The given **differential equation** is [tex]r^2yy - 2r^3e^{1/r} = 0[/tex]. By solving this **equation**, we can find the solution for y with the initial condition y(1) = 2.

To solve the differential equation, we can use the method of separation of **variables**. We start by rewriting the equation as [tex]r^2yy - 2r^3e^{1/r} = 0[/tex]. Then, we rearrange the equation as [tex]r^2dy/dx - 2r^3e^{1/r} = 0[/tex].

Next, we separate the variables by dividing both sides by r² and multiplying by dx: (dy/dx) - (2re^(1/r))/r² = 0. Now, we **integrate **both sides with respect to x, giving us ∫(dy/dx) dx - ∫(2re^(1/r))/r² dx = ∫0 dx.

The integral of **dy/dx** with respect to x is simply y, so the equation becomes y - ∫(2r*e^(1/r))/r² dx = C, where C is the constant of integration.

To evaluate the integral, we need to simplify the **expression **(2r*e^(1/r))/r². We can rewrite it as 2e^(1/r)/r. The integral of 2e^(1/r)/r with respect to r is not straightforward, and it does not have a closed-form solution in terms of elementary functions.

Therefore, we need to approximate the solution numerically or by using approximation techniques. The initial condition y(1) = 2 can be used to determine the constant C and obtain a specific solution.

Learn more about **differential equation **here:

https://brainly.com/question/25731911

#SPJ11

1.

What is the measure of one interior angle of a regular nonagon?

2. How many sides does a regular n-gon have if the measure of

one interior angle is 165?

3. The expressions -2x + 41 and 7x - 40 re

The measure of one interior **angle **of a regular nonagon (a polygon with nine sides) can be found using the formula: (n-2) * 180° / n, where n represents the number of sides of the **polygon**.

Applying this formula to a nonagon, we have (9-2) * 180° / 9 = 140°. Therefore, each interior angle of a regular nonagon measures 140°.

To determine the number of sides in a regular polygon (n-gon) when the measure of one **interior **angle is given, we can use the formula: n = 360° / x, where x represents the measure of one interior angle. Applying this formula to a given interior angle of 165°, we have n = 360° / 165° ≈ 2.18. Since the number of sides must be a whole number, we round the result down to 2. Hence, a regular **polygon **with an interior angle measuring 165° has two sides, which is essentially a line segment.

The expressions -2x + 41 and 7x - 40 represent **algebraic **expressions involving the variable x. These expressions can be simplified or evaluated further depending on the context or purpose.

The expression -2x + 41 represents a linear equation where the **coefficient **of x is -2 and the constant term is 41. It can be simplified or manipulated by combining like terms or solving for x depending on the given conditions or problem.

The expression 7x - 40 also represents a linear equation where the coefficient of x is 7 and the **constant **term is -40. Similar to the previous expression, it can be simplified, solved, or used in various mathematical operations based on the specific requirements of the problem at hand.

In summary, the expressions -2x + 41 and 7x - 40 are algebraic expressions involving the variable x. They can be simplified, solved, or used in mathematical **operations **based on the specific problem or context in which they are presented.

To learn more about **polygon** click here:

brainly.com/question/23846997

#SPJ11

Evaluate See F. Ē. dr where F = (42, – 3y, – 4.c), and C is given by (, - F(t) = (t, sin(t), cos(t)), 0

The evaluation of ∫ F · dr, where F = (4, -3y, -4z) and C is given by r(t) = (t, sin(t), cos(t)), 0 ≤ t ≤ π, is [84, 2 - cos(t), -4sin(t)] evaluated at the endpoints of the **curve** C.

To evaluate the line **integral**, we need to parameterize the curve C and compute the dot product between the vector field F and the tangent vector dr/dt. Let's consider the parameterization r(t) = (t, sin(t), cos(t)), where t ranges from 0 to π.

Taking the derivative of r(t), we have dr/dt = (1, cos(t), -sin(t)). Now, we can compute the dot product F · (dr/dt) as follows:

F · (dr/dt) = (4, -3y, -4z) · (1, cos(t), -sin(t)) = 4(1) + (-3sin(t))cos(t) + (-4cos(t))(-sin(t))

Simplifying further, we get F · (dr/dt) = 4 - 3sin(t)cos(t) + 4sin(t)cos(t) = 4.

Since the dot product is constant, the value of the **line integral** ∫ F · dr over the curve C is simply the dot product (4) multiplied by the length of the curve C, which is π - 0 = π.

Therefore, the evaluation of ∫ F · dr over the **curve** C is π times the constant vector [84, 2 - cos(t), -4sin(t)], which gives the final answer as [84π, 2π - 1, -4πsin(t)] evaluated at the endpoints of the curve C.

To learn more about **Line integral**, visit:

https://brainly.com/question/30763905

#SPJ11

1 pt 1 If R is the parallelogram enclosed by these lines: - 3 - 6y = 0, -2 - by = 5, 4x - 2y = 1 and 4a - 2y = 8 then: 1, 2d ЈА -х — бу dA 4.0 - 2y R

The expression 1, 2d ЈА -х — бу dA 4.0 - 2y represents the line integral over the **parallelogram **R enclosed by the given lines. The second paragraph will provide a detailed explanation of the **expression**.

The expression 1, 2d ЈА -х — бу dA 4.0 - 2y represents a line **integral **over the parallelogram R. The notation 1, 2d indicates that the integral is taken over a **curve **or path. In this case, the curve or path is defined by the lines -3 - 6y = 0, -2 - by = 5, 4x - 2y = 1, and 4a - 2y = 8 that enclose the parallelogram R.

To evaluate the line integral, we need to **parameterize **the curve or path. This involves expressing the x and y coordinates in terms of a parameter, such as t. Once the curve is parameterized, we can substitute the parameterized values into the expression 1, 2d ЈА -х — бу dA 4.0 - 2y and **integrate **over the appropriate range.

However, the given expression 1, 2d ЈА -х — бу dA 4.0 - 2y is incomplete, as the limits of integration and the parameterization of the curve are not specified. Without additional **information**, it is not possible to evaluate the line integral or provide further explanation.

Learn more about **parallelogram **here:

https://brainly.com/question/30577516

#SPJ11

2. Consider f(x)=zVO. a) Find the derivative of the function. b) Find the slope of the tangent line to the graph at x = 4. c) Find the equation of the tangent line to the graph at x = 4.

