18. Let y = arctan(x2). Find f'(2). WIN b) IN IN e) None of the above

Answers

Answer 1

The correct answer is option A. 4/17. The derivative of the given equation can be found by using chain rule. The chain rule is a method for finding the derivative of composite functions, or functions that are made by combining one or more functions.

Given the equation: y = arc tan(x2).

It tells us how to find the derivative of the composite function f(g(x)).

Here, the value of f(x) is arc tan(x) and g(x) is x2,

hence f'(g(x))= 1/(1+([tex]g(x))^2[/tex]) and g'(x) = 2x.

Therefore by chain rule;`

(dy)/(dx) = 1/([tex]1+x^4[/tex]) ×2x

`Now, we have to find the value of f'(2).

`x = 2`So,`(dy)/(dx) = 1/(1+x^4) × 2x = 1/(1+2^4) ×2(2) = 4/17`

Therefore, the value of f'(2) is 4/17.

The correct answer is option A. 4/17

To know more about chain rule

https://brainly.com/question/30895266

#SPJ11


Related Questions

17,27,33,37
182 CHAPTER 3 Differentiation Rules (x) = √ √ √ + √x 17. g(x) 18. W(t)=√1 - 2e¹ 19. f(x)= x(x + 3) 20. F(t) = (2x - 3)² 21. y = 3e + 22. S(R)= 4TR² 3x² + x³ √x + x 23. f(x) = 24. y #

Answers

ANSWER: 35. The solution is dy/dx = 2x+1. 37. The equation of the tangent line at the point (1,3) is given by:

y - 3 = 1(x - 1)y = x + 2 38.

y = (1/4)x + 2. 39.

y = -x + 2. 40.

y = (1/2)x + 1/2.

35) Given: y = x² + x To find: Find dy/dx Expand y = x² + x = x(x+1) Now, differentiate using the product rule: dy/dx

= x(d/dx(x+1)) + (x+1)(d/dx(x))dy/dx

= x(1) + (x+1)(1)dy/dx = 2x+1.

Hence, the solution is dy/dx = 2x+1.

37) Given: y = 2x - x + 2 = x + 2To find :Find an equation of the tangent line to the curve at the given point. Point of tangency = (1, 3) The slope of the tangent line is given by the derivative at the given point, i.e.,dy/dx = d/dx(x+2) = 1 Therefore, the equation of the tangent line at the point (1,3) is given by: y - 3 = 1(x - 1)y = x + 2

38) Given:y² = ex + x To find: Find an equation of the tangent line to the curve at the given point. Point of tangency = (0,2)Differentiating the given equation with respect to x gives:2y (dy/dx) = e^x + 1

Therefore, the slope of the tangent line at the point (0,2) is given by: dy/dx = (e^0 + 1)/(2*2) = 1/4

Now, using the point-slope form of the equation of a line, y - y₁ = m(x - x₁)y - 2 = (1/4)x

Substitute x=0 and y=2:y - 2 = (1/4)x ⇒ y = (1/4)x + 2The required tangent line is y = (1/4)x + 2.

39) Given: y = x^2 - 3x + 2To find: Find an equation of the tangent line to the curve at the given point. Point of tangency = (1,-1) The slope of the tangent line is given by the derivative at the given point, i.e.,dy/dx = d/dx(x² - 3x + 2) = 2x - 3

Therefore, the slope of the tangent line at the point (1,-1) is given by: dy/dx = 2(1) - 3 = -1

Now, using the point-slope form of the equation of a line, y - y₁ = m(x - x₁)y - (-1) = -1(x - 1)y + 1 = -x + 1y = -x + 2

The required tangent line is y = -x + 2.

40) Given: y = √x To find: Find an equation of the tangent line to the curve at the given point. Point of tangency = (1,1)The slope of the tangent line is given by the derivative at the given point, i.e.,dy/dx = d/dx(√x) = 1/(2√x)

Therefore, the slope of the tangent line at the point (1,1) is given by: dy/dx = 1/(2√1) = 1/2

Now, using the point-slope form of the equation of a line, y - y₁ = m(x - x₁)y - 1 = (1/2)(x - 1)y = (1/2)x + 1/2

The required tangent line is y = (1/2)x + 1/2.

Learn more about tangent line: https://brainly.com/question/30162650

#SPJ11

The inverse of x→y is:
Ox-y
O~x-y
y x
8~x~y
O~y~x

Answers

The correct relation which is the inverse of relation is,

⇒ y → x

We have to given that,

Relation is defined as,

⇒ x → y

Since we know that,

An inverse relation is, as the name implies, the inverse of a relationship. Let us review what a relation is. A relation is a set of ordered pairs. Consider the two sets A and B.

The set of all ordered pairings of the type (x, y) where x A and y B are represented by A x B is then termed the cartesian product of A and B. A relation is any subset of the cartesian product A x B.

Now, We can write the inverse of relation is,

⇒ x → y

⇒ y → x

Thus, The correct relation which is the inverse of relation is,

⇒ y → x

To learn more about relation visit:

https://brainly.com/question/31111483

#SPJ1

find the solution of the differential equation that satisfies the given initial condition. dp dt = 2 pt , p(1) = 5

Answers

The solution to the given initial value problem, dp/dt = 2pt, p(1) = 5, is p(t) = 5e^(t^2-1).

To solve the differential equation, we begin by separating the variables. We rewrite the equation as dp/p = 2t dt. Integrating both sides gives us ln|p| = t^2 + C, where C is the constant of integration.

