9. Use an appropriate local linear approximation to estimate the value of √10. Recall that f'(a) [f(a+h)-f(a)] + h when h is very small. 10. A boat is pulled into a dock by means of a rope attached to a pulley on the dock. The rope is attached to the front of the boat, which is 7 feet below the level of the pulley. If the boat is approaching the dock at a rate of 18 ft/min, at what rate is the rope being pulled in when the boat is125 ft from the dock.

Answers

Answer 1

When the boat is 125 ft from the dock, the rope is being pulled in at a rate of approximately 178.57 ft/min.

How to estimate the value of √10?

To estimate the value of √10 using local linear approximation, we can use the formula:

f(a + h) ≈ f(a) + f'(a) * h

where f(a) is the function value at a, f'(a) is the derivative of the function at a, and h is a small increment.

In this case, let's approximate √10 by choosing a = 9, which is close to 10. Taking the derivative of the function f(x) = √x with respect to x, we have:

f'(x) = 1 / (2√x)

Now, we can plug in a = 9, f(a) = √9 = 3, and h = 1:

√10 ≈ 3 + (1 / (2√9)) * 1

Simplifying the expression:

√10 ≈ 3 + (1 / (2 * 3)) * 1

    ≈ 3 + (1 / 6)

    ≈ 3 + 1/6

    ≈ 3 + 0.16667

    ≈ 3.16667

Therefore, using local linear approximation, we estimate that √10 is approximately 3.16667.

Moving on to the second part of the question regarding the rate at which the rope is being pulled in when the boat is 125 ft from the dock:

Let's denote the distance between the boat and the dock as x (in feet), and the rate at which the boat is approaching the dock as dx/dt = 18 ft/min. We want to find the rate at which the rope is being pulled in, which is dH/dt, where H represents the length of the rope.

Using the Pythagorean theorem, we have:

[tex]x^2 + (H - 7)^2 = H^2[/tex]

Simplifying the equation, we get:

[tex]x^2 + H^2 - 14H + 49 = H^2[/tex]

[tex]x^2 - 14H + 49 = 0[/tex]

Differentiating both sides of the equation with respect to time (t), we obtain:

2x * (dx/dt) - 14(dH/dt) = 0

Substituting x = 125 ft and dx/dt = 18 ft/min, we can solve for dH/dt:

2(125)(18) - 14(dH/dt) = 0

2500 - 14(dH/dt) = 0

14(dH/dt) = 2500

dH/dt = 2500/14

Simplifying the expression, we find:

dH/dt ≈ 178.57 ft/min

Therefore, when the boat is 125 ft from the dock, the rope is being pulled in at a rate of approximately 178.57 ft/min.

To know more about  rate of change , refer here:

https://brainly.com/question/29181688

#SPJ4


Related Questions

4. [3.57/7.14 Points] DETAILS PREVIOUS ANSWERS SCALCET9 10.1.015. Consider the following. x = 5 cos(6), y = sec²(0), 0≤ 0 < (a) Eliminate the parameter to find a Cartesian equation of the curve.

Answers

The Cartesian equation for the given curve is 25y = x².

To eliminate the parameter θ and find a Cartesian equation for the curve, we'll use the given parametric equations:
x = 5cos(θ) and y = sec²(θ)

First, let's solve for cos(θ) in the x equation:
cos(θ) = x/5

Now, recall that sec(θ) = 1/cos(θ), so sec²(θ) = 1/cos²(θ). Replace sec²(θ) with y in the second equation:
y = 1/cos²(θ)

Since we already have cos(θ) = x/5, we can replace cos²(θ) with (x/5)²:
y = 1/(x/5)²

Now, simplify the equation:
y = 1/(x²/25)

To eliminate the fraction, multiply both sides by 25:
25y = x²

This is the Cartesian equation for the given curve: 25y = x².

To learn more about Cartesian equation visit : https://brainly.com/question/30268198

#SPJ11

6. (-/1 Points] DETAILS LARAPCALC10 5.3.022. M Use the Log Rule to find the indefinite integral. (Use C for the constant of integration. Remember to use absolute values where ar dx

Answers

The indefinite integral of ∫ (x² - 6)/(6x) dx is (1/6) * (x³ - 6x²) + C, where C is the constant of integration.

We have the integral:

∫ (x² - 6)/(6x) dx.

We can simplify the integrand by factoring out (1/6x):

∫ (x - 6/x) dx.

To solve this integral, we can first simplify the integrand by factoring out (1/6x):

∫ (x² - 6)/(6x) dx = (1/6) * ∫ (x - 6/x) dx.

Now, we can split the integral into two separate integrals:

∫ x dx - (1/6) * ∫ (6/x) dx.

Integrating each term separately, we get:

(1/6) * (x²/2) - (1/6) * (6 * ln|x|) + C.

