7) a) Sketch the plane curve defined by the given parametric equation. Eliminate the parameter to find a Cartesian equation of the curve. Indicate with an arrow the direction in which the curve is tra

Answers

Answer 1

I can give you a general explanation of how to sketch the plane curve defined by a parametric equation and eliminate the parameter to find a Cartesian equation.

a) To sketch the plane curve defined by a parametric equation, we can proceed as follows: Select a range of values for the parameter, such as t in the equation. Substitute different values of t into the equation to obtain corresponding points (x, y) on the curve. Plot these points on a coordinate plane and connect them to visualize the shape of the curve.b) To eliminate the parameter and find a Cartesian equation of the curve, we need to express x and y solely in terms of each other. This can be done by solving the parametric equations for x and y separately and then eliminating the parameter.

For example, if the parametric equations are: x = f(t) y = g(t) . We can solve one equation for t, such as x = f(t), and then substitute this expression for t into the other equation, y = g(t). This will give us a Cartesian equation in terms of x and y only. The direction in which the curve is traced can be indicated by an arrow. The arrow typically follows the direction in which the parameter increases, which corresponds to the movement along the curve. However, without the specific parametric equation, it is not possible to provide a detailed sketch or determine the direction of the curve.

In conclusion, to sketch the plane curve defined by a parametric equation, substitute various values of the parameter into the equations to obtain corresponding points on the curve and plot them. To eliminate the parameter and find a Cartesian equation, solve one equation for the parameter and substitute it into the other equation. The direction of the curve can be indicated by an arrow, typically following the direction in which the parameter increases.

To learn more about Cartesian equation click here:

brainly.com/question/16920021

#SPJ11


Related Questions

2. (10 points) Evaluate the integral using the appropriate substitution. You must use a substitution for this problem. Simplify your answer. You must show your work. 5 cos(x) dx 1+ sin?(x) 2

Answers

The integral ∫[tex]5cos(x)dx / (1 + sin^2(x))^2[/tex] simplifies to [tex]5tan^2(arcsin(sin(x))) + C.[/tex]

To evaluate the integral ∫[tex]5cos(x)dx / (1 + sin^2(x))^2[/tex], we can make a substitution to simplify the integral.

Let u = sin(x),

thus du = cos(x)dx.

Using this substitution,

the integral becomes ∫[tex]5 du / (1 + u^2)^2[/tex].

Now, let's simplify this integral  

We can rewrite it as:

∫5 /[tex](1 + u^2)^2 du[/tex]

To evaluate this integral, we can use a trigonometric substitution. Let's substitute u = tan(t), then [tex]du = sec^2(t) dt.[/tex]

The integral becomes:

∫[tex]5 / (1 + tan^2(t))^2[/tex]× [tex]sec^2(t) dt[/tex]

Simplifying further:

∫[tex]5 / (sec^2(t))^2[/tex]× [tex]sec^2(t) dt[/tex]

∫[tex]5 / sec^4(t)[/tex]× [tex]sec^2(t) dt[/tex]

∫[tex]5sec^(-2)(t) dt[/tex]

Using the identity[tex]sec^2(t) = 1 + tan^2(t),[/tex] we can rewrite the integral as:

∫[tex]5(1 + tan^2(t)) dt[/tex]

∫[tex]5 + 5tan^2(t) dt[/tex]

Now, we can integrate each term separately:

∫5 dt = 5t + C1

∫[tex]5tan^2(t) dt[/tex]= 5 (tan(t) - t) + C2

Combining the results, the integral becomes:

[tex]5t + 5tan^2(t) - 5t + C = 5tan^2(t) + C[/tex]

Finally, substituting back u = sin(x), we have:

[tex]5tan^2(t) + C = 5tan^2(arcsin(u)) + C[/tex]

Therefore, the integral ∫[tex]5cos(x)dx / (1 + sin^2(x))^2[/tex] simplifies to [tex]5tan^2(arcsin(sin(x))) + C.[/tex]

Learn more about integral here:

https://brainly.com/question/31059545

#SPJ11

5. (a) Let : =(-a + ai)(6 +bV3i) where a and b are positive real numbers. Without using a calculator, determine arg 2. (4 marks) (b) Determine the cube roots of 32V3+32i and sketch them together in the complex plane. (5 marks)

Answers

(a) The argument, arg(ζ) = arctan(imaginary part / real part)

= arctan[b(√3 - a) / (6a(√3 - 1) - b(a√3 + b))]

(b) The cube roots, z^(1/3) = 64^(1/3)[cos((π/6)/3) + isin((π/6)/3)]

= 4[cos(π/18) + isin(π/18)]

(a) To find the argument of the complex number ζ = (-a + ai)(6 + b√3i), we can expand the expression and simplify:

ζ = (-a + ai)(6 + b√3i)

= -6a - ab√3i + 6ai - b√3a + 6a√3 + b√3i²

= (-6a + 6a√3) + (-ab√3 + b√3i) + (6ai - b√3a - b√3)

= 6a(√3 - 1) + b(√3i - a√3 - b)

Now, let's separate the real and imaginary parts:

Real part: 6a(√3 - 1) - b(a√3 + b)

Imaginary part: b(√3 - a)

To find the argument, we need to find the ratio of the imaginary part to the real part:

arg(ζ) = arctan(imaginary part / real part)

= arctan[b(√3 - a) / (6a(√3 - 1) - b(a√3 + b))]

(b) Let's find the cube roots of the complex number z = 32√3 + 32i. We'll use the polar form of a complex number to simplify the calculation.

First, let's find the modulus (magnitude) and argument (angle) of z:

Modulus: |z| = √[(32√3)² + 32²] = √[3072 + 1024] = √4096 = 64

Argument: arg(z) = arctan(imaginary part / real part) = arctan(32 / (32√3)) = arctan(1 / √3) = π/6

Now, let's express z in polar form: z = 64(cos(π/6) + isin(π/6))

To find the cube roots, we can use De Moivre's theorem, which states that raising a complex number in polar form to the power of n will result in its modulus raised to the power of n and its argument multiplied by n:

z^(1/3) = 64^(1/3)[cos((π/6)/3) + isin((π/6)/3)]

= 4[cos(π/18) + isin(π/18)]

Since we want to find all three cube roots, we need to consider all three cube roots of unity, which are 1, e^(2πi/3), and e^(4πi/3):

Root 1: z^(1/3) = 4[cos(π/18) + isin(π/18)]

Root 2: z^(1/3) = 4[cos((π/18) + (2π/3)) + isin((π/18) + (2π/3))]

= 4[cos(7π/18) + isin(7π/18)]

Root 3: z^(1/3) = 4[cos((π/18) + (4π/3)) + isin((π/18) + (4π/3))]

= 4[cos((13π/18) + isin(13π/18)]

Now, let's sketch these cube roots in the complex plane:

Root 1: Located at 4(cos(π/18), sin(π/18))

Root 2: Located at 4(cos(7π/18), sin(7π/18))

Root 3: Located at 4(cos(13π/18), sin(13π/18))

The sketch will show three points on the complex plane representing these cube roots.