Next, we apply the initial condition p(1) = 5 to find the value of C. Substituting t = 1 and p = 5 into the equation ln|p| = t^2 + C, we get ln|5| = 1^2 + C, which simplifies to ln|5| = 1 + C.

Solving for C, we have C = ln|5| - 1.

Substituting this value of C back into the equation ln|p| = t^2 + C, we obtain ln|p| = t^2 + ln|5| - 1.

Finally, exponentiating both sides gives us |p| = e^(t^2 + ln|5| - 1), which simplifies to p(t) = ± e^(t^2 + ln|5| - 1).

Since p(1) = 5, we take the positive sign in the solution. Therefore, the solution to the differential equation with the initial condition is p(t) = 5e^(t^2 + ln|5| - 1), or simplified as p(t) = 5e^(t^2-1).

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11

consider the integral ∫01∫12x12f(x,y)dydx. sketch the region of integration and change the order of integration.

Answers

The integral ∫[0,1]∫[1,2] x^2 f(x, y) dy dx can be interpreted as the double integral over the region defined by the limits of integration: x ranging from 0 to 1 and y ranging from 1 to 2. To sketch this region, we can visualize a rectangular region in the xy-plane bounded by the lines x = 0, x = 1, y = 1, and y = 2.

Now, to change the order of integration, we need to swap the order of the integrals. Instead of integrating with respect to y first and then x, we will integrate with respect to x first and then y.

The new order of integration will be ∫[1,2]∫[0,1] x^2 f(x, y) dx dy. This means that we will integrate with respect to x over the interval [0,1], and for each value of x, we will integrate with respect to y over the interval [1,2].

Changing the order of integration can sometimes make the evaluation of the integral more convenient or allow us to use different techniques to solve it.

Learn more about integration

https://brainly.com/question/31954835

#SPJ11

3) Given the function f (x, y) = y sin x + em cos y, determine х a) fa b) fy c) fra d) fu e) fxy

Answers

a) The partial derivative of f with respect to x, fa, is given by fa = y cos x - em sin y.

b) The partial derivative of f with respect to y, fy, is given by fy = sin x + em sin y.

c) The partial derivative of f with respect to r, fra, where r represents the radial distance, is 0.

d) The partial derivative of f with respect to u, fu, where u represents the polar angle, is 0.

e) The mixed partial derivative of f with respect to x and y, fxy, is given by fxy = cos x + em cos y.

a) To find the partial derivative of f with respect to x, fa, we differentiate the terms of f with respect to x while treating y as a constant. The derivative of y sin x with respect to x is y cos x, and the derivative of em cos y with respect to x is 0. Therefore, fa = y cos x - em sin y.

b) To find the partial derivative of f with respect to y, fy, we differentiate the terms of f with respect to y while treating x as a constant. The derivative of y sin x with respect to y is sin x, and the derivative of em cos y with respect to y is em sin y. Therefore, fy = sin x + em sin y.

c) To find the partial derivative of f with respect to r, fra, we need to consider that f is a function of x and y, and not explicitly of r. As a result, the derivative with respect to r is 0.

d) To find the partial derivative of f with respect to u, fu, we need to consider that f is a function of x and y, and not explicitly of u. Therefore, the derivative with respect to u is also 0.

e) To find the mixed partial derivative of f with respect to x and y, fxy, we differentiate fy with respect to x. The derivative of sin x with respect to x is cos x, and the derivative of em cos y with respect to x is 0. Therefore, fxy = cos x + em cos y.

To leran more about partial derivative, refer:-

https://brainly.com/question/28751547

#SPJ11

Activity 1) obtain the de of y-atx? where constant. dy - xy = 0 Ans: 2 0 dx 5x -5x 3) prove that y = 4e +Bewhere A and B are constants is a solution of y- 25y = 0

Answers

Activity 1: Obtain the differential equation of y = At^x, where A is a constant. To find the differential equation, we need to differentiate y with respect to t. Assuming A is a constant and x is a function of t, we can use the chain rule to differentiate y = At^x.

dy/dt = d(A[tex]t^x[/tex])/dt

Applying the chain rule, we have:

dy/dt = d(A[tex]t^x[/tex])/dx * dx/dt

Since x is a function of t, dx/dt represents the derivative of x with respect to t. To find dx/dt, we need more information about the function x(t).

Without further information about the relationship between x and t, we cannot determine the exact differential equation. The form of the differential equation will depend on the specific relationship between x and t.

Activity 3: Prove that y = [tex]4e^{(Ax + B)[/tex], where A and B are constants, is a solution of the differential equation y'' - 25y = 0. To prove that y = [tex]e^{(Ax + B)[/tex] is a solution of the given differential equation, we need to substitute y into the differential equation and verify that it satisfies the equation. First, let's calculate the first and second derivatives of y with respect to x:

dy/dx =[tex]4Ae^{(Ax + B)[/tex]

[tex]d^2y/dx^2 = 4A^2e^{(Ax + B)[/tex]

Now, substitute y, dy/dx, and [tex]d^2y/dx^2[/tex] into the differential equation:

[tex]d^2y/dx^2 - 25y = 4A^{2e}^{(Ax + B)} - 25(4e^{(Ax + B)})[/tex]

Simplifying the expression, we have:

[tex]4A^2e^(Ax + B) - 100e^{(Ax + B)[/tex]

Factoring out the common term [tex]e^{(Ax + B)[/tex], we get:

[tex](4A^2 - 100)e^{(Ax + B)[/tex]

For the equation to be satisfied, the expression inside the parentheses must be equal to zero:

[tex]4A^2 - 100 = 0[/tex]

Solving this equation, we find that A = ±5.