Simplifying further, we have:

(1/6) * (x³/2) - ln|x| + C.

Finally, we can rewrite the expression as:

(1/6) * (x³ - 6x²) + C.

learn more about Indefinite integral here:

https://brainly.com/question/29845193

#SPJ4

The complete question is:

Find the indefinite integral of (x² - 6)/(6x) dx using the Log Rule. Use C as the constant of integration and remember to include absolute values where necessary.

According to the College Board, SAT writing scores from the 2015 school year for high school students in the United States were normally distributed with a mean of 484 and a standard deviation of 115. Use a standard normal table such as this one to determine the probability that a randomly chosen high school student who took the SAT In 2015 will have a writing SAT score between 400 and 700 points. Give your answer as a percentage rounded to one decimal place.

Answers

A randomly selected high school student taking the 2015 SAT has an approximately 79.3% chance of having an SAT score between 400 and 700 for standard deviation.

To calculate probabilities, we need to standardize the values ​​using the Z-score formula. A Z-score measures how many standard deviations a given value has from the mean. In this case, we want to determine the probability that the SAT score is between 400 and 700 points.

First, calculate the z-score for the given value using the following formula:

[tex]z = (x - μ) / σ[/tex]

where x is the score, μ is the mean, and σ is the standard deviation. For 400 points:

z1 = (400 - 484) / 115

For 700 points:

z2 = (700 - 484) / 115

Then find the area under the standard normal curve between these two Z-scores using a standard normal table or statistical calculator. This range represents the probability that a randomly selected student falls between her two values for standard deviation.

Subtracting the cumulative probability corresponding to z1 from the cumulative probability corresponding to z2 gives the desired probability. Multiplying by 100 returns the result as a percentage rounded to one decimal place.

Doing the math, a random high school student who took her SAT in 2015 has about a 79.3% chance that her written SAT score would be between 400 and 700. 


Learn more about standard deviation here:
https://brainly.com/question/29115611


#SPJ11

(1 point) Answer the following questions for the function f(x) = x²-36 defined on the interval [-19, 16]. a.) Enter the x-coordinates of the vertical asymptotes of f(x) as a comma-separated list. Tha

Answers

The function f(x) = x² - 36 does not have any vertical asymptotes on the interval [-19, 16].

To determine the vertical asymptotes of a function, we need to examine the behavior of the function as x approaches certain values. Vertical asymptotes occur when the function approaches positive or negative infinity as x approaches a particular value.

In the case of the function f(x) = x² - 36, we can observe that it is a quadratic function. Quadratic functions do not have vertical asymptotes. Instead, they have a vertex, which represents the minimum or maximum point of the function.

Since the given function is a quadratic function, its graph is a parabola. The vertex of the parabola occurs at x = 0, which is the line of symmetry. The function opens upward since the coefficient of the x² term is positive. As a result, the graph of f(x) = x² - 36 does not have any vertical asymptotes on the interval [-19, 16].

Learn more about Quadratic functions here:

https://brainly.com/question/18958913

#SPJ11

forty-six percent of people believe that there is life on other planets in the universe. a scientist does not agree with this finding: he surveyed 120 randomly selected individuals and found 48 believed that there is life on other planets.

Answers

The scientist's findings do not provide sufficient evidence to reject the null hypothesis that the proportion of people who believe in life on other planets is equal to 46%.

To analyze the scientist's disagreement with the finding, we can compare the observed proportion with the claimed proportion using hypothesis testing.

Given information:

Claimed proportion: 46%

Sample size: 120

Number of individuals in the sample who believed in life on other planets: 48

Set up the hypotheses:

Null hypothesis (H₀): The proportion of people who believe in life on other planets is equal to the claimed proportion of 46%. (p = 0.46)

Alternative hypothesis (H₁): The proportion of people who believe in life on other planets is not equal to 46%. (p ≠ 0.46)

Calculate the test statistic:

For testing proportions, we can use the z-test statistic formula:

z = (p - p₀) / sqrt(p₀(1-p₀) / n)

where p is the observed proportion, p₀ is the claimed proportion, and n is the sample size.

Using the given values:

p = 48/120 = 0.4 (observed proportion)

p₀ = 0.46 (claimed proportion)

n = 120 (sample size)

Calculating the test statistic:

z = (0.4 - 0.46) / sqrt(0.46(1-0.46) / 120)

z ≈ -0.06 / sqrt(0.2492 / 120)

z ≈ -0.06 / sqrt(0.0020767)

z ≈ -0.06 / 0.04554

z ≈ -1.316 (rounded to three decimal places)

Determine the significance level and find the critical value:

Assuming a significance level (α) of 0.05 (5%), we will use a two-tailed test.

The critical value for a two-tailed test with α = 0.05 can be obtained from a standard normal distribution table or calculator. For α/2 = 0.025, the critical z-value is approximately ±1.96.