To know more about complex numbers, visit the link : https://brainly.com/question/10662770

#SPJ11

Determine if the following series converge absolutely, converge conditionally, or diverge. Explain. Be explicit about what test you are using. (-1) n (a) In n * 7=2 00 (b)Σ n sin(n) n

Answers

The given series [tex]$\sum_{n=1}^{\infty}(-1)^n(\frac{1}{n})^7$[/tex] converges absolutely and the given series [tex]$\sum_{n=1}^{\infty}n \sin(n)$[/tex] converges conditionally.

Given series [tex]:$\sum_{n=1}^{\infty}(-1)^n(\frac{1}{n})^7$ and $\sum_{n=1}^{\infty}n \sin(n)$First series,  $\sum_{n=1}^{\infty}(-1)^n(\frac{1}{n})^7$[/tex]

Here,[tex]$p = 7 > 1$[/tex]

Then by p-series test , the series converges absolutely.

The p-series test states that the infinite series [tex]$\sum_{n=1}^{\infty}\frac{1}{n^p}$[/tex] is convergent if and only if p>1.Second series,[tex]$\sum_{n=1}^{\infty}n \sin(n)$[/tex][tex]$p = 7 > 1$[/tex]

We cannot apply the p-series test or the comparison test, because the series [tex]$\sum_{n=1}^{\infty}n \sin(n)$[/tex]do not have positive terms.So, let's check for the condition of alternating series.

To check the condition of the alternating series, we need to check two conditions: 1. Alternating sign: The series must alternate in sign. That is, the first term must be positive, the second term must be negative, the third term must be positive, and so on.2. Monotonicity: The magnitude of the terms must be monotonically decreasing; that is, $|u_{n+1}| \le |u_{n}|$ for all n.If the two conditions hold, then the series converges.

If the magnitude of the terms does not converge to zero, then the series diverges. Here,[tex]$\sum_{n=1}^{\infty}n \sin(n)$[/tex]satisfies both conditions and hence converges by alternating series test.

Therefore, the given series [tex]$\sum_{n=1}^{\infty}(-1)^n(\frac{1}{n})^7$[/tex] converges absolutely and the given series [tex]$\sum_{n=1}^{\infty}n \sin(n)$[/tex] converges conditionally.


Learn more about series here:

https://brainly.com/question/32549533


#SPJ11

when one randomly samples from a population, the total sample variation in xj decreases without bound as the sample size increases. a. true b. false

Answers

When one randomly samples from a population, the total sample variation in xj decreases without bound as the sample size increases: (A) TRUE

When one randomly samples from a population, the total sample variation in xj decreases without bound as the sample size increases.

This is because as the sample size increases, the likelihood of getting a representative sample of the population also increases.

This reduces the variability in the sample and provides a more accurate estimate of the population parameters.

However, it is important to note that this decrease in sample variation does not necessarily mean an increase in accuracy as other factors such as bias and sampling error can also impact the results.

Know more about sample variation here:

https://brainly.com/question/30094090

#SPJ11

Do all 1-5 questions PLEASE <3 (geometry)

Answers

Answer:

1. The angle of depression is the angle formed by a horizontal line and the line of sight to an object below the horizontal line. In this case, the horizontal line is the surface of the ocean, and the line of sight is from Kristin to the coral reef. Since the angle of depression is 35° and the depth of the ocean at that point is 250 feet, we can use trigonometry to find the distance from Kristin to the reef.

We can imagine a right triangle formed by Kristin, the point on the ocean surface directly above the reef, and the reef. The depth of the ocean (250 feet) is the side opposite to the 35° angle, and the distance from Kristin to the reef is the side adjacent to that angle. We can use the tangent function to find that distance: tan (35°) = opposite/adjacent, so adjacent = opposite/tan(35°). Substituting in the known values gives us adjacent = 250/tan(35°), which is approximately 354.1 feet. So Kristin is about 354.1 feet away from the reef.

2. The Leaning Tower of Pisa currently leans at a 4° angle and has a vertical height of 55.86 meters. The vertical height of the tower is the side opposite to the 4° angle in the right triangle formed by the tower, the ground, and the imaginary vertical line from the top of the tower to the ground. The original height of the tower is the side adjacent to that angle.

We can use the tangent function to find the original height of the tower: tan(4°) = opposite/adjacent, so adjacent = opposite/tan(4°). Substituting in the known values gives us adjacent = 55.86/tan(4°), which is approximately 800.1 meters. So when it was originally built, the Leaning Tower of Pisa was about 800.1 meters tall.

3. From the information given, we can’t determine the width of the river. We need more information such as the distance William walked upstream or the angle between his new position and the tree on the other side of the river.

We can imagine a right triangle formed by the top of the building, the base of the building, and the base of the fountain. The height of the building (78ft) is the side opposite to the 72° angle, and the distance from the building to the fountain is the side adjacent to that angle. We can use the tangent function to find that distance: tan(72°) = opposite/adjacent, so adjacent = opposite/tan(72°). Substituting in the known values gives us adjacent = 78/tan(72°), which is approximately 24.6 feet. So, the fountain is about 24.6 feet away from the apartment building.

4. The angle of depression is the angle formed by a horizontal line and the line of sight to an object below the horizontal line. However, an angle of 720° is not a valid angle of depression because it is greater than 360°.

5. Diego has let out the entire 120ft of string and the angle the string makes with the ground is 52°. We can use trigonometry to find the height of his kite.

We can imagine a right triangle formed by Diego, the point on the ground directly below the kite, and the kite. The length of the string (120ft) is the hypotenuse of this triangle, and the height of the kite is the side opposite to the 52° angle. We can use the sine function to find that height: sin(52°) = opposite/hypotenuse, so opposite = hypotenuse*sin(52°). Substituting in the known values gives us opposite = 120*sin(52°), which is approximately 96.6 feet. So Diego’s kite is about 96.6 feet high at this time.

5 attempts left Check my work ? Hint Use cylindrical shells to compute the volume. The region bounded by y=xandy = 32 - x?, revolved about x = -8. 5 attempts left Check my work ? Hint Use the best m

Answers

The volume of the solid obtained by revolving the region bounded by the curves y = x and y = 32 - x² about the line x = -8 is given as [tex]\[V = 4032\pi.\][/tex]

To compute the volume of the solid obtained by revolving the region bounded by the curves y = x and y = 32 - x² about the line x = -8, we can use the method of cylindrical shells.

The cylindrical shells method involves integrating the product of the circumference of a cylindrical shell, the height of the shell, and the thickness of the shell.

In this case, the height of the shell is the difference between the y-values of the curves, and the thickness is an infinitesimally small change in x.

Let's set up the integral to calculate the volume. The integral will be taken with respect to x, since we are integrating along the x-axis.

First, we need to find the limits of integration.

The curves y = x and y = 32 - x² intersect at two points: (-4, -4) and (4, 0). So the integral will be evaluated from x = -4 to x = 4.

The circumference of a cylindrical shell is given by 2πr, where r is the distance from the axis of revolution to the shell. In this case, r is the distance from the line x = -8 to the curve y = x or y = 32 - x². So r = x + 8.