(a) **derivative **of the given function is f'(x) = O + (d/dxZ)O (b) Slope of the tangent line at x=4 is f'(4) = O + (d/dxZ)O (c) equation of the tangent line to the **graph **at x = 4 is y = f'(4) * x + (f(4) - 4f'(4)).

Given the function: f(x) = zVOTo find: a) Derivative of the function, b) Slope of the tangent line to the graph at x = 4, c) Equation of the tangent line to the graph at x = 4.

a) The **derivative** of the given function f(x) = zVO is given by;f(x) = zVO ∴ f'(x) = (zVO)'

Differentiating both sides w.r.t x= d/dx (zVO) [using the chain rule]=

[tex]zV(d/dxO) + O(d/dxV) + (d/dxZ)O (using the **product rule**)= z(0) + O(1) + (d/dxZ)O[/tex](using the derivative of O, which is 0) ∴

[tex]f'(x) = O + (d/dxZ)O= O + O(d/dxZ) [using the product rule]= O + (d/dxZ)O= O + (d/dxZ)O [as (d/dxZ)[/tex] is the derivative of Z w.r.t x]

Thus, the derivative of the given function is f'(x) = O + [tex](d/dxZ)O[/tex]

b) Slope of the tangent line to the graph at x = 4= f'(4) [as we need the slope of the tangent line at x=4]= O + (d/dxZ)O [putting x = 4]∴ Slope of the tangent line at x=4 is f'(4) = O + (d/dxZ)O

c) Equation of the tangent line to the graph at x = 4The point is (4, f(4)) on the curve whose tangent we need to find. The slope of the tangent we have already found in part

(b).Let the equation of the** tangent line** be given by: y = mx + c, where m is the slope of the tangent, and c is the y-intercept of the tangent.To find c, we need to substitute the values of (x, y) and m in the equation of the tangent.∴ y = mx + c... (1)Putting x=4, y= f(4) and m=f'(4) in (1), we get:[tex]f(4) = f'(4) * 4 + c∴ c = f(4) - 4f'(4)[/tex]

Hence, the equation of the tangent line to the graph at x = 4 is:[tex]y = f'(4) * x + (f(4) - 4f'(4))[/tex]

Thus, the derivative of the function f(x) = zVO is O + (d/dxZ)O. The** slope **of the tangent line to the graph at x = 4 is f'(4) = O + (d/dxZ)O. And, the equation of the tangent line to the graph at x = 4 is y = f'(4) * x + (f(4) - 4f'(4)).

Learn more about** derivative** here:

https://brainly.com/question/29166048

#SPJ11

(ii) Prove the identity (2 – 2 cos 0) (sin + sin 20 + sin 30) = -(cos 40 - 1) sin + sin 40 (cos - 1). (iii)Find the roots of f(x) = x3 – 15x – 4 using the trigonometric formula. =

The given task involves proving an identity and finding the roots of a **cubic equation** using the **trigonometric **formula.

(i) To prove the identity (2 – 2 cos θ) (sin θ + sin 2θ + sin 3θ) = -(cos 4θ - 1) sin θ + sin 4θ (cos θ - 1), you can start by expanding both sides of the equation using trigonometric identities and simplifying the expressions. Manipulating the **expressions **and applying trigonometric identities will allow you to show that both sides of the **equation **are equivalent.

(ii) To find the roots of the cubic equation f(x) = x^3 – 15x – 4 using the trigonometric formula, you can apply the method of trigonometric substitution. By substituting x = a cos θ, where a is a constant, into the equation and **simplifying**, you will obtain a trigonometric equation in terms of θ. Solving this equation for θ will give you the values of θ corresponding to the roots of the original cubic equation. Substituting these **values **back into the equation x = a cos θ will give you the roots of the cubic equation.

Learn more about **cubic equation **here:

https://brainly.com/question/30923012

#SPJ11

can

you please answer question 2 and 3 thank you!

Question 2 0/1 pt 3 19 0 Details Determine the volume of the solid generated by rotating function f(x) = √36-2² about the z-axis on the interval [4, 6]. Enter an exact answer (it will be a multiple

The exact answer to the given integral is -40π * √20/3. To determine the **volume** of the solid generated by rotating the function f(x) = √(36 - 2x²) about the z-axis on the interval [4, 6], using method of **cylindrical shells.**

The formula for the volume of a solid generated by rotating a function f(x) about the z-axis on the interval [a, b] is given by:

V = ∫[a, b] 2πx * f(x) * dx

In this case, f(x) = √(36 - 2x²), and we want to **integrate** over the interval [4, 6]. Therefore, the volume can be calculated as:

V = ∫[4, 6] 2πx * √(36 - 2x²) * dx

Using the **trapezoidal rule**, we can approximate the value of the integral as follows:

V ≈ Δx/2 * [f(x₀) + 2f(x₁) + 2f(x₂) + ... + 2f(xₙ-₁) + f(xₙ)],

where Δx = (b - a)/n is the width of each subinterval, a and b are the limits of integration (4 and 6 in this case), n is the number of subintervals, and f(x) represents the integrand.

Let's apply the trapezoidal rule to approximate the value of the integral. We'll use a reasonable number of **subintervals**, such as n = 1000, for a more accurate approximation.

V ≈ Δx/2 * [f(x₀) + 2f(x₁) + 2f(x₂) + ... + 2f(xₙ-₁) + f(xₙ)],

where Δx = (6 - 4)/1000 = 0.002.

Now we can calculate the approximation using this formula and the given integrand:

V ≈ 0.002/2 * [2π(4) * √(36 - 2(4)²) + 2π(4.002) * √(36 - 2(4.002)²) + ... + 2π(5.998) * √(36 - 2(5.998)²) + 2π(6) * √(36 - 2(6)²) + f(6)],

where f(x) = 2πx * √(36 - 2x²).

To calculate the exact answer for the given integral, we need to evaluate the definite integral of the **integrand** **function** f(x) over the interval [4, 6].

The integrand function is:

f(x) = 2πx * √(36 - 2x²)

To find the exact answer, we integrate f(x) with respect to x over the interval [4, 6]:

∫[4, 6] f(x) dx = ∫[4, 6] (2πx * √(36 - 2x²)) dx

To integrate this function, we can use various integration techniques, such as substitution or integration by parts. Let's use the substitution method to solve this integral.

Let u = 36 - 2x². Then, du/dx = -4x, and solving for dx, we get dx = du/(-4x).

When x = 4, u = 36 - 2(4)² = 20.

When x = 6, u = 36 - 2(6)² = 0.

