a) Find the limit, if it exists, or show that the limit does not exist. xy3 lim (x,y) (0,0) x + 4+ tan '(xy) (b) Find an equation of the tangent plane to the surface z=- at (0,1,2). 2x+2y Tom is driving towards a building. When he first looks up at the top of the building, he looks up at an angle of elevation of 47 degrees. After driving 500 feet towards the building, he is now looking up at an angle of elevation of 54 degrees. How tall is the building? Consider the following code segment. for (int k=1; k While unearthing ancient pottery in the Gobi Desert, an archaeologist discovers a pot containing a large amount of naturally radioactive Americium-241, which experiences alpha decay. The archaeologist needs to protect himself, but also doesn't want to overheat in the desert sun. In addition to a facemask, which of the following is the most appropriate safety precaution that the archaeologist should take to protect against the alpha particles without overheating? Wear a thick lead lined suit and gloves Nothing can protect the adhaeologist from the alpha particles Wear an aluminum lined suit and gloves Wear a pair of normal leather gloves I'm going to buy a condo for $80,000 the bank requires a 10% down payment the rest is financed with a 15-year fixed rate mortgage at 3.5% annual interest with monthly payments find my required down payment find the amount of the mortgage find the monthly payment Find the singular points of the differential equation (x 2 4)y'' + (x + 2)y' (x 2)2y = 0 and classify them as eitherregular or irregular. describe the stylistic elements introduced by giotto. why was his work so important for the development of renaissance painting? Convert the equation to polar form. (Use variables r and as needed.) y = 3x2 [t [tan 0 sec 0] x the motivation to take domestic products to foreign markets is more relevant today than in the past. group of answer choices true or False There is a substance called sodium-24 that decays at a rate of 4.5% per hour, compounded continuously.You start with a sample of 500 grams of this substance.a) Write a function to model the amount remaining after t hours. why are carbohydrates and fats sometimes combined into one category The lower right-hand corner of a long piece of paper 6 in wide is folded over to the left-hand edge as shown below. The length L of the fold depends on the angle 0. Show that L= 3 sin cos20 L 6 in." 3. (30 %) Find an equation of the tangent line to the curve at the given point. (a) x = 2 cot 0 , y = 2sin0,(-73) (b) r = 3 sin 20, at the pole why is difficulty communicating sometimes a trigger for problem behavior Find the general solution of the differential equation: y' + 3y = te - 24 Use lower case c for the constant in your answer. suppose an individual invests $32,000 in a load mutual fund for two years. the load fee entails an up-front commission charge of 3.6 percent of the amount invested and is deducted from the original funds invested. in addition, annual fund operating expenses (or 12b-1 fees) are 0.67 percent. the annual fees are charged on the average net asset value invested in the fund and are recorded at the end of each year. investments in the fund return 7 percent each year paid on the last day of the year. if the investor reinvests the annual returns paid on the investment, calculate the annual return on the mutual funds over the two-year investment period. (do not round intermediate calculations. round your answer to 2 decimal places. (e.g., 32.16)) On a multiple choice question, Naughty Newman was asked to find the sole critical number of a certain function. He correctly found that re24 + In 3-logje was the critical number. The multiple choice options were the following: [A] * = 20 [B] = 40 [C] z 60 [D] =80 [E] None of these. Since his answer. looked nothing like any of the options A-D, he chose E, only to find out later that E is not the correct answer. What is the correct answer? for ipv6 traffic to travel on an ipv4 network, which two technologies are used? select all that apply. 1 point Solve the inequalities. Show your work as it is done in the examples. (Hint: One answer will be "no solution" and one answer will be "all real numbers".) |4x + 5| + 2 > 10 whihc correspinds to the the compositon of the ion typcially formed by florine