Make a decision:

If the absolute value of the test statistic (|z|) is greater than the critical value (1.96), we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.

In this case, |z| = 1.316 < 1.96, so we fail to reject the null hypothesis.

Interpret the result:

The scientist's findings do not provide sufficient evidence to conclude that the proportion of people who believe in life on other planets is different from the claimed proportion of 46%. The scientist's disagreement with the initial finding is not statistically significant at the 5% level.

To know more about proportion,

https://brainly.com/question/16695848

#SPJ11

Part 1 of 2 points Points:0 of 1 Save Find the gradient of the function g(x,y) = xy at the point (1. - 4). Then sketch the gradient together with the level curve that passes through the point of 15) First find the gradient vector at (1. - 4) V9(1. - - - (Simplify your answers.) -2) is based

Answers

Sketch the gradient vector (∇g) with coordinates (-4, 1) and the level curve xy = -4 on a graph to visualize them together.

To find the gradient of the function g(x, y) = xy, we need to compute the partial derivatives with respect to x and y.

g(x, y) = xy

Partial derivative with respect to x (∂g/∂x):

∂g/∂x = y

Partial derivative with respect to y (∂g/∂y):

∂g/∂y = x

The partial derivatives at the point (1, -4):

∂g/∂x at (1, -4) = -4

∂g/∂y at (1, -4) = 1

The gradient vector (∇g) at the point (1, -4) is obtained by combining the partial derivatives:

∇g = (∂g/∂x, ∂g/∂y) = (-4, 1)

The gradient vector (∇g) at the point (1, -4) and the level curve passing through that point.

The gradient vector (∇g) represents the direction of the steepest ascent of the function g(x, y) = xy at the point (1, -4). It is orthogonal to the level curves of the function.

To sketch the gradient vector, we draw an arrow with coordinates (-4, 1) starting from the point (1, -4).

The level curve passing through the point (1, -4), we need to find the equation of the level curve.

The level curve equation is given by:

g(x, y) = xy = c, where c is a constant.

Substituting the values (1, -4) into the equation, we get:

g(1, -4) = 1*(-4) = -4

So, the level curve passing through the point (1, -4) is given by:

xy = -4

To know more about gradient vector refer here

https://brainly.com/question/29751488#

#SPJ11

please help asap
D Question 11 1 pts Use implicit differentiation to find an expression for dy dx . where x y2 - y = x dy? - 2 dx 2xy - 1 0 dy dx 2x - y 2xy + 1 0 dy dx = x² - xy² -- O 2x - y 2xy-1 dx

Answers

The expression for dy/dx is: dy/dx = (y^2 - x * (d^2y/dx^2) + 1) / (2x - y) Differentiation is a fundamental concept in calculus that involves finding the rate at which a function changes with respect to its independent variable.

To find the expression for dy/dx using implicit differentiation, we'll differentiate both sides of the given equation with respect to x.

The equation is:

x * y^2 - y = x * dy/dx - 2 * dx/2 * (xy - 1)

Let's differentiate each term:

Differentiating x * y^2 - y with respect to x:

d/dx (x * y^2) - d/dx (y) = d/dx (x * dy/dx) - d/dx (2 * dx/2 * (xy - 1))

Using the product rule and chain rule, we get:

y^2 + 2xy * (dy/dx) - dy/dx = x * (d^2y/dx^2) + (dy/dx) - 2 * (x * (dy/dx) - dx/dx * (xy - 1))

Simplifying the equation:

y^2 + 2xy * (dy/dx) - dy/dx = x * (d^2y/dx^2) + (dy/dx) - 2 * (x * (dy/dx) - (xy - 1))

Now, we can collect like terms:

y^2 + 2xy * (dy/dx) - dy/dx = x * (d^2y/dx^2) + dy/dx - 2 * (x * (dy/dx) - xy + 1)

Rearranging the equation:

y^2 - 2xy * (dy/dx) + dy/dx - dy/dx - x * (d^2y/dx^2) + 2xy * (dy/dx) = -2x * (dy/dx) + xy - 1

Simplifying further:

y^2 - x * (d^2y/dx^2) = -2x * (dy/dx) + xy - 1

Finally, we can isolate dy/dx by moving all other terms to the other side of the equation:

2x * (dy/dx) - xy = y^2 - x * (d^2y/dx^2) + 1

Learn more about Differentiation here:

https://brainly.com/question/31581320

#SPJ11

Find (a) the compound amount and (b) the compound interest rate for the given investment and annu $4000 for 5 years at 7% compounded annually (a) The compound amount in the account after 5 years is $ (b) The compound interest earned is $

Answers

The future value (A) is approximately 5610.2 for the given investment and annu $4000 for 5 years at 7% compounded annually

To find the compound amount and compound interest rate for the given investment, we can use the formula for compound interest:

(a) The compound amount in the account after 5 years can be calculated using the formula:

A = P(1 + r/n)^(nt)

Where A is the compound amount, P is the principal (initial investment), r is the interest rate, n is the number of times the interest is compounded per year, and t is the number of years.