The height of the shell is given by the difference in y-values between the curves: (32 - x²) - x.

The thickness of the shell is an infinitesimally small change in x, which we represent as dx.

Putting it all together, the integral to calculate the volume is:

[tex]$V=\int_{-4}^4 2 \pi(x+8)\left(\left(32-x^2\right)-x\right) d x$[/tex].

Integrating this expression will give us the volume of the solid.

Let's simplify and solve the integral:

[tex]\[V = 2\pi \int_{-4}^{4} (x + 8)(32 - x^2 - x) \, dx.\][/tex]

Expanding the expression inside the integral:

[tex]\[V = 2\pi \int_{-4}^{4} (32x + 256 - x^3 - x^2 - 8x) \, dx.\][/tex]

Simplifying further:

[tex]\[V = 2\pi \int_{-4}^{4} (-x^3 - x^2 + 24x + 256) \, dx.\][/tex]

Integrating each term separately:

[tex]\[V = 2\pi \left[-\frac{x^4}{4} - \frac{x^3}{3} + 12x^2 + 256x \right]_{-4}^{4}.\][/tex]

Evaluating the integral limits:

[tex]\[V = 2\pi \left[-\frac{4^4}{4} - \frac{4^3}{3} + 12(4)^2 + 256(4) \right] - 2\pi \left[-\frac{(-4)^4}{4} - \frac{(-4)^3}{3} + 12(-4)^2 + 256(-4) \right].\][/tex]

Simplifying the expression inside the brackets:

[tex]\[V = 2\pi \left[-64 - \frac{64}{3} + 192 + 1024 \right] - 2\pi \left[-64 - \frac{64}{3} + 192 - 1024 \right].\][/tex]

Calculating the values:

[tex]\[V = 2\pi \left[1152 \right] - 2\pi \left[-864 \right].\][/tex]

Simplifying further:

[tex]\[V = 2304\pi + 1728\pi.\][/tex]

Combining like terms:

[tex]\[V = 4032\pi.\][/tex]

Learn more about volume:

https://brainly.com/question/1972490

#SPJ11

Solve the equation for exact solutions. 10) 4 cos - 1 x = a X

Answers

The equation 4cos(x) - 1 = ax can be solved for exact solutions. The solution involves finding the values of x that satisfy the equation for a given constant a.

To solve the equation 4cos(x) - 1 = ax for exact solutions, we need to isolate the variable x. Let's begin by adding 1 to both sides of the equation:

4cos(x) = ax + 1

Next, divide both sides by 4:

cos(x) = (ax + 1)/4

To solve for x, we need to take the inverse cosine (arccos) of both sides:

x = arccos((ax + 1)/4)

The solution for x is the arccosine of the expression (ax + 1)/4. This equation represents a family of solutions, as x can take on multiple values depending on the value of a. The exact solutions can be obtained by substituting different values of a into the equation and evaluating the arccosine expression.

Learn more about equation here : brainly.com/question/29657988

#SPJ11

Scores on a standardized exam are approximately normally distributed with mean score 540 and a standard deviation of 100. Find the probability that a test taker selected at random earns a score in the

Answers

The probability that a test taker selected at random earns a score in the following ranges Between 440 and 640 is 0.6587

How to calculate the probability

To solve this problem, we can use the following steps:

Convert the given scores to z-scores by subtracting the mean and dividing by the standard deviation.

Look up the z-scores in a z-table to find the corresponding probability.

Add the probabilities for each range to find the total probability.

Between 440 and 640:

= 0.5000 + 0.1587

= 0.6587

Learn more about probability on

https://brainly.com/question/24756209

#SPJ1

Scores on a standardized exam are approximately normally distributed with mean score 540 and a standard deviation of 100. Find the probability that a test taker selected at random earns a score in the Between 440 and 640 is 0.6587

V3 and but outside r, r2 = 2 sin (20) then set up integral(s) for area of the following: (12 pts) Sketch the graph of 1 a) Inside r. b) Inside r, but outside r; c) Inside both ri and r

Answers

To find the areas of the given regions, we need to set up integrals. The regions are described.

a) To find the area inside r, we need to set up the integral based on the given equation r1 = 2 sin(20). We can sketch the graph of r1 as a circle with radius 2 sin(20) centered at the origin. The integral for the area can be set up as ∫∫ [tex]r1^2[/tex] dA, where dA represents the area element.

b) To find the area inside r2 but outside r1, we need to set up the integral based on the given equation r2 = 3. We can sketch the graph of r2 as a circle with radius 3 centered at the origin. The region between r1 and r2 can be visualized as the area between the two circles. The integral for the area can be set up as ∫∫ ([tex]r2^2[/tex] - [tex]r1^2[/tex]) dA.

c) To find the area inside both r1 and r2, we need to find the overlapping region between the two circles. This can be visualized as the region common to both circles. The integral for the area can be set up as ∫∫ [tex]r1^2[/tex]dA, considering the area within the smaller circle.

These integrals can be evaluated to find the actual area values for each region.

Learn more about graph here:

https://brainly.com/question/17267403

#SPJ11

Question 39 I need to find the mesures for e and f

Answers

The values of variables are,

⇒ e = 21/4

⇒ f = 9/2

We have to given that,

Triangles ABC and DEF are similar.

And, a = 4, b = 7, c = 6, and d = 3

Now, We know that,

If two triangles are similar then it's ratio of corresponding sides are equal.

Hence, We can formulate,

⇒ AB / BC = DE / EF

⇒ BC / CA = EF / FD

Substitute all the values, we get;

⇒ AB / BC = DE / EF

⇒ 6 / 4 = f / 3

⇒ 6 × 3 / 4 = f

⇒ f = 18 / 4

⇒ f = 9/2

And,

⇒ BC / CA = EF / FD

⇒ 4 / 7 = 3 / e

⇒ 4e = 21

⇒ e = 21/4

Thus, The values of variables are,

⇒ e = 21/4

⇒ f = 9/2

Learn more about the triangle visit;

brainly.com/question/1058720

#SPJ1

Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. x + y = 2, x= 3 - (y - 1)2; about the x-axis. Volume =

Answers

the volume of the solid obtained by rotating the region bounded by the curves x + y = 2 and [tex]x = 3 - (y - 1)^2[/tex] about the x-axis is [tex]4\pi /3 (2\sqrt{2} - 1)[/tex].

Given the curves x + y = 2 and [tex]x = 3 - (y - 1)^2[/tex], we have to find the volume of the solid obtained by rotating the region bounded by the curves about the x-axis.

To solve this problem, we can use the method of cylindrical shells as follows:

Consider a vertical strip of width dx at a distance x from the y-axis.

This strip is at a height y = 2 - x from the x-axis and at a height[tex]y = 1 - \sqrt{(3 - x)}[/tex] from the x-axis.

Thus, the height of the strip is given by the difference of the two equations, that is:

[tex]h = (2 - x) - (1 - \sqrt{(3 - x)}) = 1 + \sqrt{(3 - x)}.[/tex]

The volume of the cylindrical shell with radius x and height h is given by: dV = 2πxhdx

The total volume of the solid is obtained by integrating dV from x = 1 to x = 2.