Substituting the values and rewriting the **integral**, we have:

∫[20, 0] (2πx * √u) * (du/(-4x))

Simplifying, the x term cancels out:

∫[20, 0] -π * √u du

Now we integrate the function √u with respect to u:

∫[20, 0] -π * √u du = -π * [(2/3)[tex]u^{(3/2)[/tex]]|[20, 0]

Evaluating at the limits:

= -π * [(2/3)(0)^(3/2) - (2/3)(20)^(3/2)]

= -π * [(2/3)(0) - (2/3)(20 * √20)]

= -π * (2/3) * (20 * √20)

= -40π * √20/3

Therefore, the exact answer to the integral is -40π * √20/3.

To learn more about **volume **visit:

brainly.com/question/23705404

#SPJ11

A campus newspaper plans a major article on spring break destinations. The reporters select a simple random sample of three resorts at each destination and intend to call those resorts to ask about their attitudes toward groups of students as guests. Here are the resorts listed in one city. 1 Aloha Kai 2 Anchor Down 3 Banana Bay 4 Ramada 5 Captiva 6 Casa del Mar 7 Coconuts 8 Palm Tree A numerical label is given to each resort. They start at the line 108 of the random digits table. What are the selected hotels?

To determine the selected hotels for the campus newspaper's article on spring break destinations, a **simple random sample** of three resorts needs to be chosen from the given list. The resorts are numbered from 1 to 8, and the selection process starts at line** 108 of the random digits table.**

To select the hotels, we can use the **random digits table** and the given list of resorts. Starting at line 108 of the random digits table, we can generate three random numbers to correspond to the numerical labels of the resorts. For each digit, we identify the corresponding resort in the list.

For example, if the** first random digit is 3**, it corresponds to the resort numbered 3 in the list (Banana Bay). The second random digit might be 7, which corresponds to resort number 7 (Coconuts). Similarly, the third random digit might be 2, corresponding to **resort number 2** (Anchor Down).

By repeating this process for each of the three resorts, we can determine the **selected hotels** for the article on spring break destinations. The specific hotels chosen will depend on the random digits generated from the table and their corresponding numerical labels in the list.

Learn more about **random digits table **here:

https://brainly.com/question/31327687

#SPJ11

Consider F and C below. F(x, y) = Sxy 1 + 9x2yj Cr(t) =

Without additional information, it is not possible to provide a more **detailed analysis** or calculate the exact values of the **integrals**.

The given **functions** are F(x, y) = ∫xy(1 + 9x^2y) dy and C(r, t) = ∮ r dt.

The function F(x, y) represents the integral of xy(1 + 9x^2y) with respect to y. This means that for each fixed value of x, we** integrate** the expression xy(1 + 9x^2y) with respect to y. The result is a new function that depends only on x. The integration process involves finding the antiderivative of the** integrand **and applying the fundamental theorem of calculus.

On the other hand, the function C(r, t) represents the line integral of r with respect to t. Here, r is a **vector** function that describes a curve in space. The line integral of r with respect to t involves evaluating the dot product between the vector r and the** differential element** dt along the curve. This type of integral is often used to calculate work or circulation along a curve.

In both cases, the expressions represent mathematical operations involving integration. The main difference is that F(x, y) represents a double integral, where we integrate with respect to one **variable** while treating the other as a constant. This results in a new function that depends on the variable of integration. On the other hand, C(r, t) represents a line integral along a **curve**, which involves integrating a vector function along a specific path.

To fully understand and evaluate these functions, we would need additional information such as the** limits of integration **or the specific curves or paths involved. Without this information, it is not possible to provide a more detailed analysis or calculate the exact values of the integrals.

To learn more about **function**, click here: brainly.com/question/11624077

#SPJ11

3

Enter the correct answer in the box.

What is the quotient of

√0

(0) 101

of

Vo q

15a

12ath

+

1

X

Assume that the denominator does not equal zero.

11

< > ≤ 2

B

a

A

BE

H

P

9

8

sin

CSC

-1

cos tan sin cos

sec cot log log

The **quotient** of the **expression** (15a⁴b³) / (12a²b) is (5a²b²) / 4.

Given is an **expression** 15a⁴b³/12a²b, we need to find the quotient, assuming the **denominator** no equal to zero.

To find the quotient of the expression (15a⁴b³) / (12a²b), we can simplify it by canceling out common factors in the numerator and denominator:

First, let's simplify the coefficients:

15 and 12 can both be **divided** by 3:

(15a⁴b³) / (12a²b) = (5a⁴b³) / (4a²b).

Next, let's simplify the **variables**:

a⁴ **divided** by a² is a² (subtract the exponents), and b³ divided by b is b² (subtract the exponents):

(5a⁴b³) / (4a²b) = (5a²b²) / 4.

Therefore, the **quotient** of the **expression** (15a⁴b³) / (12a²b) is (5a²b²) / 4.

Learn more about **expression **click;

https://brainly.com/question/28170201

#SPJ1

The traffic flow rate (cars per hour) across an intersection is r(t) = 500 + 900t - 270+", where t is in hours, and t=0 is 6am. How many cars pass through the intersection between 6 am and 7 am?

To find the number of cars that pass through the intersection between 6 am and 7 am, we need to calculate the **integral** of the traffic flow rate function r(t) over that time interval.

Given the traffic flow rate **function**:

r(t) = 500 + 900t - 270t²

To find the number of cars passing through the **intersection** between 6 am and 7 am, we integrate r(t) with respect to t over the interval [0, 1]:

∫[0,1] (500 + 900t - 270t²) dt

Evaluating this **integral** will give us the desired result:

∫[0,1] 500 dt + ∫[0,1] 900t dt - ∫[0,1] 270t² dt

The first term integrates to 500t evaluated from 0 to 1, which gives us 500(1) - 500(0) = 500.

The second term integrates to 450t² **evaluated** from 0 to 1, which gives us 450(1)² - 450(0)² = 450.

The third term integrates to 90t³ evaluated from 0 to 1, which gives us 90(1)³ - 90(0)³ = 90.