Given that the principal (P) is $4000, the interest rate ® is 7%, and the interest is compounded annually (n = 1), and the investment is for 5 years (t = 5), we can plug these values into the formula:

A = 4000(1 + 0.07/1)^(1*5)

A = 4000(1 + 0.07/1)^(1*5)

= 4000(1 + 0.07)^(5)

= 4000(1.07)^(5)

≈ 4000(1.402551)

≈ 5610.20

Therefore, the future value (A) is approximately 5610.2

Calculating this expression will give us the compound amount after 5 years.

(b) The compound interest earned can be calculated by subtracting the principal from the compound amount:

Compound interest = Compound amount – Principa

This will give us the total interest earned over the 5-year period.

By evaluating the expressions in (a) and (b), we can determine the compound amount and the compound interest earned for the given investment.

Learn more about compound interest rate here:

https://brainly.com/question/30501640

#SPJ11

Show whether the series converges absolutely, converges conditionally, or is divergent: Σ k² sink 1+k5 State which test(s) you use to justify your result. k= 1

Answers

The given series Σ k² sink / (1+[tex]k^5[/tex]) can be determined to be divergent based on the comparison test..

To further explain the reasoning behind determining the given series Σ k² sink / (1+[tex]k^5[/tex]) as divergent using the comparison test, let's examine the behavior of the terms and apply the test more explicitly.

In the given series, each term is of the form k² sink / (1+[tex]k^5[/tex]), where k is a positive integer. As k increases, the term sink / (1+[tex]k^5[/tex]) oscillates between -1 and 1. However, the term k² grows without bound as k increases. This implies that the magnitude of the term k² sink / (1+[tex]k^5[/tex]) also grows without bound.

To formally apply the comparison test, we compare the given series Σ k² sink / (1+[tex]k^5[/tex]) with the series Σ k². The series Σ k² is a well-known divergent series, known as the p-series with p = 2. This series diverges because the sum of the squares of positive integers is infinite.

Now, let's compare the terms of the two series. For any positive integer k, we have k² ≥ k². This means that each term of the given series is at least as large as the corresponding term of the divergent series Σ k².

According to the comparison test, if a series has terms that are at least as large as the terms of a known divergent series, then the given series is also divergent.

Therefore, based on the comparison test, we can conclude that the given series Σ k² sink / (1+[tex]k^5[/tex]) is divergent since its terms are at least as large as the corresponding terms of the divergent series Σ k².

In summary, by analyzing the growth of the terms and applying the comparison test with the divergent series Σ k², we can confidently determine that the given series Σ k² sink / (1+[tex]k^5[/tex]) is divergent.

Learn more about divergent series here:

https://brainly.com/question/15415793

#SPJ11

use the limit comparison test to determine whether the series ∑n=8[infinity]7n 4n(n−7)(n−4) converges or diverges.

Answers

The limit is infinity, the series ∑n=8 to infinity (7n 4n(n−7)(n−4)) also diverges, because it grows at least as fast as the harmonic series. Therefore, the given series diverges.

To apply the limit comparison test, we need to choose a known series with positive terms that either converges or diverges. Let's choose the harmonic series as the comparison series, which is given by:

∑(1/n) from n = 1 to infinity

First, we need to show that the terms of the given series are positive for all n ≥ 8:

7n 4n(n−7)(n−4) > 0 for all n ≥ 8

The numerator (7n) and denominator (4n(n−7)(n−4)) are both positive for n ≥ 8, so the terms of the series are positive.

Next, let's find the limit of the ratio of the terms of the given series to the terms of the comparison series:

lim(n→∞) [(7n 4n(n−7)(n−4)) / (1/n)]

To simplify this limit, we can multiply both the numerator and denominator by n:

lim(n→∞) [(7n² 4(n−7)(n−4)) / 1]

Now, let's expand and simplify the numerator:

7n² - 4(n² - 11n + 28)

= 7n² - 4n² + 44n - 112

= 3n² + 44n - 112

Taking the limit as n approaches infinity:

lim(n→∞) [(3n² + 44n - 112) / 1]

= ∞

Since the limit is infinity, the series ∑n=8 to infinity (7n 4n(n−7)(n−4)) also diverges, because it grows at least as fast as the harmonic series. Therefore, the given series diverges.

Learn more about limit here: https://brainly.com/question/30782259

#SPJ11

Solve each equation. Remember to check for extraneous solutions. k+2/k-4-4k/k-4=1​

Answers

The value of K will be 3/2

Given,

k+2/k-4 - 4k/k-4 = 1

Now,

Take LCM of LHS,

(k+2-4k) / k - 4 = 1

k + 2 - 4k = k - 4

k = 6/4

k = 3/2

Hence the value of k in the equation is 3/2.