Thus, Volume =[tex]\int\limits^1_2 dV =  \int\limits^1_2 2\pi xh dx =  \int\limits^1_22\pi x(1 + \sqrt{(3 - x)}) dx[/tex] =

[tex]2\pi  \int\limits^1_2 [x + x\sqrt{(3 - x)}] dx = 2\pi  [(x^2/2) + (2/3)(3 - x)^{(3/2)}]  = 2\pi  [(2 - 1/2) + (2/3)\sqrt{2} - (1/2)\sqrt{2}] = 4\pi /3 (2\sqrt{2} - 1).[/tex]

To learn more about volume click here https://brainly.com/question/28058531

#SPJ11

Determine whether the series is conditionally convergent, absolutely convergent, or divergent: 1 a. Σ 5(1). b. En 5(-1) n+1 (n+2)! Σ √n²+3 16

Answers

The series (a) Σ 5(1) is divergent and the series (b) En 5(-1) n+1 (n+2)! Σ √n²+3 16 is absolutely convergent.

a. The series Σ 5(1) can be written as 5Σ 1, where Σ 1 is the harmonic series which diverges. Therefore, the given series also diverges.

b. To determine the convergence of the given series, we need to first check if it is absolutely convergent.

|5(-1)^(n+1)/(n+2)! √(n²+3)/16| = (5/(n+2)!) √(n²+3)

Using the ratio test, we get:

lim n → ∞ |(5/(n+3)!) √((n+1)²+3) / (5/(n+2)!) √(n²+3)|

= lim n → ∞ |√((n+1)²+3)/√(n²+3)|

= lim n → ∞ |(n² + 2n + 4)/(n² + 3)|^(1/2)

= 1

Since the limit is equal to 1, the ratio test is inconclusive. We can try using the root test instead:

lim n → ∞ |5(-1)^(n+1)/(n+2)! √(n²+3)/16|^(1/n)

= lim n → ∞ (5/(n+2)!)^(1/n) (n² + 3)^(1/2n)

= 0

Since the limit is less than 1, the root test tells us that the series is absolutely convergent. Therefore, we can conclude that the given series Σ (-1)^(n+1)/(n+2)! √(n²+3)/16 is absolutely convergent.

To know more about absolutely convergent refer here:

https://brainly.com/question/31064900#

#SPJ11

Use n = 4 to approximate the value of the integral by the following methods: (a) the trapezoidal rule, and (b) Simpson's rule. (c) Find the exact value by integration. 2 Sixe -x² dx (a) Use the trapezoidal rule to approximate the integral. 2 -x² 7x e dx~ 0 (Round the final answer to three decimal places as needed. Round all intermediate values to four decimal places as needed.) (b) Use Simpson's rule to approximate the integral. 2 √7xe-x ² x dx 0 (Round the final answer to three decimal places as needed. Round all intermediate values to four decimal places as needed.) (c) Find the exact value of the integral by integration. 2 -x² 7x e dx = 0 (Do not round until the final answer. Then round to three decimal places as needed.)

Answers

(a) Using the trapezoidal rule to approximate the integral ∫2 -x² 7x e dx with n = 4, we divide the interval [0, 2] into 4 equal subintervals: [0, 0.5, 1, 1.5, 2].

The formula for the trapezoidal rule is given by:

∫a b f(x) dx ≈ (h/2) * [f(a) + 2 * ∑(i=1 to n-1) f(xi) + f(b)]

where h is the width of each subinterval, h = (b - a) / n.

In this case, a = 0, b = 2, and n = 4, so h = (2 - 0) / 4 = 0.5.

Now we evaluate the function at the endpoints and midpoints of the subintervals:

f(0) = 0

f(0.5) = -0.5² * 7(0.5) * e^(0.5) = -1.5545

f(1) = -1² * 7(1) * e^(1) = -9.9456

f(1.5) = -1.5² * 7(1.5) * e^(1.5) = -27.9083

f(2) = -2² * 7(2) * e^(2) = -98.7854

Using the trapezoidal rule formula, we calculate the approximation:

∫2 -x² 7x e dx ≈ (0.5/2) * [0 + 2 * (-1.5545 - 9.9456 - 27.9083) + (-98.7854)] ≈ -37.478

Therefore, the approximate value of the integral using the trapezoidal rule is -37.478.

(b) Using Simpson's rule to approximate the integral ∫2 -x² 7x e dx with n = 4, we use the formula:

∫a b f(x) dx ≈ (h/3) * [f(a) + 4 * ∑(i=1 to n/2) f(x2i-1) + 2 * ∑(i=1 to n/2-1) f(x2i) + f(b)]

where h is the width of each subinterval, h = (b - a) / n.

Again, in this case, a = 0, b = 2, and n = 4, so h = (2 - 0) / 4 = 0.5.

We evaluate the function at the endpoints and midpoints of the subintervals:

f(0) = 0

f(0.5) = -0.5² * 7(0.5) * e^(0.5) = -1.5545

f(1) = -1² * 7(1) * e^(1) = -9.9456

f(1.5) = -1.5² * 7(1.5) * e^(1.5) = -27.9083

f(2) = -2² * 7(2) * e^(2) = -98.7854

Using the Simpson's rule formula, we calculate the approximation:∫2 -x² 7x e dx ≈ (0.5/3) * [0 + 4 * (-1.5545

- 27.9083) + 2 * (-9.9456) + (-98.7854)] ≈ -40.401

Therefore, the approximate value of the integral using Simpson's rule is -40.401.

(c) To find the exact value of the integral by integration, we integrate the function directly:

∫2 -x² 7x e dx = ∫(14x²e^(-x²)) dx

This integral does not have a simple closed-form solution, so we need to use numerical methods or approximation techniques to find its value.

Learn more about integral here: brainly.com/question/31744185

#SPJ11

(a) Calculate (2x + 1) Vx + 3 dx. х (b) Calculate | (22 64. 2 4x²e23 dx. (c) Calculate 2x d e-t- dt. dx"

Answers

In the given problem, we are asked to calculate three different integrals.

a) To calculate the integral of (2x + 1) with respect to x over the range x + 3, we need to apply the power rule of integration. The power rule states that the integral of x^n with respect to x is (1/(n+1)) * x^(n+1).

b) To calculate the integral of (2 - 4x^2) * e^(2x^3) with respect to x, we need to use the technique of integration by substitution. By selecting an appropriate substitution and applying the chain rule, we can transform the integral into a more manageable form. After performing the substitution and simplifying the integral.

c) To calculate the integral of 2x * d(e^(-t)) with respect to t, we can apply the technique of integration by parts. Integration by parts allows us to transform the integral of a product into a simpler form. By selecting suitable functions for integration by parts and evaluating the resulting terms, we can find the antiderivative of the given expression and evaluate it at the upper and lower limits of integration.

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11

A fence was installed around the edge of a rectangular garden. The length , L , of the fence was 5 feet less than 3 times with width, w. The amount of fencing used was 90 feet.
Determine algebraically the dimensions, in feet, of the garden.

Answers

The dimensions of the garden are

a width of 12.5 feet and

a length of 32.5 feet.