Adding up these values, we get:

500 + 450 + 90 = 1040

Therefore, the number of cars that pass through the intersection between 6 am and 7 am is 1040.

learn more about **integral **here:

https://brainly.com/question/31059545

#SPJ11

Four thousand dollars is deposited into a savings account at 5.5% interest compounded continuously. (a) What is the formula for A(t), the balance after t years? (b) What differential equation is satisfied by A(t), the balance after t years? (c) How much money will be in the account after 2 years? (d) When will the balance reach $8000? (e) How fast is the balance growing when it reaches $8000? The population of an aquatic species in a certain body of water is approximated by the logistic function 30,000 G(t)= where t is measured in years. 1+13 -0.671 Calculate the growth rate after 4 years. The growth rate in 4 years is (Do not round until the final answer. Then round to the nearest whole number as needed.) SCOOD 30,000 20,000 10,000 0 0 4 8 12 16 20 BE LE OU NI - GHI Consider the cost function C(x)=Bx 16x 18 (thousand dollars) a) What is the marginal cost at production level x47 b) Use the marginal cost at x 4 to estimate the cost of producing 4.50 units c) Let R(x)-x54x+53 denote the revenue in thousands of dollars generated from the production of x units. What is the break-even point? (Recall that the break even pont is when there is d) Compute and compare the marginal revenue and marginal cost at the break-even point. Should the company increase production beyond the break-even poet -CD

(a) The formula for A(t), the **balance** after t years = 4000 * e^(0.055t)

(b) The differential equation satisfied by A(t) is dA/dt = r * A(t)

(c) The balance after 2 years is approximately $4531.16

(d) The balance will reach $8000 after approximately 12.62 years.

(e) The balance is growing at a rate of approximately $440 per year when it reaches $8000.

(a) The formula for A(t), the balance after t years, in a continuously **compounded interest** scenario can be given by:

A(t) = P * e^(rt)

where A(t) is the balance after t years, P is the initial deposit (principal), r is the interest rate, and e is the base of the natural logarithm.

In this case, P = $4000 and r = 5.5% = 0.055.

Therefore A(t) = 4000 * e^(0.055t)

(b) The differential equation satisfied by A(t) can be obtained by taking the **derivative** of A(t) with respect to t:

dA/dt = P * r * e^(rt)

Since r is constant, we can simplify it further:

dA/dt = r * A(t)

(c) To obtain the balance after 2 years, we can substitute t = 2 into the formula for A(t):

A(2) = 4000 * e^(0.055 * 2) ≈ $4531.16

Therefore, the balance after 2 years is approximately $4531.16.

(d) To obtain when the balance reaches $8000, we can set A(t) equal to $8000 and solve for t:

8000 = 4000 * e^(0.055t)

Dividing both sides by 4000 and taking the natural logarithm of both sides, we get:

ln(2) = 0.055t

∴ t = ln(2) / 0.055 ≈ 12.62 years

Therefore, the balance will reach $8000 after approximately 12.62 years.

(e) To obtain how fast the balance is growing when it reaches $8000, we can take the derivative of A(t) with respect to t and evaluate it at t = 12.62:

dA/dt = r * A(t)

dA/dt = 0.055 * A(12.62)

Substituting the value of A(12.62) as $8000:

dA/dt ≈ 0.055 * 8000 ≈ $440 per year

Therefore, the balance is growing at a rate of approximately $440 per year when it reaches $8000.

To know more about **balance **refer here:

https://brainly.com/question/27154367#

#SPJ11

Find the maximum and minimum values of the function f(x, y) = 2x² + 3y2 – 4x – 5 on the domain x2 + y2 < 196. The maximum value of f(x, y) is attained at The minimum value of f(x, y) is attained

We must optimise the function within the provided **constraint **to get the maximum and minimum values of the function f(x, y) = **2x2 + 3y2 - 4x - 5 on **the domain x2 + y2 196.

We must take the partial **derivatives **of f(x, y) with respect to x and y and set them to zero in order to determine the critical points:

**F/y = 6y = 0, and F/x = 4x - 4 = 0.**

4x - 4 = 0, which results from the first equation, gives x = 1.

Y = 0 is the result of the **second **equation, 6y = 0.

As a result, (1, 0) is the critical point.

The limits of the domain **x2 + y2 196**, which is a circle with a radius of 14, must then be examined.

f(x, y) evaluation at the limits of

learn more about **constraint **here :

https://brainly.com/question/17156848

#SPJ11

A set of equations is given below: Equation A: y = x + 1 Equation B: y = 4x + 5 Which of the following steps can be used to find the solution to the set of equations? (4 points) a x + 1 = 4x + 5 b x = 4x + 5 c x + 1 = 4x d x + 5 = 4x + 1

Option A. x + 1 = 4x + 5 can be used to find the** solution** to the set of **equations**

To find the **solution** to the set of equations, we need to find the value of x that satisfies both equations.

Given the equations:

Equation A: y = x + 1

Equation B: y = 4x + 5

To find the value of x, we can equate the **right sides** of the equations (since they both equal y).

So, x + 1 = 4x + 5

Looking at the options:

a) x + 1 = 4x + 5: This equation is **equivalent** to the one we obtained above by equating the right sides of the equations. Therefore, this step can be used to find the solution.

Read more on **equations **here:https://brainly.com/question/2972832

#SPJ1

4. You just got a dog and need to put up a fence around your yard. Your yard has a length of

3xy²+2y-8 and a width of -2xy2 + 3x - 2. Write an expression that would be used to find

how much fencing you need for your yard.

An** expression** that would be used to find how much fencing you need for your** yard **is 2xy² + 6x + 4y - 20

Note that the fence take the shape of a** rectangle**

The formula that is used for calculating the **perimeter** of a rectangle is expressed with the equation;

P = 2(l + w)

Such that the parameters of the formula are given as;

P is the perimeter of the rectanglel is the length of the rectanglew is the width of the rectangleSubstitute the values, we have;

Perimeter = 2(3xy²+2y-8 + -2xy² + 3x - 2)

collect the like terms

Perimeter = 2(xy² + 3x + 2y - 10)

expand the bracket

Perimeter = 2xy² + 6x + 4y - 20

Learn more about **rectangles **at: https://brainly.com/question/25292087

#SPJ1

Which statement accurately describes the scatterplot?

A. The points seem to be clustered around a line.

B. There are two outliers.

C. There are two distinct clusters

B. There is one cluster

**Answer: Option C (There are two distinct clusters)**

**Step-by-step explanation:**

the numbers of hours worked (per week) by 400 statistics students are shown below. number of hours frequency 0 - 9 20 10 - 19 80 20 - 29 200 30 - 39 100 the cumulative percent frequency for the class of 30 - 39 is

The cumulative percent **frequency **for the class of 30 - 39 hours worked per week, among 400 **statistics **students, is 70%.