Therefore, for A = ±5, the function [tex]y = 4e^{(Ax + B)[/tex] is a solution of the differential equation y'' - 25y = 0.

learn more about differential equation here:

https://brainly.com/question/32538700

#SPJ11

The critical points of the function w=w+6wv+3v--9u+2 arc... O...13,-3), 1-1,1), (3, 1) and (-1,-3). 0...13,-3) and (1.1). O... 43, 3) and (1,-1). O... 133, 3), (1,-1), 1-3, -1) and (1,3).

Answers

Question: The critical points of the function w=w+6wv+3v--9u+2 are...

(A). (3, 1) and (-1,-3).

(B). (43, 3) and (1,-1).

(C). (-3, -1) and (1,3).
(D). None

The critical points of the function w=w+6wv+3v--9u+2 are the points where the partial derivatives with respect to u and v are both equal to zero.

Taking the partial derivative with respect to u, we get 6w-9=0, which gives us w=1.5.

Taking the partial derivative with respect to v, we get 6w+3=0, which gives us w=-0.5.

Therefore, there are no critical points for this function since the values of w obtained from the partial derivatives are not equal. Hence, option (D)

The question was: "The critical points of the function w=w+6wv+3v--9u+2 are...

(A). (3, 1) and (-1,-3).

(B). (43, 3) and (1,-1).

(C). (-3, -1) and (1,3).
(D). None"

Learn more about partial derivative: https://brainly.com/question/31399205

#SPJ11

Cost The marginal cost for a catering service to cater to x people can be modeled by 20x dc = dx x² + 3,264 When x = 200, the cost C (in dollars) is $4,160.00. (a) Find the cost function. C = (b) Fin

Answers

We need to find the cost function C. Additionally, when x = 200, the cost C is given as $4,160.00.

To find the cost function C, we need to integrate the marginal cost function with respect to x. Integrating 20x/(x² + 3,264) will give us the cost function C(x). However, to determine the constant of integration, we can use the given information that C(200) = $4,160.00.

Integrating the marginal cost function, we have:

C(x) = ∫(20x/(x² + 3,264)) dx.

To solve this integral, we can use a substitution method or apply partial fraction decomposition. After integrating, we obtain the expression for the cost function C(x).

Next, we substitute x = 200 into the cost function C(x) and solve for the constant of integration. Using the given information that C(200) = $4,160.00, we can find the specific form of the cost function C(x).

The cost function C(x) will represent the total cost in dollars for catering to x people. It takes into account both the fixed costs and the variable costs associated with the catering service.

Learn more about partial fraction decomposition here:

https://brainly.com/question/30401234

#SPJ11

You have decided that you are going to start saving money, so you decided to open an
account to start putting money into for your savings. You started with $300, and you
are going to put back $30 a week from your paycheck.
Write an equation to represent the situation.
How long have you been saving in order to have $720 in your account?
Weeks.

Answers

Answer:

y=30x+300

14 weeks

Step-by-step explanation:

Part A:

To begin, we are asked to write an equation.  We are given the amount you start with, which is $300, and you put $30 in every week.

We can write an equation that looks like:

y=30x+300

with x being the number of weeks you put in money.

Part B:

Part B asks us to find x, the number of weeks that you had to put in money to save a total of $720.

We have the equation:

y=30x+300

with x being the number of weeks, and y being the total amount, $720.  This means we can substitute:

720=30x+300

subtract 300 from both sides

420=30x

divide both sides by 30

14=x

So, you had to have been saving for 14 weeks.

Hope this helps! :)

about the original function, not the derivative or second derivative. Blomme 3. Find the equation of the line tangent to the equation yrt the point x = 2. Notice that the equation is neither a power f

Answers

To find the equation of the tangent line to the curve at the point x = 2, we need to find the slope of the curve at that point and use the point-slope form of a line.

To find the slope of the curve at x = 2, we can take the derivative of the original function with respect to x. Once we have the derivative, we evaluate it at x = 2 to find the slope of the tangent line.

After finding the slope, we use the point-slope form of a line, which is y - y1 = m(x - x1), where (x1, y1) is the given point (x = 2) on the curve and m is the slope of the tangent line. Substitute the values of x1, y1, and m into the equation to obtain the equation of the tangent line.

It's important to note that the original function should be provided in order to accurately calculate the slope and determine the equation of the tangent line.

To learn more about Derivative

brainly.com/question/25752367

#SPJ11








Write the function f(2) 9 1 - 216 as a power series that converges for < 1. 00 f(x) Σ T=0 Hint: Use the fact that the geometric series ar" converges to 19, for s

Answers

The function f(x) = 9/(1 - 216x) can be expressed as a power series that converges for |x| < 1.

The power series representation can be obtained by using the fact that the geometric series converges to 1/(1 - r), where |r| < 1.

In this case, we have f(x) = 9/(1 - 216x), which can be rewritten as f(x) = 9 * (1/(1 - (-216x))). Now, we recognize that the term (-216x) is the common ratio (r) of the geometric series. Therefore, we can write f(x) as a power series by replacing (-216x) with r.

Using the geometric series representation, we have:

f(x) = 9 * Σ (-216x)^n, where n ranges from 0 to infinity.

Simplifying further, we get:

f(x) = 9 * Σ (-1)^n * (216^n) * (x^n), where n ranges from 0 to infinity.