Know more about linear equation,

https://brainly.com/question/29111179

#SPJ1

a We need to enclose a field with a rectangular fence, we have 400 ft of fencing material and a building is on one side of the field and so won't need any fencing. Determine the dimensions of the field that will enclose the largest area

Answers

To enclose the largest area with 400 ft of fencing material, the field should have dimensions of 100 ft by 100 ft, resulting in a square-shaped enclosure.

Let's assume the dimensions of the field are length (L) and width (W). Since there is a building on one side and no fencing is required, we only need to fence the remaining three sides of the field. Therefore, the total length of the three sides that require fencing is L + 2W.

Given that we have 400 ft of fencing material, we can write the equation L + 2W = 400.

To maximize the enclosed area, we need to find the dimensions that maximize L * W.

To solve for L and W, we can use the equation L = 400 - 2W, and substitute it into the area equation: A = (400 - 2W) * W.

To find the maximum area, we can differentiate the area equation with respect to W and set it equal to zero: dA/dW = 0. Solving for W, we find W = 100 ft.

Substituting the value of W back into the equation L = 400 - 2W, we find L = 100 ft.

Therefore, the dimensions of the field that enclose the largest area with 400 ft of fencing material are 100 ft by 100 ft, resulting in a square-shaped enclosure.

Learn more about dimensions of a field:

https://brainly.com/question/30757257

#SPJ11

Find the coefficient of zy in the expansion of (1 + xy + (1+ . +y?)"

Answers

To find the coefficient of zy in the expansion of (1 + xy + (1+ . +y?), we need to examine the terms in the expansion and determine the coefficient of zy. The coefficient of zy in the expansion of (1 + xy + (1+ . +y?) is 0.

To find the coefficient of zy in the given expression, we need to examine the terms that contain both z and y.

However, in the given expression, there is no term that contains both z and y. Therefore, the coefficient of zy is 0.

To find the coefficient of zy in the expansion of (1 + xy + (1+ . +y?), we need to examine the terms in the expansion and determine the coefficient of zy. However, it seems that there might be an error in the expression provided, as there are missing symbols and unclear terms. To provide a detailed explanation, please clarify the missing or ambiguous parts of the expression.

The given expression, (1 + xy + (1+ . +y?), seems to have missing symbols and unclear terms, making it difficult to determine the coefficient of zy. The presence of ellipsis (...) suggests that there might be missing terms or an incomplete pattern. Additionally, the presence of a question mark (?) in the term y? raises further ambiguity.

To provide a precise explanation and find the coefficient of zy, it is essential to clarify the missing or ambiguous parts of the expression. Please provide the complete and accurate expression or provide additional information to help resolve any uncertainties.


To learn more about expansion click here: brainly.com/question/14447197

#SPJ11

7.(15%) Find the directional derivative of f(x,y) = x2 + 3y2 direction from P(1, 1) to Q(4,5). at P(1,1) in the

Answers

The directional derivative of f(x, y) = x² + 3y² in the direction from P(1, 1) to Q(4, 5) at P(1, 1) is 6.

To find the directional derivative of the function f(x, y) = x² + 3y² in the direction from point P(1, 1) to point Q(4, 5) at P(1, 1), we need to determine the unit vector representing the direction from P to Q.

The direction vector can be found by subtracting the coordinates of P from the coordinates of Q: Direction vector = Q - P = (4, 5) - (1, 1) = (3, 4)

To obtain the unit vector in this direction, we divide the direction vector by its magnitude: Magnitude of the direction vector = sqrt(3² + 4²) = sqrt(9 + 16) = sqrt(25) = 5

Unit vector in the direction from P to Q = (3/5, 4/5)

Now, to find the directional derivative, we need to calculate the dot product of the gradient of f and the unit vector:

Gradient of f(x, y) = (∂f/∂x, ∂f/∂y) = (2x, 6y)

At point P(1, 1), the gradient is (2(1), 6(1)) = (2, 6)

Directional derivative = Gradient of f · Unit vector

= (2, 6) · (3/5, 4/5)

= (2 * 3/5) + (6 * 4/5)

= 6/5 + 24/5

= 30/5

= 6

Therefore, the directional derivative of f(x, y) = x² + 3y² in the direction from P(1, 1) to Q(4, 5) at P(1, 1) is 6.

Know more about derivative here

https://brainly.com/question/29144258#

#SPJ11

find an absolute maximum and minimum values of f(x)=(4/3)x^3 -
9x+1. on [0, 3]

Answers

The function [tex]\(f(x) = \frac{4}{3}x^3 - 9x + 1\)[/tex] has an absolute maximum and minimum values on the interval [tex]\([0, 3]\)[/tex]. The absolute maximum value is [tex]\(f(3) = -8\)[/tex] and it occurs at [tex]\(x = 3\)[/tex]. The absolute minimum value is [tex]\(f(1) = -9\)[/tex] and it occurs at [tex]\(x = 1\)[/tex].