To find the cumulative percent frequency for the class of 30 - 39 hours worked per week, we need to calculate the cumulative frequency first. The cumulative frequency **represents **the sum of frequencies up to a certain class.

In this case, we start with the frequency of the first class, which is 20. Then we add the frequency of the second class, which is 80, to get a cumulative frequency of 100. Next, we add the frequency of the third **class**, which is 200, to get a cumulative frequency of 300. Finally, we add the frequency of the fourth class, which is 100, to get a cumulative frequency of 400.

To calculate the cumulative **percent **frequency, we divide the cumulative frequency for the class of 30 - 39 (which is 300) by the total number of observations (400) and multiply by 100. This gives us (300/400) * 100 = 75%. Therefore, the **cumulative **percent frequency for the class of 30 - 39 is 75%.

Learn more about** statistics** here:

https://brainly.com/question/32201536

#SPJ11

the instructor of a discrete mathematics class gave two tests. forty percent of the students received an a on the first test and 32% of the students received a's on both tests. what percent of the students who received a's on the first test also received a's on the second test?

Based on the **information **provided, 32% of the students received A's on both the first and **second tests**.

Let's assume there are 100 students in the class for **simplicity**. According to the given information, 40% of the students received an A on the first test. This means that 40 students got an A on the first test. Out of these 40 students, 32% also received an A on the second test. To calculate the number of students who received A's on **both tests,** we take 32% of the 40 students who got an A on the first test.

This gives us (32/100) * 40 = 12.8 students. Since we can't have a fraction of a student, we round down to the nearest **whole number**. Therefore, approximately 12 students received A's on both the first and second tests, out of the 40 students who received an A on the first test. To express this as a **percentage**, we divide the number of students who received A's on both tests (12) by the total number of students who received an A on the first test (40) and multiply by 100.

This gives us (12/40) * 100 = 30%. Hence, approximately 30% of the students who received A's on the first test also** received** A's on the second test.

Learn more about** whole number** here:

https://brainly.com/question/29766862

#SPJ11

What is the slope of the tangent line to the graph of y = e* -e* at the point (0, 0) ?

The slope of the** tangent line **to the graph of y = e^x - e^(-x) at the **point **(0, 0) is 2.

To find the slope of **the tangent line **to the graph of the function y = e^x - e^(-x) at the point (0, 0), we need to take the derivative of the function and evaluate it at x = 0.

Given the function y = e^x - e^(-x), we can** differentiate **it using the rules of differentiation. The derivative of e^x is simply e^x, and the derivative of e^(-x) is -e^(-x).

**Taking **the derivative of y with respect to x, we get:

dy/dx = d/dx (e^x - e^(-x))

= e^x - (-e^(-x))

= e^x + e^(-x)

Now, we evaluate** the derivative** at x = 0:

dy/dx|_(x=0) = e^0 + e^(-0)

= 1 + 1

= 2

Learn more about ** tangent line **here:

https://brainly.com/question/14405926

#SPJ11

suppose that a 92 %confidence interval for a population proportion p is to be calculated based on a sample of 250 individuals. the multiplier to use is (give your answer rounded to 2 decimal places)

The **multiplier** to use in order to calculate the 92% **confidence interval** for a population proportion p, based on a sample of 250 individuals, is 1.75 (rounded to 2 decimal places).

A confidence interval is a statistical tool for estimating the possible range of values that a population parameter may take.

The process of constructing a confidence interval involves **sampling **a smaller subset of the population known as a sample, calculating a test statistic based on the sample data, and then using the test statistic to establish the interval limits.

A population is a group of individuals or objects that possess one or more characteristics of **interest **to the researcher and are under investigation in a study.

A sample is a subset of the population that is selected to participate in a study in order to obtain information that is representative of the population as a whole.

The formula for calculating the multiplier is as follows:

Multiplier = (1 - confidence level) / 2 + confidence level

Where the confidence level is the level of confidence expressed as a percentage divided by 100.

Therefore, for this question, we have:

confidence level = 92% = 0.92

Multiplier = (1 - 0.92) / 2 + 0.92= 0.04 / 2 + 0.92= 0.02 + 0.92= 0.94

Rounded to 2 decimal places, the multiplier to use in order to calculate the 92% confidence interval for a **population** proportion p, based on a sample of 250 individuals, is 1.75.

To know more about **confidence interval, **visit:

**https://brainly.com/question/20309162**

#SPJ11

(1 point) The temperature at a point (x, y, z) is given by T(x, y, z)= 1300e 1300e-x²-2y²-z² where T is measured in °C and x, y, and z in meters. 1. Find the rate of change of the temperature at at the point P(2, -2, 2) in the direction toward the point Q(3,-4, 3). Answer: D-f(2, -2, 2) = PQ 2. In what direction does the temperature increase fastest at P? Answer: 3. Find the maximum rate of increase at P

To find the rate of change of **temperature** at point P(2, -2, 2) in the direction toward point Q(3, -4, 3).

we need to calculate the **gradient** of the temperature function at point P and then find its projection onto the direction vector PQ.

1. Calculate the gradient of the temperature function:

The gradient of T(x, y, z) is given by:

∇T = (∂T/∂x)i + (∂T/∂y)j + (∂T/∂z)k

Taking **partial** **derivatives** of T(x, y, z) with respect to x, y, and z:

∂T/∂x = -2600xe^(-x^2-2y^2-z^2)

∂T/∂y = -5200ye^(-x^2-2y^2-z^2)

∂T/∂z = -2600ze^(-x^2-2y^2-z^2)

Evaluate the partial derivatives at point P(2, -2, 2):

∂T/∂x = -5200e^(-8)

∂T/∂y = 10400e^(-8)

∂T/∂z = -5200e^(-8)

2. Calculate the direction vector PQ:

PQ = Q - P = (3 - 2)i + (-4 - (-2))j + (3 - 2)k = i - 2j + k

3. Find the rate of change of temperature at point P in the direction toward point Q:

D-f(2, -2, 2) = ∇T · PQ

= (∂T/∂x)i + (∂T/∂y)j + (∂T/∂z)k · (i - 2j + k)

= -5200e^(-8)i + 10400e^(-8)j - 5200e^(-8)k · (i - 2j + k)

= -5200e^(-8) + 20800e^(-8) + (-5200e^(-8))

= 10400e^(-8)

Therefore, the rate of change of temperature at point P(2, -2, 2) in the direction toward point Q(3, -4, 3) is 10400e^(-8).

2. To find the **direction** in which the temperature increases fastest at point P, we need to find the direction vector of the gradient at point P.