This power series representation converges for |x| < 1, as dictated by the convergence condition of the geometric series.

To learn more about series converges click here

brainly.com/question/32202517

#SPJ11




(1 point) Solve the system 4-2 dx dt .. X 24 2 with x(0) = 3 3 Give your solution in real form. X 1 X2 An ellipse with clockwise orientation trajectory. = 1. Describe the

Answers

The given system of differential equations is 4x' - 2y' = 24 and 2x' + y' = 2, with initial conditions x(0) = 3 and y(0) = 3. The solution to the system is an ellipse with a clockwise orientation trajectory.

To solve the system, we can use various methods such as substitution, elimination, or matrix notation. Let's use the matrix notation method. Rewriting the system in matrix form, we have:

| 4 -2 | | x' | | 24 |

| 2 1 | | y' | = | 2 |

Using the inverse of the coefficient matrix, we have:

| x' | | 1 2 | | 24 |

| y' | = | -2 4 | | 2 |

Multiplying the inverse matrix by the constant matrix, we obtain:

| x' | | 10 |

| y' | = | 14 |

Integrating both sides with respect to t, we have:

x = 10t + C1

y = 14t + C2

Applying the initial conditions x(0) = 3 and y(0) = 3, we find C1 = 3 and C2 = 3. Therefore, the solution to the system is:

x = 10t + 3

y = 14t + 3

The trajectory of the solution is described by the parametric equations for x and y, which represent an ellipse. The clockwise orientation of the trajectory is determined by the positive coefficients 10 and 14 in the equations.

To learn more about differential equations: -brainly.com/question/25731911#SPJ11

A simple machine has a mechanical advantage of 5. if the output force is 10 N, whats the input force.

Answers

Step-by-step explanation:

10 / 5 = 2 N

you put in 2 N of force ...using mech adv of 5 you get  10 N of force

Suppose we flip a fair coin 100 times. We’ll calculate the probability of obtaining anywhere from 70 to 80 heads in two ways.
a. First, calculate this probability in the usual way using the Binomial distribution.
b. Now assume the coin flips are normally distributed, with mean equal to the number of trials () times
the success probability (p), and standard deviation equal to √p(1 − p). For this normal distribution, calculate the probability of seeing a result between 70 and 80. How does it compare to the answer in part a?

Answers

In both cases, the probability of obtaining anywhere from 70 to 80 heads when flipping a fair coin 100 times is calculated.

a. Using the Binomial distribution, the probability can be computed by summing the probabilities of obtaining 70, 71, 72, ..., up to 80 heads. Each individual probability is calculated using the binomial probability formula. The result will provide the exact probability of obtaining this range of heads.

b. Assuming the coin flips are normally distributed, the probability can be calculated using the normal distribution. The mean of the distribution is equal to the number of trials (100) multiplied by the success probability (0.5 for a fair coin). The standard deviation is calculated as the square root of the product of the success probability (0.5) and its complement (0.5). By finding the cumulative probability between 70 and 80 using the normal distribution, the probability of seeing a result within this range can be obtained.

The probability calculated using the Binomial distribution (a) will provide an exact value, while the normal distribution approximation (b) will provide an estimated probability. Typically, for large sample sizes like 100 coin flips, the normal approximation tends to be very close to the actual probability calculated using the Binomial distribution. However, the approximation may not be as accurate for smaller sample sizes or when dealing with extreme probabilities.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

9 If the change of variables u=x²-9 is used to evaluate the definite integral f(x) dx, what are the new limits of integration? 3 *** The new lower limit of integration is. The new upper limit of inte

Answers

To determine the new limits of integration when using the change of variables u = [tex]x^2[/tex] - 9, we need to substitute the original limits of integration into the variable transformation.

Given that the original definite integral is denoted as ∫ f(x) dx with limits of integration from 3 to b, we will substitute these values into the variable transformation u = [tex]x^2[/tex] - 9.

For the lower limit of integration, we substitute x = 3 into the transformation:

u = [tex](3)^2[/tex] - 9

u = 9 - 9

u = 0

Therefore, the new lower limit of integration is 0.

For the upper limit of integration, we substitute x = b into the transformation:

u = [tex](b)^2 - 9[/tex]

We don't have the specific value for b, so we leave it as it is. The upper limit in terms of the new variable u is[tex](b^2 - 9)[/tex].

Hence, the new limits of integration after the change of variables are 0 (lower limit) to [tex](b^2 - 9)[/tex] (upper limit).

To learn more about limits of integration visit:

https://brainly.com/question/32233159

#SPJ11








Problem 3 (20 points). Let f(x) = +. Use the limit definition of the derivative to compute f'(2). Find an equation of the tangent line to the graph of the function y = f(x) at the point (2,6).

Answers

The equation of the tangent line to the graph of y = f(x) at the point (2, 6) is y = 8x - 10.

To compute the derivative of the function f(x) using the limit definition, we can start by finding the difference quotient:

f'(x) = lim(h -> 0) [f(x + h) - f(x)] / h

Let's substitute the given function f(x) = x² + 4x - 3 into the difference quotient:

f'(x) = lim(h -> 0) [(x + h)² + 4(x + h) - 3 - (x^2 + 4x - 3)] / h

Simplifying the expression inside the limit:

f'(x) = lim(h -> 0) [x² + 2hx + h² + 4x + 4h - 3 - x² - 4x + 3] / h

Combining like terms:

f'(x) = lim(h -> 0) (2hx + h² + 4h) / h

Canceling out the common factor of h:

f'(x) = lim(h -> 0) (2x + h + 4)

Now we can evaluate the limit as h approaches 0:

f'(x) = 2x + 4

To find the  at x = 2, substitute x = 2 into the derivative expression:

f'(2) = 2(2) + 4

= 4 + 4

= 8

Therefore, f'(2) = 8.