To find the absolute maximum and minimum values of the function, we need to evaluate the function at the critical points and endpoints of the interval [tex]\([0, 3]\)[/tex]. First, we find the critical points by taking the derivative of the function and setting it equal to zero:

[tex]\[f'(x) = 4x^2 - 9 = 0\][/tex]

Solving this equation, we find two critical points: [tex]\(x = -\frac{3}{2}\)[/tex] and [tex]\(x = \frac{3}{2}\)[/tex]. However, these critical points are not within the interval [tex]\([0, 3]\)[/tex], so we don't need to consider them.

Next, we evaluate the function at the endpoints of the interval:

[tex]\[f(0) = 1\][/tex]

[tex]\[f(3) = -8\][/tex]

Comparing these values with the critical points, we see that the absolute maximum value is [tex]\(f(3) = -8\)[/tex] and it occurs at [tex]\(x = 3\)[/tex], while the absolute minimum value is [tex]\(f(1) = -9\)[/tex] and it occurs at [tex]\(x = 1\)[/tex]. Therefore, the function [tex]\(f(x) = \frac{4}{3}x^3 - 9x + 1\)[/tex] has an absolute maximum value of -8 at [tex]\(x = 3\)[/tex] and an absolute minimum value of -9 at [tex]\(x = 1\)[/tex] on the interval [tex]\([0, 3]\)[/tex].

To learn more about absolute maximum refer:

https://brainly.com/question/31490198

#SPJ11

For the function z = 4x³ + 5y² - 8xy, find 88 11 正一 || ²(-1₁-3)= (Simplify your answer.) z(-1,-3) = ду (Simplify your answer.) əz əz 7 axay d (-1, -3), and 2(-1,-3).

Answers

The value of the function z = 4x³ + 5y² - 8xy at the point (-1, -3) is 88, and its partial derivatives with respect to x and y at the same point are 7 and -11, respectively.

To find the value of z at (-1, -3), we substitute x = -1 and y = -3 into the expression for z: z = 4(-1)³ + 5(-3)² - 8(-1)(-3) = 4 - 45 + 24 = 88. The partial derivative with respect to x, denoted as ∂z/∂x, represents the rate of change of z with respect to x while keeping y constant. Taking the partial derivative of z = 4x³ + 5y² - 8xy with respect to x gives 12x² - 8y. Substituting x = -1 and y = -3, we have ∂z/∂x = 12(-1)² - 8(-3) = 12 - 24 = -12. Similarly, the partial derivative with respect to y, denoted as ∂z/∂y, represents the rate of change of z with respect to y while keeping x constant. Taking the partial derivative of z = 4x³ + 5y² - 8xy with respect to y gives 10y - 8x. Substituting x = -1 and y = -3, we have ∂z/∂y = 10(-3) - 8(-1) = -30 + 8 = -22. Therefore, at the point (-1, -3), z = 88, ∂z/∂x = -12, and ∂z/∂y = -22.

Learn more about partial derivative here;

https://brainly.com/question/32554860

#SPJ11

The number of people (in hundreds) who have heard a rumor in a large company days after the rumor is started is approximated by
P(t) = (10ln(0.19t + 1)) / 0.19t+ 1
t greater than or equal to 0
When will the number of people hearing the rumor for the first time start to decline? Write your answer in a complete sentence.

Answers

The number of people hearing the rumor for the first time will start to decline when the derivative of the function P(t) changes from positive to negative.

To determine when the number of people hearing the rumor for the first time starts to decline, we need to find the critical points of the function P(t). The critical points occur where the derivative of P(t) changes sign.

First, we find the derivative of P(t) with respect to t:

P'(t) = [10(0.19t + 1)ln(0.19t + 1) - 10ln(0.19t + 1)(0.19)] / (0.19t + 1)^2.

To determine the critical points, we set P'(t) equal to zero and solve for t:

[10(0.19t + 1)ln(0.19t + 1) - 10ln(0.19t + 1)(0.19)] / (0.19t + 1)^2 = 0.

Simplifying, we have:

[0.19t + 1]ln(0.19t + 1) - ln(0.19t + 1)(0.19) = 0.

Factoring out ln(0.19t + 1), we get:

ln(0.19t + 1)[0.19t + 1 - 0.19] = 0.

The critical points occur when ln(0.19t + 1) = 0, which means 0.19t + 1 = 1. Taking t = 0 satisfies this equation.

To determine when the number of people hearing the rumor for the first time starts to decline, we need to examine the sign changes of P'(t) around the critical point t = 0. By evaluating the derivative at points near t = 0, we find that P'(t) is positive for t < 0 and negative for t > 0.