How to find the dimensions

Let's set up the equations based on the given information.

Information given in the problem

the length of the fence  L, is 5 feet less than 3 times the width, w. So we can write the equation:

L = 3w - 5 (Equation 1)

We also know that the amount of fencing used is 90 feet.

2L + 2w = 90 (Equation 2)

Substitute Equation 1 into Equation 2 to eliminate L

2(3w - 5) + 2w = 90

6w - 10 + 2w = 90

Combine like terms:

8w - 10 = 90

8w = 100

Divide by 8:

w = 12.5

Substitute the value of w back into Equation 1 to find L

L = 3(12.5) - 5

L = 37.5 - 5

L = 32.5

Learn more about rectangular garden at

https://brainly.com/question/29309495

#SPJ1

a 30 foot ladder long leans against a wall. The wall and the ladder create a 35 degree angle. How high up the wall does the ladder rest. round answer to nearest tenth

Answers

The ladder is 17.3 feet high up the wall


Find the surface area of rotating x=2√a2−y2, 0≤y≤a/2 over the Y
axis

Answers

The surface area of rotating [tex]x=2\sqrt{a^2-x^2}[/tex] over the y-axis over the interval ​[tex]0\leq y\leq \frac{a}{2}[/tex] is [tex]2\pi a^{2}[/tex].

What is the surface area?

The surface area is a measurement of the total area of the outer surface of an object or shape. It is the sum of the areas of all the individual surfaces that make up the object.

   The concept of surface area applies to both two-dimensional shapes (such as polygons) and three-dimensional objects (such as cubes, spheres, cylinders, and prisms).

To determine the surface area of rotating the curve [tex]x=2\sqrt{a^2-x^2}[/tex]around the y-axis, we can use the formula for the surface area of revolution.

The formula for the surface area of revolution when rotating a curve y=f(x) around the x-axis over an interval [a,b] is given by:

[tex]S=2\pi \int\limits^b_a f(x)\sqrt{ 1+(\frac{dy}{dx})^2} dx[/tex]

In this case, the given curve is[tex]x=2\sqrt{a^2-x^2}[/tex] ​, and we need to rotate it around the y-axis over the interval [tex]0\leq y\leq \frac{a}{2}[/tex]​.

First, let's find the derivative [tex]\frac{dy}{dx}[/tex]​ using implicit differentiation. Differentiating[tex]x=2\sqrt{a^2-x^2}[/tex] with respect to y, we get:

[tex]\frac{dy}{dx} =\frac{-2y}{\sqrt{a^2-x^2} }[/tex]

Next, we substitute the values into the surface area formula:

[tex]S=2\pi \int\limits^\frac{a}{2} _0 2\sqrt{a^2-x^2} \sqrt{ 1-(\frac{-2y}{\sqrt{a^2-y^2}})^2} dy[/tex]

Simplifying the expression inside the square root:

[tex]S=2\pi \int\limits^\frac{a}{2} _0 2\sqrt{a^2-y^2} \sqrt{ 1+\frac{4y^2}{{a^2-y^2}}} dy[/tex]

Combining the terms inside the square root:

[tex]S=2\pi \int\limits^\frac{a}{2} _0 2\sqrt{a^2-y^2} \sqrt{ \frac{a^2}{{a^2-y^2}}} dy\\[/tex]

Simplifying further:

[tex]S=2\pi \int\limits^\frac{a}{2} _0 2a dy[/tex]

Evaluating the integral:

[tex]S=2\pi [2ay]^\frac{a}{2}_0[/tex]

[tex]S=2\pi [2a.\frac{a}{2}-2a.0]\\S=2\pi .a^2[/tex]

Therefore, the surface area of rotating the curve [tex]x=2\sqrt{a^2-x^2}[/tex] over the y-axis over the interval ​[tex]0\leq y\leq \frac{a}{2}[/tex] is [tex]2\pi a^{2}[/tex].

To learn more about the surface area  from the given link

brainly.com/question/16519513

#SPJ4

Provide a clear and concise explanation of how these
topics have impacted analysis and interpretation of data and have
aided in making business decisions.

Answers

The increasing use of technology and the rise of big data have impacted the analysis and interpretation of data. With more data being generated than ever before, businesses have had to adopt new tools and techniques to analyze and interpret it effectively.

This has led to the development of new software programs and algorithms, as well as the use of machine learning and artificial intelligence to help extract valuable insights from data. These topics have greatly aided in making business decisions, as businesses are now able to make more informed decisions based on the analysis and interpretation of data. By understanding patterns and trends in data, businesses can make better predictions about future trends and adjust their strategies accordingly. In addition, data analysis has become an important tool in identifying areas for improvement and optimizing business processes. Overall, the impact of these topics on the analysis and interpretation of data has led to significant advancements in how businesses operate and make decisions.

To learn more about big data, visit:

https://brainly.com/question/28583888

#SPJ11

Find the area of the surface generated when the given curve is rotated about the x-axis. y = 4√√x on [77,96] The area of the surface generated by revolving the curve about the x-axis is (Type an e

Answers

The area of the surface generated when the curve y = 4√√x on the interval [77, 96] is rotated about the x-axis can be found using the formula for surface area of revolution.

To find the surface area of the generated surface, we can use the formula for surface area of revolution:

A = 2π * ∫[a, b] y * √(1 + (dy/dx)²) dx

In this case, the curve is given by y = 4√√x and we want to rotate it about the x-axis on the interval [77, 96].

First, we need to find the derivative dy/dx of the curve:

dy/dx = d/dx (4√√x) = 4 * (1/2) * (√x)^(-1/2) * (1/2) * x^(-1/2) = 2 * (√x)^(-1) * x^(-1/2) = 2 / (√x * √x^3) = 2 / (x^2√x)

Next, we substitute the values into the surface area formula and evaluate the integral:

A = 2π * ∫[77, 96] (4√√x) * √(1 + (2 / (x^2√x))²) dx

This integral can be evaluated using numerical methods or symbolic integration software to obtain the exact value of the surface area.

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11


11 please
(11]. For the power series ġ (4-3) " find the interval of convergence

Answers

The interval of convergence for the power series is -2 to 8, excluding the endpoints.

To find the interval of convergence of the power series ∑ n=2 to ∞ ([tex](x - 3)^n[/tex]/n[tex]5^n[/tex]), we can use the ratio test.

Applying the ratio test, we have lim (n→∞)⁡|[tex](x - 3)^{(n+1)}[/tex]/(n+1)[tex]5^{(n+1)}[/tex]| / |[tex](x - 3)^n[/tex]/n[tex]5^n[/tex]|. Simplifying this expression, we get |x - 3|/5.

For the series to converge, the absolute value of this expression must be less than 1.

Therefore, |x - 3|/5 < 1, which implies -5 < x - 3 < 5. Solving for x, we find -2 < x < 8.

Therefore, the interval of convergence for the power series is -2 < x < 8.

Learn more about the Power series at

https://brainly.com/question/29896893

#SPJ4

The question is -

For the Power series ∑ n=2 to n ((x - 3)^n/n5^n). Find the interval of convergence.