To find the equation of the tangent line to the graph of y = f(x) at the point (2, 6), we can use the point-slope form of a line:

y - y1 = m(x - x1)

where (x1, y1) is the given point (2, 6) and m is the slope, which is the derivative at that point.

Substituting the values:

y - 6 = 8(x - 2)

Simplifying:

y - 6 = 8x - 16

Moving the constant term to the other side:

y = 8x - 10

Therefore, the equation of the tangent line to the graph of y = f(x) at the point (2, 6) is y = 8x - 10.

To know more about derivative check the below link:

https://brainly.com/question/28376218

#SPJ4

Find the work done by the vector field F = (2, – y, 4x) in moving an object along C in the positive direction, where C is given by r(t) = (sin(t), t, cos(t)), 0

Answers

To find the work done by the vector field F = (2, -y, 4x) in moving an object along curve C in the positive direction, we need to evaluate the line integral of F dot dr along C.

1. First, we parameterize the curve C as r(t) = (sin(t), t, cos(t)), where t ranges from 0 to π.

2. Next, we calculate the differential of the parameterization: dr = (cos(t), 1, -sin(t)) dt.

3. Then, we calculate the dot product of the vector field F and the differential dr: F dot dr = (2, -y, 4x) dot (cos(t), 1, -sin(t)) dt.

4. Simplifying the dot product, we have F dot dr = 2cos(t) - y dt.

5. Finally, we evaluate the line integral over the interval [0, π]:

  Work = ∫[0,π] (2cos(t) - y) dt.

Learn more about vector field:

https://brainly.com/question/14122594

#SPJ11

Can
you guys help me with this question please! I will give thump up
Find the relative extrema of the function, if they exist. s(x) = -x2 - 12x - 27 Relative maximum at (-6, 9) Relative minimum at (12,-27) Relative maximum at (6,9) Relative maximum at (-12, -27)

Answers

The function [tex]s(x) = -x^2 - 12x - 27[/tex]has a relative maximum at (-6, 9) and a relative minimum at (12, -27).

To find the relative extrema of the function, we can use calculus. The first step is to take the derivative of the function s(x) with respect to x, which gives us s'(x) = -2x - 12. To find the critical points where the derivative is zero or undefined, we set s'(x) = 0 and solve for x. In this case, -2x - 12 = 0, which gives us x = -6.

Next, we can evaluate the function s(x) at the critical point x = -6 and the endpoints of the given interval. When we substitute x = -6 into s(x), we get s[tex](-6) = -6^2 - 12(-6) - 27 = 9.[/tex] This gives us the coordinates of the relative maximum (-6, 9).

Finally, we evaluate s(x) at the other critical point and endpoints. Substituting x = 12 into s(x), we get[tex]s(12) = -12^2 - 12(12) - 27 = -27[/tex]. This gives us the coordinates of the relative minimum (12, -27). Therefore, the function [tex]s(x) = -x^2 - 12x - 27[/tex]has a relative maximum at (-6, 9) and a relative minimum at (12, -27).

learn more about relative extreama here

brainly.com/question/32562793

#SPJ11

20 POINTS

Simplify the following expression:

Answers

Answer:

[tex]144a^8g^14[/tex]

Step-by-step explanation:

the powers are 8 and 14

if A(x) = x^2+4 and Q(x) = x^2+8x evaluate the following:

A(8)

Answers

Answer:

A(x)=68

Step-by-step explanation:

Q(x) is unnecessary in finding any value of A(x) in this instance

Plug is 8 for all x values in the function A(x)

A(x)=8^2+4

A(x)=64+4

A(x)=68




If y₁ is the particular solution of the differ- ential equation dy 2y 5x²-3 = dx x which satisfies y(1) = 4, determine the value of y₁ (2). 1. yı (2) 2. y₁ (2) 3. yı(2) 4. yı(2)

Answers

To find the value of y₁(2), we can use the given differential equation and the initial condition y(1) = 4.  The differential equation is dy/dx = (2y - 5x² + 3) / x. We want to find the particular solution y₁(x) that satisfies this equation. First, we integrate both sides of the equation:

∫dy = ∫(2y - 5x² + 3) / x dx

This gives us y = 2yln|x| - (5/3)x³ + 3x + C, where C is the constant of integration. Next, we substitute the initial condition y(1) = 4 into the equation:

4 = 2(4)ln|1| - (5/3)(1)³ + 3(1) + C

4 = 8ln(1) - 5/3 + 3 + C

4 = 0 + 2/3 + 3 + C

C = 4 - 2/3 - 3

C = 11/3

So the particular solution y₁(x) is given by:

y₁(x) = 2yln|x| - (5/3)x³ + 3x + 11/3

To find y₁(2), we substitute x = 2 into the equation:

y₁(2) = 2y₁ln|2| - (5/3)(2)³ + 3(2) + 11/3

y₁(2) = 2y₁ln(2) - 40/3 + 6 + 11/3

y₁(2) = 2y₁ln(2) - 23/3

Therefore, the value of y₁(2) is 2y₁ln(2) - 23/3.