At point P(2, -2, 2):

∇T = -5200e^(-8)i + 10400e^(-8)j - 5200e^(-8)k

So, the direction in which the temperature increases fastest at point P is (-5200e^(-8))i + (10400e^(-8))j - (5200e^(-8))k.

3. To find the **maximum** rate of increase at point P, we need to calculate the magnitude of the gradient at point P.

At point P(2, -2, 2):

∇T = -5200e^(-8)i + 10400e^(-8)j - 5200e^(-8)k

The **magnitude** of ∇T is given by:

|∇T| = sqrt((-5200e^(-8))^2 + (10400e^(-8))^2 + (-5200e^(-8))^2)

= sqrt(270400

Visit here to learn more about **partial** **derivatives:**

**brainly.com/question/6732578**

#SPJ11

Using the Laplace transform, we find that the solution of the initial-value problem y + 4y= 040) = 2 is y=1 4+2 0-4 False Truc

Using the **Laplace **transform, the solution to the initial-value problem y' + 4y = 0, y(0) = 2 is given by y = 1/(s + 4), where s is the Laplace **variable**.

The Laplace transform is a powerful tool used to solve linear ordinary differential equations with initial conditions. In this case, the given initial-value problem is y' + 4y = 0, with the **initial **condition y(0) = 2. To solve this problem using the Laplace transform.

After applying the Laplace transform, we can **manipulate **the algebraic equation to solve for the Laplace transform of y, denoted as Y(s). Once we have Y(s), we can use inverse Laplace transform techniques to find the solution y(t) in the time **domain**. In this case, the solution to the initial-value problem is y(t) = 1/(s + 4). This is the Laplace transform **inverse **of Y(s). Therefore, the statement "y = 1/(s + 4)" is true, and the statement "y = 1/(s + 4) - 4" is false.

Learn more about **variable **here:

https://brainly.com/question/29583350

#SPJ11

Compute the imit (x²-1 Exel Im f(x), where f(x) = X-1 |3x+1, FX21 a. None of the other choices is correct. 06.2 O c The limit does not exist d.-1 Oe3

The **limit** of (x^2 - 1)/(√(3x + 1) - 1) as x **approaches** 2 does not exist.

To evaluate the **limit**, we can **substitute** the value of x into the given expression and see if it converges to a **finite** **value**. Plugging in x = 2, we get:

[(2^2) - 1] / [√(3(2) + 1) - 1]

= (4 - 1) / (√(6 + 1) - 1)

= 3 / (√7 - 1)

Since the denominator contains a radical term, we need to rationalize it. Multiplying both the **numerator** and **denominator** by the conjugate of the denominator (√7 + 1), we have:

3 / (√7 - 1) * (√7 + 1) / (√7 + 1)

= (3 * (√7 + 1)) / ((√7 - 1) * (√7 + 1))

= (3√7 + 3) / (7 - 1)

= (3√7 + 3) / 6

Therefore, the value of the expression at x = 2 is (3√7 + 3) / 6. However, this value does not represent the limit of the **expression** as x approaches 2, as it only gives the value at that specific point.

To determine the limit, we need to investigate the behavior of the expression as x approaches 2 from both sides.

By analyzing the behavior of the numerator and denominator separately, we find that as x approaches 2, the numerator approaches a finite value, but the denominator approaches zero. Since we have an indeterminate form of 0/0, the limit does not exist.

Learn more about **finite** **value **here:

https://brainly.com/question/5004992

#SPJ11

please help asap! for both will

give like!thank you!

Find the critical point(s) for f(x,y) = 4x² + 2y² - 8x-8y-1. For each point determine whether it is a local maximum, a local minimum, a saddle point, or none of these. Use the methods of this class.

The **critical** **point**(s) for the function [tex]f(x, y) = 4x^{2} + 2y^{2} - 8x - 8y - 1[/tex]are (1, 2) and (1, -2). The point (1, 2) is a local minimum, while the point (1, -2) is a **local maximum**.

To find the **critical points**, we need to take the partial derivatives of the **function** with **respect to x** and y and set them equal to zero. Let's calculate the derivatives and solve for x and y:

∂f/∂x = [tex]8x - 8 = 0 = > x = 1[/tex]

∂f/∂y = [tex]4y - 8 = 0 = > y = 2, y = -2[/tex]

So, we have two critical points: (1, 2) and (1, -2).

To determine the nature of these critical points, we can use the second partial derivative test. We need to calculate the second partial derivatives and evaluate them at each critical point:

∂²f/∂x² = 8

∂²f/∂y² = 4

∂²f/∂x∂y = 0 (since the mixed partial derivatives are equal)

Now, let's evaluate the **second partial derivatives** at each critical point:

At (1, 2):

∂²f/∂x² = 8 > 0,

∂²f/∂y² = 4 > 0,

∂²f/∂x∂y = 0.

Since ∂²f/∂x² > 0 and (∂²f/∂x²)(∂²f/∂y²) - (∂²f/∂x∂y)² > 0, the point (1, 2) is a local minimum.

At (1, -2):

∂²f/∂x² = 8 > 0,

∂²f/∂y² = 4 > 0,

∂²f/∂x∂y = 0.

Again, since ∂²f/∂x² > 0 and (∂²f/∂x²)(∂²f/∂y²) - (∂²f/∂x∂y)² > 0, the point (1, -2) is a local maximum.

Therefore, the critical point (1, 2) is a **local minimum** and the critical point (1, -2) is a local maximum for the function [tex]f(x, y) = 4x^{2} + 2y^{2} - 8x - 8y - 1[/tex].

Learn more about **critical points **here:

https://brainly.com/question/32077588

#SPJ11

9. do (cos 3x sin? 3x) = dc A. 6 sin 3x – 9 sin3x B. 6 sin 3x + 9 sinº 3.0 C. 9 sin 3x – 6 sinº 3x 9 D. 9 sin 3x + 6 sin? 3.x

The **simplified expression** is -(1/2)cos(9x).

None of the provided answer choices match the simplified form.

What is trigonometry?One of the most significant areas of mathematics, **trigonometry** has a wide range of applications. The study of how the sides and angles of a right-angle triangle relate to one another is essentially what the field of mathematics known as "trigonometry" is all about.