Learn more about derivative  here:

https://brainly.com/question/29144258

#SPJ11

The scatter plot shows data for the average temperature in Chicago over a 15 day period. Two lines are drawn to fit the data.


Which line fits the data best? Why? Select your answers from the drop down lists.

Answers

The best fits line for the data is,

⇒ line p

We have to given that,

The scatter plot shows data for the average temperature in Chicago over a 15 day period. Two lines are drawn to fit the data.

Now, We know that;

A scatter plot is a set of points plotted on a horizontal and vertical axes. Scatter plots are useful in statistics because they show the extent of correlation, in between the values of observed quantities.

From the graph,

Two lines m and p are shown.

Since, Line m is away from the scatter plot.

Whereas, Line p mostly contain the points on scatter plot.

Hence, Line p is fits the data best.

To learn more about Scatter Plot visit:

brainly.com/question/6592115

#SPJ1

ACD is a triangle.
BCDE is a straight line.
E-
142°
D
Find the values of x, y and z.
y
X =
y =
Z=
271°
A
N
53° X
C
B

Answers

x, y, and z have the values 127°, 127°, and 53°, respectively.

The values of x, y, and z must be determined using the angle properties of triangle and lines.

Given:

A triangle is AC.

The line BCDE is straight.

Angle E has a 142° angle.

Angle A has a 53° angle.

To locate x:

Since angle D is opposite angle A in triangle ACD and angle A is specified as 53°, we may infer that both angles are 53°.

x = 180° - 53° = 127° as a result.

Since BCDE is a straight line, the sum of angles CDE and BCD equals 180°, allowing us to determined y.

Angle CDE is directly across from 53°-long angle A.

Y = 180° - 53° = 127° as a result.

The total of the angles of a triangle is always 180°, so use that to determine z.

Z = 180° - 127° = 53° as a result.

Learn more about triangle, from :

brainly.com/question/2773823

#SPJ1

Suppose prior elections in a certain state indicated it is necessary for a candidate for governor to receive at least 80% of the vote in the northern section of the state to be elected. The incumbent governor is interested in assessing his chances of returning to office and plans to conduct a survey of 2,000 registered voters in the northern section of the state. Use the statistical hypothesis-testing procedure to assess the governor's chances of reelection. What is the z-value? a. 0.5026 b. 0.4974 c. 2.80 d. -2.80

Answers

To determine the z-value accurately, we would need the actual proportion of voters supporting the governor in the sample ([tex]\bar p[/tex]) and the assumed population proportion (p).

What is null hypothesis?

The null hypothesis is a type of hypothesis that explains the population parameter and is used to examine if the provided experimental data are reliable.

To assess the governor's chances of reelection, we need to conduct a statistical hypothesis test using the z-test.

Let's assume that the null hypothesis (H₀) is that the governor will receive 80% of the vote in the northern section of the state, and the alternative hypothesis (Hₐ) is that he will receive less than 80% of the vote.

Given that the governor plans to survey 2,000 registered voters in the northern section of the state, we need to determine the sample proportion ([tex]\bar p[/tex]) of voters who support the governor.

Next, we calculate the standard error (SE) using the formula:

SE = √(([tex]\bar p[/tex](1-[tex]\bar p[/tex]))/n)

Where:

- [tex]\bar p[/tex] is the sample proportion

- n is the sample size (2,000 in this case)

Once we have the standard error, we can calculate the z-value using the formula:

z = ([tex]\bar p[/tex] - p) / SE

Where:

- p is the assumed population proportion (80% in this case)

Finally, we compare the z-value to the critical value at the desired significance level (usually 0.05) to determine the statistical significance.

Given that we don't have the specific values for [tex]\bar p[/tex] and p, it is not possible to calculate the exact z-value without additional information. Therefore, none of the provided options (a, b, c, d) can be considered correct.

To determine the z-value accurately, we would need the actual proportion of voters supporting the governor in the sample ([tex]\bar p[/tex]) and the assumed population proportion (p).

Learn more about null hypothesis on:

https://brainly.com/question/28042334

#SPJ4

Evaluate the following integral. * >) In? (x²) dx X dx=(Type an inte х Help me solve this Vio

Answers

The value of the integral[tex]\int\limits^{e^{5}}_0 {ln^{2}(x^{2})/x} \, dx[/tex]  = 2(x²) ln(x²)² - 2(x²) ln(x²) + 2(x²) + C, where C is the constant of integration.