Learn more about equation here: brainly.com/question/31047012

#SPJ11

A hypothesis will be used to test that a population mean equals 10 against the alternative that the population mean is greater than 10 with unknown variance. What is the critical value for the test statistic T0 for the following significance levels?
(a) α = 0.01 and n = 20 (b) α = 0.05 and n = 12 (c) α = 0.10 and n = 15

Answers

The critical values for the test statistic T₀ are as follows:(a) For α = 0.01 and n = 20, T₀ ≥ 2.861 (b) For α = 0.05 and n = 12, T₀ ≥ 1.796 (c) For α = 0.10 and n = 15, T₀ ≥ 1.345

We want to determine the appropriate value from the t-conveyance in light of the importance level () and opportunity levels (df) associated with the example size (n) in order to determine the fundamental incentive for the test measurement T0.

df = n - 1 is the probability of testing a population mean with unclear variation.

(a) α = 0.01 and n = 20:

For α = 0.01 and n = 20, the degrees of chance (df) would be 20 - 1 = 19. We need to find the fundamental worth from the t-dissemination for a one-followed test with a significance level of 0.01 and 19 degrees of chance. Let's refer to this fundamental worth as t1.

Using a t-table or factual programming, we discover that, for df = 19 and t1 = 0.01, the approximate value is 2.861.

(b) α = 0.05 and n = 12:

The levels of opportunity (df) would be 12 - 1 = 11 for n = 12 and  = 0.05. For a one-followed test with 11 levels of opportunity and an importance level of 0.05, we want to determine the basic worth from the t-conveyance. Could we mean this essential worth as t₁₋α.

Using a t-table or factual programming, we discover that, for df = 11 and t1 = 0.05, the approximate value is 1.796.

(c) α = 0.10 and n = 15:

For α = 0.10 and n = 15, the degrees of chance (df) would be 15 - 1 = 14. We need to find the essential worth from the t-dispersal for a one-followed test with a significance level of 0.10 and 14 degrees of chance. We ought to refer to this fundamental worth as t1.

Using a t-table or real programming, we find that t₁₋α for α = 0.10 and df = 14 is generally 1.345.

As a result, the fundamental characteristics of the test measurement T0 are as follows:

(a) For α = 0.01 and n = 20, T₀ ≥ 2.861

(b) For α = 0.05 and n = 12, T₀ ≥ 1.796

(c) For α = 0.10 and n = 15, T₀ ≥ 1.345

To know more about probability refer to

https://brainly.com/question/32117953

#SPJ11

Graph the function
f(t) =
t if 0 ≤t ≤1
2 −t if 1 < t ≤2
0 otherwise
and find an expression for its Laplace transform. (You do not need
to evaluate any
integrals.)

Answers

The graph of the function f(t) consists of a line segment from (0,0) to (1,1), followed by a line segment from (1,1) to (2,0), and the function is zero everywhere else. The Laplace transform of f(t) can be expressed using the piecewise function notation.

The function f(t) is defined differently for different intervals of t. For 0 ≤ t ≤ 1, the function is simply the line y = t. For 1 < t ≤ 2, the function is the line y = 2 - t. Outside these intervals, the function is zero.

To find the Laplace transform of f(t), we can express it using piecewise notation:

L[f(t)] = L[t] if 0 ≤ t ≤ 1

L[2 - t] if 1 < t ≤ 2

0 otherwise

Here, L[t] represents the Laplace transform of the function t, and L[2 - t] represents the Laplace transform of the function 2 - t. By applying the Laplace transform to these individual functions and using linearity of the Laplace transform, we can find the Laplace transform of f(t) without evaluating any integrals.

Learn more about Laplace transform here:

https://brainly.com/question/30759963

#SPJ11

if x is a discrete uniform random variable defined on the consecutive integers 10, 11, …, 20, the mean of x is:

Answers

Summary:

The mean of the discrete uniform random variable x, defined on the consecutive integers 10, 11, ..., 20, is 15.

Explanation:

To calculate the mean of a discrete uniform random variable, we add up all the possible values and divide by the total number of values.

In this case, the random variable x takes on the values 10, 11, 12, ..., 20. To find the mean, we add up all these values and divide by the total number of values, which is 20 - 10 + 1 = 11.

Sum of values = 10 + 11 + 12 + ... + 20

= (10 + 20) + (11 + 19) + (12 + 18) + ... + (15 + 15)

= 11 * 15

Mean = Sum of values / Total number of values

= (11 * 15) / 11

= 15

Therefore, the mean of the discrete uniform random variable x, defined on the consecutive integers 10, 11, ..., 20, is 15

Learn more about discrete uniform random variable here:

https://brainly.com/question/32113546

#SPJ11

compute the number of permutations of {1,2,3,4,5,6,7,8,9} in which either 2,3,4 are consecutive or 4,5 are consecutive or 8,9,2 are consecutive.

Answers

We need to compute the number of permutations of {1, 2, 3, 4, 5, 6, 7, 8, 9} in which either 2, 3, 4 are consecutive or 4, 5 are consecutive or 8, 9, 2 are consecutive. To do this, we will count the number of favorable permutations for each case and then subtract the overlapping cases to obtain the final count.

Let's calculate the number of permutations for each case separately:

Case 1: 2, 3, 4 are consecutive: We treat {2, 3, 4} as a single element. So, we have 7 elements to arrange, which can be done in 7! = 5040 ways.

Case 2: 4, 5 are consecutive: Similar to Case 1, we treat {4, 5} as a single element. We have 8 elements to arrange, resulting in 8! = 40,320 ways.

Case 3: 8, 9, 2 are consecutive: Again, we treat {8, 9, 2} as a single element. We have 7 elements to arrange, giving us 7! = 5040 ways.