The expression (cos 3x sin² 3x) can be simplified using **trigonometric** **identities**. Let's break it down step by step:

(cos 3x sin² 3x)

Using the identity sin²θ = 1/2 - 1/2cos(2θ), we can rewrite sin² 3x as:

sin² 3x = 1/2 - 1/2cos(2(3x))

= 1/2 - 1/2cos(6x)

Now we can substitute this into the original **expression**:

(cos 3x sin² 3x) = cos 3x (1/2 - 1/2cos(6x))

Expanding the expression further:

cos 3x (1/2 - 1/2cos(6x)) = (1/2)cos 3x - (1/2)cos 3x cos(6x)

Now, let's simplify each term separately:

(1/2)cos 3x is a standalone term.

Next, we can use the identity cos α cos β = 1/2(cos(α + β) + cos(α - β)) to **simplify** the second term:

-(1/2)cos 3x cos(6x) = -(1/2)(cos(3x + 6x) + cos(3x - 6x))

= -(1/2)(cos(9x) + cos(-3x))

= -(1/2)(cos(9x) + cos(3x)) (cos(-θ) = cos θ)

**Combining** both terms:

(1/2)cos 3x - (1/2)cos 3x cos(6x) = (1/2)cos 3x - (1/2)(cos(9x) + cos(3x))

= (1/2)cos 3x - (1/2)cos(9x) - (1/2)cos(3x)

= (1/2)cos 3x - (1/2)cos(3x) - (1/2)cos(9x)

= 0 - (1/2)cos(9x)

= -(1/2)cos(9x)

Therefore, the **simplified expression** is -(1/2)cos(9x).

None of the provided answer choices match the simplified form.

Learn more about **trigonometry** on:

https://brainly.com/question/31614326

#SPJ4

Use implicit differentiation to find dy. dx In(y) - 9x In(x) = -4 - =

By implicit **differentiation **the value of dy. dx In(y) - 9x In(x) = -4 is

dy/dx = y * (9 * In(x) + 9)

To find the **derivative **of y with respect to x, we can use **implicit **differentiation on the given equation:

In(y) - 9x In(x) = -4

Let's differentiate both sides of the equation with **respect **to x:

d/dx(In(y)) - d/dx(9x In(x)) = d/dx(-4)

To differentiate **In(y)** with respect to x, we use the chain rule:

d/dx(In(y)) = (1/y) * dy/dx

To differentiate 9x In(x) with respect to x, we use the **product rule**:

d/dx(9x In(x)) = 9 * In(x) + 9x * (1/x)

**Simplifying **the expression:

(1/y) * dy/dx - 9 * In(x) - 9 = 0

**Rearranging **the terms:

(1/y) * dy/dx = 9 * In(x) + 9

Multiplying both **sides by y**:

dy/dx = y * (9 * In(x) + 9)

Since the given equation does not **explicitly **define y as a function of x, we cannot further simplify the **expression **for dy/dx.

Learn more about **Differentiation **at

brainly.com/question/8482371

#SPJ4

Complete Question:

Use implicit differentiation to find dy.

dx In(y) - 9x In(x) = -4

(b) Determine if the polynomial g(x) = 1 − 2x + x 2 is in the

span of the set T = {1 + x 2 , x2 − x, 3 − 2x}. Is span(T) =

P3(R)

We need to determine if the polynomial **g(x) = 1 − 2x + x^2 **is in the span of the set T = {1 + x^2, x^2 − x, 3 − 2x}, and if the span of T is equal to **P3(R).**

To check if **g(x)** is in the span of T, we need to determine if there exist constants a, b, and c such that g(x) can be written as a linear combination of the polynomials in T. By equating coefficients, we can set up a system of equations to solve for a, b, and c. If a solution exists, g(x) is in the span of T; otherwise, it is **not.**

If the span of T is equal to P3(R)**,** it means that any polynomial of **degree 3** or lower can be expressed as a linear combination of the polynomials in T. To verify this, we would need to show that for any **polynomial h(x**) of degree **3** or lower, there exist constants d, e, and f such that h(x) can be written as a linear combination of the polynomials in **T.**

By analyzing the coefficients and solving the system of equations, we can determine if** g(x)** is in the span of **T** and if** span(T) **is equal to **P3(R).**

Learn more about **polynomial: **brainly.com/question/1496352

#SPJ11

Use less than, equal to, or greater than to complete this statement: The measure of each exterior angle of a regular 10-gon is the measure of each exterior angle of a regular 7-gon.

a. equal to

b. greater than

c. less than

d. cannot tell

The **measure** of each exterior angle of a regular 10-gon is less than the measure of each** exterior angle **of a regular 7-gon. Option C

First, we need to know the properties of **polygons**.

The formula for calculating the interior angles of a polygon is expressed as;

(n -2)180

such that n is the number of the sides of the polygon

Note that the sum of **exterior angle **

360/n

for 10, we have;

360/10 = 36 degrees

360/7 = 52. 4

Learn more about **polygons **at: https://brainly.com/question/1592456

#SPJ1

Often the degree of the product of two polynomials and its leading coefficient are particularly important. It's possible to find these without having to multiply out every term.

Consider the product of two polynomials

(3x4+3x+11)(−2x5−4x2+7)3x4+3x+11−2x5−4x2+7

You should be able to answer the following two questions without having to multiply out every term

The **degree **of the product is 9, and the leading coefficient is -6. No need to multiply out every term.

To find the degree of the product of two **polynomials**, we can use the fact that the degree of a product is the **sum **of the degrees of the individual polynomials. In this case, the degree of the first polynomial, 3x^4 + 3x + 11, is 4, and the degree of the second polynomial, -2x^5 - 4x^2 + 7, is 5. Therefore, the degree of their product is 4 + 5 = 9.

Similarly, the leading **coefficient **of the product can be found by multiplying the leading coefficients of the individual polynomials. The leading coefficient of the first polynomial is 3, and the leading coefficient of the second polynomial is -2. Thus, the leading coefficient of their product is 3 * -2 = -6.

Therefore, without having to **multiply **out every term, we can determine that the degree of the product is 9, and the leading coefficient is -6.

Learn more about **Polynomials **here: brainly.com/question/11536910

#SPJ11

3. Evaluate the flux F ascross the positively oriented (outward) surface S //F.ds. , where F =< x3 +1, y3 +2, 23 +3 > and S is the boundary of x2 + y2 + z2 = 4, z > 0.

The flux F **across** the surface S is evaluated by computing the surface integral of F·dS, where F = <x^3 + 1, y^3 + 2, 2z + 3>, and S is the boundary of the upper **hemisphere** x^2 + y^2 + z^2 = 4, z > 0.