2. DETAILS SCALCET9 3.6.012. Differentiate the function. P(1) - In 2-n (√²² +9) D'(1) - SCALCET9 3.9.010. dt DETAILS 6/6 8, and 4, find dt when (x, y, z)=(2, 2, 1).

Answers

To differentiate the function [tex]P(x) = ln(2 - n(\sqrt{22+9}))[/tex], we can use chain rule. To find dt when [tex](x, y, z) = (2, 2, 1)[/tex] with gradient vector [tex]< 6/6, 8, 4 >[/tex], we can use the formula [tex]dt = (dx/dt)(dy/dt)(dz/dt)[/tex] and [tex]dt=32[/tex].

To differentiate the function [tex]P(x) = ln(2 - n(\sqrt{22+9}))[/tex], we can use the chain rule. The derivative of P(x) with respect to x, denoted as P'(x), can be found as follows:

[tex]P'(x) = (1 / (2 - n(\sqrt{22+9})) * (-n(1/2)(22 + 9)^{-1/2}(2)) \\= -n(22 + 9)^{-1/2} / (2 - n(\sqrt{22+9}))[/tex]

To find P'(1), we substitute x = 1 into the derivative expression:

[tex]P'(1) = -n(22 + 9)^{-1/2} / (2 - n(\sqrt{22+9}))[/tex]

To find [tex]dt[/tex] when [tex](x, y, z) = (2, 2, 1)[/tex] given the gradient vector [tex]< 6/6, 8, 4 >[/tex], we can use the formula:

[tex]dt = (dx/dt)(dy/dt)(dz/dt)[/tex]

Given that [tex](x, y, z) = (2, 2, 1)[/tex], we have:

[tex]dx/dt = 6/6 = 1\\dy/dt = 8\\dz/dt = 4[/tex]

Substituting these values into the formula, we get:

[tex]dt = (1)(8)(4) = 32[/tex]

Therefore, [tex]dt[/tex] is equal to [tex]32[/tex].

Learn more about function here:

https://brainly.com/question/31062578

#SPJ11

Alex invests $6900 in two different accounts. The first account paid 14 %, the second account paid 13% in interest. At the end of the first year he had earned $930 in interest. How much was in each account? at 14% S at 13%

Answers

$3900 was invested in the first account, and $3000 was invested in the second account.

Let x be the amount that was invested in the first account and y be the amount that was invested in the second account. Given that Alex invests $6900 in two different accounts, this implies that: x + y = 6900

Let S be the interest rate of the first account. This implies that the interest earned from the first account is equal to: Sx

And, the interest earned from the second account is equal to: 0.13y

At the end of the first year, Alex had earned $930 in interest. This means that:

Sx + 0.13y = 930

Now we have two equations in two unknowns:

x + y = 6900Sx + 0.13y = 930

Let's solve for x in terms of y in the first equation:

x + y = 6900x = 6900 - y

Substitute this expression for x in the second equation:

Sx + 0.13y = 930S(6900 - y) + 0.13y = 930S(6900) - Sy + 0.13y = 930(0.13 + S)y = 930 - 6900S(y = (930 - 6900S) / (0.13 + S))

Now substitute this expression for y in the equation we used to solve for x:

x + y = 6900x + (930 - 6900S) / (0.13 + S) = 6900x = 6900 - (930 - 6900S) / (0.13 + S)

Therefore, the amount that was invested in the first account is:

x = 6900 - (930 - 6900S) / (0.13 + S)

And the amount that was invested in the second account is:

y = (930 - 6900S) / (0.13 + S)

Let x be the amount that was invested in the first account, and y be the amount that was invested in the second account. Thus, we have:

x + y = 6900 --- equation (1)

Also, the amount earned from the first account at the end of the year is:

Sx

And the amount earned from the second account is:

0.13y

Given that he earned $930 in interest, we can equate these two to get:

Sx + 0.13y = 930 --- equation (2)

From equation (1), we get:

x = 6900 - y

We substitute this into equation (2) to get:

S(6900 - y) + 0.13y = 93068.7S - 0.87y = 93068.7S = 0.87y + 930

We also have:

Sx + 0.13y = 930S(6900 - y) + 0.13y = 93068.7S - 0.87y = 930

We have two equations and two unknowns. We can solve for y:

y = 3000

We can substitute this into the equation x = 6900 - y to get:

x = 3900

Therefore, $3900 was invested in the first account, and $3000 was invested in the second account.

Learn more about equation :

https://brainly.com/question/29657983

#SPJ11








STOKES THEOREM: DIVERGENCE THEOREM: Practice: 1. Evaluate the line integral fF.dr, where F = (22,2,3x – 3y) and C consists of the three line segments that bound the plane z = 10-5x-2y in the first o

Answers

We are given a vector field F = (2, 2, 3x - 3y) and a closed curve C consisting of three line segments that bound the plane z = 10 - 5x - 2y in the first octant.

The task is to evaluate the line integral of F along C, denoted as ∮F · dr. This can be done by parameterizing each line segment of C and computing the line integral along each segment. The sum of these line integrals will give us the total value of the line integral along C.

To evaluate the line integral ∮F · dr, we need to compute the dot product of the vector field F = (2, 2, 3x - 3y) and the differential displacement vector dr along each segment of the curve C. We can parameterize each line segment of C and substitute the parameterization into the dot product to obtain an expression for the line integral along that segment.

Next, we integrate the dot product expression with respect to the parameter over the appropriate limits for each line segment. This gives us the line integral along each segment.

Finally, we sum up the line integrals along all three segments to obtain the total value of the line integral ∮F · dr along the closed curve C.

By following these steps and performing the necessary calculations, we can evaluate the line integral and determine its value for the given vector field and closed curve.

Learn more about integral  here:

https://brainly.com/question/31433890

#SPJ11

Consider the function f(x, y) := x^2y + y^2 -3y
a) Find and classify the critical points of f(x, y)
b) Find the values of maximum and minimum absolutes in the
region X^2 + y^2 <= 9/4 for the functi

Answers

a) The critical points of f(x, y) are (0, 3/2), (√3, 0), and (-√3, 0). b) The maximum and minimum absolute values of f(x, y) within the region [tex]x^2 + y^2[/tex] ≤ 9/4 are both 0.

To find the critical points of the function[tex]f(x, y) = x^2y + y^2 - 3y[/tex], we need to find the points where the partial derivatives of f with respect to x and y are equal to zero.

a) Finding Critical Points:

Partial derivative with respect to x:

∂f/∂x = 2xy

Partial derivative with respect to y:

∂f/∂y = [tex]x^2 + 2y - 3[/tex]

Setting both partial derivatives equal to zero and solving the equations:

2xy = 0  --> (1)

[tex]x^2 + 2y - 3[/tex] = 0  --> (2)

From equation (1), we have two possibilities:

1) x = 0

2) y = 0

Case 1: x = 0

Substituting x = 0 into equation (2):

0 + 2y - 3 = 0

2y = 3

y = 3/2

So, one critical point is (x, y) = (0, 3/2).