However, we have counted some overlapping cases. Specifically, the permutations in which both Case 1 and Case 2 occur simultaneously and the permutations in which both Case 2 and Case 3 occur simultaneously.

To calculate the overlapping cases, we consider {2, 3, 4, 5} as a single element. We have 6 elements to arrange, resulting in 6! = 720 ways.

To obtain the final count, we subtract the overlapping cases from the total count:

Total count = (Count for Case 1) + (Count for Case 2) + (Count for Case 3) - (Overlapping cases)

= 5040 + 40,320 + 5040 - 720

= 46,680

Therefore, the number of permutations satisfying the given conditions is 46,680.

Learn more about permutations here:

https://brainly.com/question/29990226

#SPJ11

13. [0/1 Points] DETAILS PREVIOUS ANSWERS SESSCALC2 7.7.012. MY NOTES ASK YOUR TEACH Find the solution of the differential equation that satisfies the given initial condition. Pt, P(1) = 3 dP dt C=3e

Answers

The solution to the given differential equation that satisfies the initial condition P(1) = 3 is

[tex]P(t) = 3e^(t-1).[/tex]

To solve the differential equation, we can start by separating the variables and integrating. The given equation is dP/dt = Ce, where C is a constant.

Separating the variables:

dP/Ce = dt

Integrating both sides:

∫ dP/Ce = ∫ dt

Applying the integral:

ln|P| = t + K, where K is the constant of integration

Simplifying the natural logarithm:

ln|P| = t + ln|C|

Using properties of logarithms, we can combine the logarithms into one:

ln|P/C| = t + ln|e|

Simplifying further:

ln|P/C| = t + 1

Exponentiating both sides:

|P/C| = e⁽ᵗ⁺¹⁾

Removing the absolute value:

P/C = e⁽ᵗ⁺¹⁾ or P/C = -e⁽ᵗ⁺¹⁾

Multiplying both sides by C:

P = Ce⁽ᵗ⁺¹⁾ or P = -Ce⁽ᵗ⁺¹⁾

To find the particular solution that satisfies the initial condition P(1) = 3, we substitute t = 1 and P = 3 into the equation:

3 = Ce¹

Simplifying:

3 = Ce²

Solving for C:

C = 3/e²

Substituting the value of C back into the general solution, we get the particular solution:

P(t) = (3/e²)e⁽ᵗ⁺¹⁾

Simplifying further:

P(t) = 3e₍ₜ₋₁₎

learn more about Differential equations here:

https://brainly.com/question/25731911

#SPJ4

Question 3 (20 pts): Given the IVP: y" - 4 y' +4 y = -2, y(0) = 0, y'(0) = 1. A) Use the Laplace transform to find Y(s). B) Find the solution of the above IVP.

Answers

The solution to the given initial value problem is y(t) = -t * e^(2t).the initial value problem (IVP) and find the value of y(t) at the given point.

To solve the given initial value problem (IVP) using the Laplace transform, we'll follow these steps:

A) Finding Y(s):

Apply the Laplace transform to both sides of the differential equation:

[tex]L[y"] - 4L[y'] + 4L[y] = -2[/tex]

Use the properties of the Laplace transform to simplify the equation:

[tex]s^2Y(s) - sy(0) - y'(0) - 4sY(s) + 4y(0) + 4Y(s) = -2[/tex]

Substitute the initial conditions y(0) = 0 and y'(0) = 1:

[tex]s^2Y(s) - 0 - 1 - 4sY(s) + 0 + 4Y(s) = -2[/tex]

Combine like terms:

[tex](s^2 - 4s + 4)Y(s) = -1[/tex]

Simplify the equation:

[tex](s - 2)^2Y(s) = -1[/tex]

Solve for Y(s):

[tex]Y(s) = -1 / (s - 2)^2[/tex]

B) Finding the solution y(t):

Use the inverse Laplace transform to find the solution in the time domain. The Laplace transform of the function 1 / (s - a)^n is given by t^(n-1) * e^(a*t), so:

[tex]y(t) = L^(-1)[Y(s)]= L^(-1)[-1 / (s - 2)^2]= -t * e^(2t)[/tex]

Learn more about solution here:

https://brainly.com/question/32558177

#SPJ11

True or False: The graph of y = sinx is increasing on the interval Explain your answer. Explain the meaning of y = cos lx.

Answers

False, the graph of y = sin(x) is not increasing on the entire interval. The meaning of y = cosine(λx) is explained in the second paragraph.

False: The graph of y = sin(x) is not increasing on the entire interval because the sine function oscillates between -1 and 1 as x varies. It has both increasing and decreasing segments within each period. However, it is increasing on certain intervals, such as [0, π/2], where the values of sin(x) go from 0 to 1.

The expression y = cos(λx) represents a cosine function with a period of 2π/λ. The parameter λ determines the frequency or number of cycles within the interval of 2π. When λ is greater than 1, the function will have more cycles within 2π, and when λ is less than 1, the function will have fewer cycles. The cosine function has an amplitude of 1 and oscillates between -1 and 1.


To learn more about cosine function click here: brainly.com/question/3876065

#SPJ11

HW4: Problem 8 1 point) Take the Laplace transform of the following initial value and solve for Y(s) = ({y(t)}: y" +9y = (sin(at), 0

Answers

To find the inverse Laplace transform of Y(s) = a/(s^2 + a^2)(s^2 + 9), we can use partial fraction decomposition.