To **evaluate** the flux, we first find the unit normal vector n to the surface S, which points outward. Then, we compute the dot product of F and n for each point on S and integrate over the surface using the surface area **element** dS.

To **evaluate** the flux, we need to calculate the surface integral of the vector field F·dS over the surface S. The vector field F is given as <x^3 + 1, y^3 + 2, 2z + 3>.

The surface S is the boundary of the upper hemisphere defined by the equation x^2 + y^2 + z^2 = 4, with the condition that z is greater than 0.

To compute the flux, we first need to **determine** the unit normal vector n to the surface S at each point. This normal vector should point outward from the surface.

Then, we calculate the dot **product** of F and n at each point on S. This gives us the contribution of the **vector** field F at that point to the flux through the surface.

Finally, we **integrate** this dot product over the entire surface S using the surface area element dS. This integration yields the total flux of the vector field F across the **surface** S.

Learn more about **across **here:

https://brainly.com/question/1878266

#SPJ11

PLEASE DO ASAP

The eigenvalues of the coefficient matrix can be found by inspection or factoring. Apply the eigenvalue method to find a general solution of the system. 7 3 7 = 3 11 3 y 7 3 7

The **general solution** of the system can be found using the eigenvalue method by applying inspection or factoring to the coefficient matrix.

To find **eigenvalues**, we take the determinant of the coefficient matrix and set it equal to zero. This gives us a polynomial equation whose roots are the eigenvalues. For this system, the coefficient matrix is

7 3 7

3 11 3

7 3 7

Taking the determinant, we get

7(11)(7) + 3(3)(7) + 7(3)(-3) - 7(11)(7) - 3(7)(7) - 7(3)(3) = 0

Simplifying this gives us

(7 - λ)[(11 - λ)(7 - λ) - 3(3)] - 3[3(7 - λ) - 7(3)] + 7[3(3) - 11(7 - λ)] = 0

Factoring and solving for λ, we get

λ₁ = 15, λ₂ = 1, λ₃ = -2

Now we can use the eigenvalues to find eigenvectors, which will be the basis of our general solution. For each eigenvalue λᵢ, we solve the equation (A - λᵢI)x = 0, where A is the coefficient matrix and I is the identity matrix.

This gives us a system of linear equations, which we can solve using row reduction.

The resulting vector is the eigenvector **corresponding **to λᵢ.

For this system, we get

λ₁ = 15: eigenvector [1, 3, 1]

λ₂ = 1: eigenvector [-1, 0, 1]

λ₃ = -2: **eigenvector **[1, -3, 1]

These eigenvectors form the basis of our general solution, which is

x(t) = c₁[1, 3, 1]e^(15t) + c₂[-1, 0, 1]e^(t) + c₃[1, -3, 1]e^(-2t)

where c₁, c₂, c₃ are constants determined by **initial conditions**.

Learn more about **eigenvalues** here.

https://brainly.com/questions/29861415

#SPJ11

how many different makes and models of commercial aircraft are currently in service by the world's airlines
an employee's desire to remain a member of an organization that she or he respects is referred to as his or her multiple choice question. job performance. organizational commitment. task performance. organizational culture.
in the book night, what phrase continues to be repeated on page 34? Which one a think is the most depressing? Why?
what is the profit-maximizing quantity and price for the firm shown above? group of answer choices 100 units; $25 100 units; $13 150 units; $25 150 units; $10
suppose there is currently a tax of $80 per ticket on airline tickets. sellers of airline tickets are required to pay the tax to the government. if the tax is reduced from $80 per ticket to $64 per ticket, then the
Suppose that '(t) = < 12t, e0.25t, vt > and 7(0) = < 2, 1, 5 > . Find F(t) e r(t) = =
What is the best next step for Katarina?cancel the interview with her neighbor because it is unnecessary researchchange the timeline because it is unrealistic given her neighbors schedulerevise her research questions because she wants to meet her deadlinesdraft her research paper because she can interview her neighbor later
#3 Evaluate Stit-4 dt (10 #4 Find f'(x) if f(x) = S +1 =_=_=_=_d+ + S +=1 -dt (15 points) (10 points)
which combination of isoclines lead to competitive exclusion and competitive coexistence, and the final state of each combination.
Ture/false: the percentage-of-completion method is an application of the matching principle
if my pc is connected by ethernet to the internet, can i use its antenna to wirelessly communicate with another device without giving up internet access?
a particle of kinetic energy 50 ev in free space travels into a region with a potential well of depth 40 ev. what happens to its wavelength?
anatomically, how does the right bronchus differ from the left bronchus, and what effect might this have on the aspiration of objects?
Write a cost function for the problem. Assume that the relationship is linear. Marginal cost, $80; 40 items cost $4,300 to produce + A. C(x) = 28x +4,300 B. C(x) = 80% +4,300 C. C(x) = 28x + 1.100 OD.
8. A randomized controlled trial was designed to compare the effectiveness of splinting versussurgery in the treatment of carpal tunnel syndrome. Results are given in the table. The resultsare based on evaluations made one year after the treatment. Using a 0.01 significance level,find the test statistic and critical value needed to test the claim that the success is independentof the type of treatment.Splint treatmentSurgery treatmentSuccessfulTreatment6067Otest statistic = 0.848, critical value = 6.635statistic 9 750 critical value = 6.635UnsuccessfulTreatment236(1 poir
Assignment Responses/submit/dep 29213268&tagswautosaved question4780406_8 Need Help Read it 9. [2/3 Points] DETAILS PREVIOUS ANSWERS SCALCETI 6.2.021. Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = x2, x = y; about y = 1 3 V 10" X Sketch the region. e. X 2 2 - 1 -1
Suppose f(x) and f'(x) are continuous everywhere, and have the following values: 0 10 20 H 30 f'(x) 2 8 6 -7 Based on this, determine what you are willing to guarantee. Between 0 and = 10 you guarante Select an answer there is a local maximum Between 10 and = 20 you guarar there is a local minimum nothing Between = 20 and = 30 you guarant.. Between= 30 and = 40 you guarantee Select an answer C 8 C 40 12
an earthquake has just occurred. seismic waves from the earthquake are detected at two recording stations. at recording station a, . at recording station b, . which recording station is farther away from the epicenter?
what information made rachel carson concerned about chemical pollution
Summarize the pertinent information obtained by applying the graphing strategy and sketch the graph of f(x) = 4x e -0.2% Find the domain of f(x). Select the correct choice below and, if necessary, fil