Case 2: y = 0

Substituting y = 0 into equation (2):

[tex]x^2 + 2(0) - 3 = 0\\x^2 - 3 = 0\\x^2 = 3[/tex]

x = ±√3

So, two critical points are (x, y) = (√3, 0) and (-√3, 0).

b) Finding Maximum and Minimum Values:

To find the maximum and minimum absolute values of the function f(x, y) within the region [tex]x^2 + y^2[/tex] ≤ 9/4, we need to evaluate the function at the boundary of the region and the critical points.

The boundary of the region  [tex]x^2 + y^2[/tex]  ≤ 9/4 is a circle centered at the origin (0, 0) with a radius of 3/2.

Let's evaluate f(x, y) at the critical points and on the boundary of the region:

1) Critical point (0, 3/2):

f(0, 3/2) = [tex](0)^2(3/2) + (3/2)^2 - 3(3/2)[/tex]

          = 0 + 9/4 - 9/2

          = -9/4

2) Critical point (√3, 0):

f(√3, 0) = [tex](\sqrt3)^2(0) + (0)^2 - 3(0)[/tex]

        = 0

3) Critical point (-√3, 0):

f(-√3, 0) = [tex](-\sqrt3)^2(0) + (0)^2 - 3(0)[/tex]

         = 0

4) Evaluating on the boundary:

We substitute x = (3/2)cosθ and y = (3/2)sinθ, where θ is the angle parameterizing the boundary.

f(x, y) = f((3/2)cosθ, (3/2)sinθ) = [(3/2)cosθ]^2[(3/2)sinθ] + [(3/2)sinθ]^2 - 3[(3/2)sinθ]

To find the maximum and minimum absolute values, we evaluate f(x, y) at the extreme points of the boundary. These points occur when θ = 0 and θ = 2π (the endpoints of the interval [0, 2π]).

At θ = 0:

f(x, y) = f

((3/2)cos(0), (3/2)sin(0)) = f(3/2, 0) = [tex](3/2)^2(0) + (0)^2 - 3(0)[/tex] = 0

At θ = 2π:

f(x, y) = f((3/2)cos(2π), (3/2)sin(2π)) = f(-3/2, 0) = [tex](-3/2)^2(0) + (0)^2 - 3(0)[/tex] = 0

Therefore, the maximum and minimum absolute values of f(x, y) within the region [tex]x^2 +y^2[/tex] ≤ 9/4 are 0.

In summary:

a) The critical points of f(x, y) are (0, 3/2), (√3, 0), and (-√3, 0).

b) The maximum and minimum absolute values of f(x, y) within the region [tex]x^2 + y^2[/tex] ≤ 9/4 are both 0.

Learn more about function :

https://brainly.com/question/30721594

#SPJ11

When determining whether there is a correlation between two​ variables, one should use a​ ____________ to explore the data visually.
When determining whether there is a correlation between two​ variables, one should use a

protractor
probability distribution
correlation coefficient
scatterplot
to explore the data visually.

Answers

When determining whether there is a correlation between two variables, one should use a scatterplot to explore the data visually.

The values of two variables are represented on a Cartesian plane in a scatterplot, which is a graphical representation of data points. A dot is used to symbolise each data point, and the location of the dot on the plot reflects the values of the variables. We can visually evaluate the link between the two variables by charting the values of one variable on the x-axis and the values of the other variable on the y-axis.

A scatterplot enables us to see the pattern or trend in the data points when investigating the correlation between two variables. It enables us to determine whether the variables have a linear relationship, such as a positive or negative correlation. Scatterplots can also make any outliers visible.


Learn more about correlation here:

https://brainly.com/question/30116167


#SPJ11

A certain dining room can be described by the region bounded by the y axis, z axis and the lines y-25-52 and y-z+3. The dining room has to be tiled by linoleum, which costs P100.00/m². Find the cost of linoleum needed to cover the dining room

Answers

The cost of linoleum needed to cover the dining room is P296,450.00 for the region.

The given problem is related to the "region" and "cover". We have to find the cost of linoleum needed to cover the dining room.

Let's solve this problem step by step:

Given, the region bounded by the y-axis, z-axis and the lines y - 25 - 52 and y - z + 3.

We know that the formula of area bounded by the curve is given by [tex]`∫ f(y) - g(y) dy`[/tex] where f(y) is the upper curve and g(y) is the lower curve. In this problem, the lower curve is z = 0. The upper curve y - 25 - 52 = y - 77 => y = 77 is the upper curve.

Therefore, the area bounded by the curve is given by: [tex]∫0^77 y-77dy= [(77)^2/2] - [(0)^2/2] = 2964.5 m²[/tex]The linoleum costs P100.00/m², therefore the cost of linoleum needed to cover the dining room is:

Cost = 100 x 2964.5= P296,450.00

Therefore, the cost of linoleum needed to cover the dining room is P296,450.00.


Learn more about region here:

https://brainly.com/question/30497039


#SPJ11

5. Find the two points where the curve 2? + xy + y2 = 7 crosses the x-axis, and show that the tangents to the curve at these points are parallel. What is the common slope of these tangents? 6. The dos

Answers

The tangents are parallel to the y-axis.The common slope of these tangents is 0.

Given equation is 2x² + xy + y² = 7

Crossing the curve to x-axis, y = 0

Substituting y = 0 in the above equation

2x² = 7x = ± √(7/2)

Therefore, the points are (x₁, 0) and (x₂, 0) where x₁ = √(7/2) and x₂ = - √(7/2).

Now differentiate the equation of curve 2x² + xy + y² = 7, we get dy/dx + y/x = -2x/y... (1)

We have y = 0 for x = x₁ and x = x₂.

For x = x₁, the slope is -2x/y = ∞

For x = x₂, the slope is -2x/y = -∞.

Therefore, the tangents are parallel to the y-axis.The common slope of these tangents is 0.

To know more about tangents click on below link :

https://brainly.com/question/30889385#

#SPJ11

if the speed of light is nearly 3x108 m/s in air (300,000 km/s), what is its speed in glass with index of refraction 1.5?

Answers

The speed of light in glass with an index of refraction of 1.5 is approximately 2x10⁸m/s (200,000 km/s).

The index of refraction is a measure of how much slower light travels in a medium compared to its speed in a vacuum or air. It is defined as the ratio of the speed of light in a vacuum to the speed of light in the medium. In this case, the index of refraction of glass is given as 1.5.

To calculate the speed of light in glass, we can use the formula: speed of light in vacuum / index of refraction. Substituting the values, we have:

Speed in glass = (3x10⁸ m/s) / 1.5 = 2x10⁸m/s.

Therefore, the speed of light in glass with an index of refraction of 1.5 is approximately 2x10⁸m/s (200,000 km/s). This means that light slows down by a factor of 1.5 when it enters glass compared to its speed in a vacuum or air. The reduction in speed is due to the interaction of light with the atoms and molecules in the glass material, causing it to be absorbed and re-emitted, which leads to a slower overall propagation speed.

Learn more about ratio here: https://brainly.com/question/29467965

#SPJ11

find the variance and standard deviation of the following scores: 92, 95, 85, 80, 75, 50

Answers

The variance of the given scores is 253.33, and the standard deviation is approximately 15.91.