Given that y" + 9y = sin(at), y(0) = 0 and y'(0) = 0.We need to find the Laplace transform of the given differential equation.To find the Laplace transform of the given differential equation, apply the Laplace transform to both sides of the equation.L{y" + 9y} = L{sin(at)}s^2 Y(s) - s y(0) - y'(0) + 9 Y(s) = a/(s^2 + a^2)Since y(0) = y'(0) = 0, we get s^2 Y(s) + 9 Y(s) = a/(s^2 + a^2)On solving, we get Y(s) = a/(s^2 + a^2)(s^2 + 9)Taking the inverse Laplace transform of Y(s) will give the solution of the differential equation, y(t).

learn more about more Laplace here;

https://brainly.com/question/31486586?

#SPJ11

Evaluate the cube root of z when z = 8 cis(150°). (Let 0 ≤ theta
< 360°.)
(smallest theta-value)
theta
(largest theta-value)

Answers

The cube root of z can be evaluated by taking the cube root of the magnitude and dividing the angle by 3.

To evaluate the cube root of z = 8 cis(150°), we first find the magnitude of z, which is 8. Taking the cube root of 8 gives us 2.Next, we divide the angle by 3 to find the principal argument. In this case, 150° divided by 3 is 50°. So, the principal argument is 50°.

Since the cube root of a complex number has three possible values, we can add multiples of 360°/3 to the principal argument to find the other two values. In this case, adding 360°/3 gives us 170° and 290°. Therefore, the cube root of z has three values: 2 cis(50°), 2 cis(170°), and 2 cis(290°).

Learn more about Theta : brainly.com/question/21807202

#SPJ11

Other Questions
In a volatile housing market, the overall value of a home can be modeled by V(x)=325x^2-4600x+145000, where v represents the value of the home and x represents each year after 2020. Find the vertex and interpret what the vertex of this function means in terms of the value of the home. Badger Corp stock has had returns of -7.15 percent, 6.18 percent, 9.28 percent, -4.11 percent, and -3.29 percent over the past five years, respectively. What is the arithmetic average of these returns? Answer should be in percentage form (e.g. 0.01 is 1%) without the percentage (%) symbol. Answer to two (2) decimals. Find the area between y 4 and y = (x - 1) with a > 0. The area between the curves is square units. you flip a coin twice. what is the probability that you observe tails on the first flip and heads on the second flip? (write as a decimal) what class of anti-diarrheal medication does lomotil belong to? anti-secretory, stool softenner, absorbent, anti-motility agent How much should Alfonso invest today in order to withdraw $16613.46 in exactly 3 7 years from now if interest rate is 2.8 % compounded quarterly? Determine whether the vectors [ -1, 2,5) and (3,4, -1) are orthogonal. Your work must clearly show how you are making this determination. FILL THE BLANK. During adolescence, impulsivity declines and analytic thinking _____. Specificity of protein/protein and protein/DNA binding is determined by what?1. Non-covalent bonds2. Hydrophobic interactions3. Covalent bonds4. Shape of the binding site5. All of the above6. None of the above7. 1, 2, 38. 1, 2, 49. 1, 3, 4 3. (1) The population of a city was 1,20,000 in the year 2078 and the population growth rate was 4.5% 20,000 people migrated here from other places in the year 2079 (a) Find the population reached in the year 2079. (b) What will be the total population in the year 2081? in AABC (not shown), LABC = 60 and AC I BC. If AB = x, thenwhat is the area of AABC, in terms of x?x^2 sqrt 3 Which of the following new pieces of technology most directly caused the trench warfare of the Western Front of World War I?Machine gunsO Poison gasO AirplanesO Tanks October 31, 1517 at the Castle Church in WittenbergMartin Luther published a document detailing these against the indulgences and abuses of the Church in 1517. These would be the main driving force behind the Protestant Reformation. given the following structure declaration using c-like pseudo-code: struct s { char c1; int i2; char a3[7][3]; long n4; int i5; char c6; }; assuming that: the size of char and bool is 1, the size of short and int is 4, the size of long is 8 and the size of a pointer is 8. each struct field must be aligned on a memory address divisible by the size of its type. any necessary alignment padding is added immediately before the field which requires the alignment, or at the end of the struct if necessary. subject to the above assumptions: show the layout of struct s. your answer should clearly show the offset of each field and the amount of padding added after each field. 4-points what is the size of struct s? 2-points assuming row-major array layout, what will be the offset of a3[3][2] with respect to the base of struct s? 4-points repeat (a) with the struct fields rearranged to minimize the size of the structure. it may be the case that the rearrangement does not reduce the size of the structure. 4-points what is the size of struct s after the rearrangement? 1-point 2 2 1. Determine the number of solutions (one, infinitely many, none) for each system of equations without solving. DO NOT SOLVE. Explain your reasoning using vectors when possible. a) l x +2y + 4 how would the song chain of fools by Aretha Franklin apply to a event in modern day history write a program that reads characters one at a time and reports at each instant if the current string is a palindrome. hint : use the rabin-karp hashing idea. You get 3 F values in a 2x2 Factorial ANOVA. What do they represent?a.One for each of the three possible interactionsb.One for the main effect and two for the interactionc.One for each of the three main effectsd.One for each of the two main effects and one for the interaction There are thirteen boys and fifteen girls in a class. The teacher randomly selects one student to answer a question. Later, the teacher selects a different student to answer another question. What is the probability that the first student is a boy and the second a girl? Explain. which electrolyte deficiency triggers the secretion of renin