To find the variance, we need to calculate the mean (average) of the scores first. The mean can be found by adding up all the scores and dividing by the total number of scores. In this case, the sum of the scores is 92 + 95 + 85 + 80 + 75 + 50 = 477, and there are six scores. Therefore, the mean is 477/6 = 79.5.

Next, we find the difference between each score and the mean, square each difference, and calculate the sum of these squared differences. For example, for the first score of 92, the difference from the mean is 92 - 79.5 = 12.5. Squaring this difference gives us 12.5^2 = 156.25. We repeat this process for all the scores and sum up the squared differences: 156.25 + 15.25 + 108.25 + 0.25 + 17.25 + 348.25 = 645.5.

The variance is then calculated by dividing the sum of squared differences by the total number of scores. In this case, the variance is 645.5/6 ≈ 107.58.

The standard deviation is the square root of the variance. Taking the square root of 107.58 gives us approximately 15.91. Therefore, the standard deviation of the given scores is approximately 15.91.

Learn more about standard deviation here:

https://brainly.com/question/29115611

#SPJ11

PLEASE STOP SKIPPING THE QUESTIONS
AND DO ALL QUESTIONS
#4-10 ANSWER ALL AND SHOW WORK PLEASE STOP SKIPPING
4. A profit function is given by P(x)=-x' +55x-110. a) Find the marginal profit when x = 10 units. b) Find the marginal average profit when x = 10 units. 5. Let f(x)=x*-4x'. a) Using derivatives and

Answers

The marginal profit when x = 10 units is 54 and the marginal average profit when x = 10 units is 5.4.

a) To find the marginal profit when x = 10 units, we need to calculate the derivative of the profit function P(x) with respect to x and evaluate it at x = 10.

The profit function is given as P(x) = -x' + 55x - 110.

Taking the derivative of P(x) with respect to x, we get:

P'(x) = -1 + 55

Simplifying, we find:

P'(x) = 54

Therefore, the marginal profit when x = 10 units is 54.

b) To find the marginal average profit when x = 10 units, we need to calculate the derivative of the profit function P(x) with respect to x and divide it by x.

Using the profit function P(x) = -x' + 55x - 110, and differentiating with respect to x, we get:

P'(x) = -1 + 55

Now, we divide P'(x) by x:

P'(x) / x = (54) / 10

Simplifying, we find:

P'(x) / x = 5.4

Therefore, the marginal average profit when x = 10 units is 5.4.

5. Regarding the function f(x) = x*-4x', it seems that there might be a typographical error in the expression. The notation "x*" is not commonly used in mathematical functions, and it is unclear what it represents. If you can provide more context or clarify the notation, I would be happy to assist you further with analyzing the function.

Learn more about profit function here:

https://brainly.com/question/10950598

#SPJ11

Other Questions
xb? Suppose a=(4, -6, 10) and b = (-6, 9, -15). What is a x a. (-24, -54, -150) c. (1,-1,-1) d. (-3, -2, 0) b. (0,0,0) what are the intervals of time between the transmissions of the beacon framesthelinksys ses 24086 access point? from the 30 munroe st. access point? (hint: this interval of timeiscontained in the beacon frame itself). Which of the following are historical examples of mass wasting events that caused flooding? (Select all that apply.)a) A landslide into the Gros Ventre River in Wyoming blocked a valley and resulted in heavy flooding when the dam was breached in the spring.b) A slide near Thistle, Utah, in the winter of 1982-1983 blocked Spanish Fork Canyon, creating a large lake behind it. True/false: nationwide approximately 96 of parolees successfully complete parole in a physics lab, light with wavelength 490 nm travels in air from a laser to a photocell in 17.0 ns. when a slab of glass 0.840 m thick is placed in the light beam, with the beam incident along the normal to the parallel faces of the slab, it takes the light 21.2 ns to travel from the laser to the photocell. What is the wavelength of the light in the glass? Use 3.00108 m/s for the speed of light in a vacuum. Express your answer using two significant figures. Question 5 > Consider the function f(x) = 2x 3x on the closed interval [-3, -1]. Find the exact value of the slope of the secant line connecting (-3, f(-3)) and (-1, f(-1)). m 11.5 f'(c). Find all v water pours into a conical tank at the rate of 14 cubic centimeters per second. the tank stands point down and has a height of 10 centimeters and a base radius of 2 centimeters. how fast is the water level rising when the water is 3 centimeters deep? which of the following best describes saving dollars' benefits package Which of the following bonds are polar? Check all that apply.a. C - Lib. N - Hc. P - Od. O - Bre. C - S beverage dispensers automobiles and refrigerators are all examples ofa. Hubsb. serverc. digital devicesd. information systems and (6, 1) is a has a slope of which is parallel to the line and The line that contains the points Use slopes to show that the quadrilateral with vertices at (4, 9), parallelogram. The line that contains the points (4, 9) and that contains the points 1 ,3 has a slope of 1 2 (Type integers or simplified fractions.) which is parallel to the line that contains the points Therefore, the quadrilateral is a parallelogram. - How did Humanism influence the art and literature of the Renaissance? Please include two examples of each.-How were the effects of disease on Europe during the Black Plague similar to its effects on the Americas during the Spanish conquest? How did they differ?- How did the Hundred Years War start? What led to the French turn-around and eventual victory in the conflict? On a strange railway line, there is just one infinitely long track, so overtaking is impossible. Any time a train catches up to the one in front of it, they link up to form a single train moving at the speed of the slower train. At first, there are three equally spaced trains, each moving at a different speed. A particle starts moving from the point (2, 1,0) with velocity given by v(t) = (2t, 2t - 1,2-4t), where t 0. (a) (3 points) Find the particle's position at any time t. (b) (4 points) What is the cosine of the angle between the particle's velocity and acceleration vectors when the particle is at the point (6,3,-4)? (c) (3 points) At what time(s) does the particle reach its minimum speed? what term describes the water-attracting head of a surfactant molecule please solveIf g(x, y)=-xy? +et, x=rcos e , and y=r sine, find in terms of rand e. or What effect does a diet rich in grains have on microbial populations? a. Decreases pH b. Increases pH c. Neutralizes the basic environment d. Buffers the acidic environment Calculate the integral of f(x,y)=9xf(x,y)=9x over the region DDbounded above by y=x(2x)y=x(2x) and below byx=y(2y)x=y(2y).Hint: Apply the quadratic formula to the lower boundary curve tEntered Answer Preview Result Message 1 x+1 V 9*[(1/2)*(x^2)*((2-x)^2]-[([1-sqrt(- x+1)]^2)/2]] (=12 .j? _ (1-772+0) 3 incorrect Your answer isn't a number (it looks like a formula that retu = e (a) The domain of f(x, y) = e =1/(z+y?) excludes (0,0). How should f be defined at (0,0) to make it continuous there? I.e., for what value k is the function g(x,y) = {f,,y); kg if (x, y) = (0,0) Find the area of the surface given by r(u,v)=4cosvi+4sinvj+u2k, over R, where R is the rectangle in uv-plane with 0u4 and 0v2.