To evaluate the integral ∫₀^(e⁵) (ln²(x²)/x) dx, we can use a substitution. Let's set u = x², then du = 2x dx. Rearranging, we have dx = du/(2x). Substituting these into the integral, we get:

[tex]\int\limits^{e^{5}}_0 {ln^{2}(x^{2})/x} \, dx[/tex] dx = ∫₀^(e⁵) (ln²(u)/(2x)) du/(2x)

= 1/4 ∫₀^(e⁵) (ln²(u)/u) du

Now, let's focus on the integral ∫₀^(e^5) (ln²(u)/u) du. We can integrate this by parts twice. The formula for integration by parts is ∫u dv = uv - ∫v du.

Let's choose:

u = ln²(u)    -->   du = 2ln(u) / u du

dv = du/u     -->   v = ln(u)

Using integration by parts, we have:

[tex]\int\limits^{e^{5}}_0 {ln^{2}(x^{2})/x} \, dx[/tex] = ln²(u) * ln(u) - ∫2ln(u) * ln(u) du

Let's integrate the remaining term:

∫2ln(u) * ln(u) du = 2 ∫ln²(u) du

We can use integration by parts again:

u = ln(u)    -->   du = (1/u) du

dv = ln(u)   -->   v = u ln(u) - u

Applying integration by parts, we have:

2 ∫ln²(u) du = 2 (ln(u) * (u ln(u) - u) - ∫(u ln(u) - u) (1/u) du)

= 2 (ln(u) * (u ln(u) - u) - ∫(ln(u) - 1) du)

= 2 (ln(u) * (u ln(u) - u) - u ln(u) + u) + C

= 2u ln(u)² - 2u ln(u) + 2u + C

Now, substituting back u = x², we have:

[tex]\int\limits^{e^{5}}_0 {ln^{2}(x^{2})/x} \, dx[/tex]= 2(x²) ln(x²)² - 2(x²) ln(x²) + 2(x²) + C

Therefore, the value of the integral ∫₀^(e⁵) (ln²(x²)/x) dx is:[tex]\int\limits^{e^{5}}_0 {ln^{2}(x^{2})/x} \, dx[/tex] = 2(x²) ln(x²)² - 2(x²) ln(x²) + 2(x²) + C, where C is the constant of integration.

To know more about integral check the below link:

https://brainly.com/question/27419605

#SPJ4

Incomplete question:

Evaluate the following integral.

[tex]\int\limits^{e^{5}}_0 {ln^{2}(x^{2})/x} \, dx[/tex]

1 Consider the equation e' + x =2. This equation has a solution close to x=0. Determine the linear approximation, L(x), of the left-hand side of the equation about x=0. (2) b. Use 2(x) to approximate

Answers

The linear approximation, L(x), of the left-hand side of the equation e' + x = 2 about x=0 is L(x) = 1 + x. This approximation is obtained by considering the tangent line to the curve of the function e^x at x=0.

The slope of the tangent line is given by the derivative of e^x evaluated at x=0, which is 1. The equation of the tangent line is then determined using the point-slope form of a linear equation, with the point (0, 1) on the line. Therefore, the linear approximation L(x) is 1 + x. To use this linear approximation to approximate the value of e' + x near x=0, we can substitute x=2 into the linear approximation equation. Thus, L(2) = 1 + 2 = 3.

To learn more about linear approximation click here: brainly.com/question/30403460

#SPJ11

how do i solve this problem?

Answers

Answer:

  x = 11, y = 4

Step-by-step explanation:

You want to find x and y given an inscribed quadrilateral with angles identified as L=(10x), M=(10x-6), N=(16y+6), X=(4+18y).

Inscribed angles

The key here is that an inscribed angle has half the measure of the arc it subtends. Translated to an inscribed quadrilateral, this has the effect of making opposite angles be supplementary.

This relation gives you two equations in x and y:

(10x) +(16y +6) = 180(10x -6) +(4 +18y) = 180

Elimination

Subtracting the first equation from the second gives ...

  (10x +18y -2) -(10x +16y +6) = (180) -(180)

  2y -8 = 0

  y = 4

Substitution

Using this value of y in the first equation, we have ...

  10x +(16·4 +6) = 180

  10x +70 = 180

  x +7 = 18

  x = 11

The solution is (x, y) = (11, 4).

__

Additional comment

The angle measures are L = 110°, M = 104°, N = 70°, X = 76°.

The "supplementary angles" relation comes from the fact that the sum of arcs around a circle is 360°. Then the two angles that intercept the major and minor arcs of a circle will have a total measure that is half a circle, or 180°.

For example, angle L intercepts long arc MNX, and opposite angle N intercepts short arc MLX.

<95141404393>


1,2 please
[1] Set up an integral and use it to find the following: The volume of the solid of revolution obtained by revolving the region enclosed by the x-axis and the graph y=2x-r about the line x=-1 y=1+6x4

Answers

The volume of the solid of revolution obtained by revolving the region enclosed by the x-axis and the graph y = 2x - r about the line x = -1 y = 1 + 6[tex]x^4[/tex] is 2π [[tex]r^6[/tex]/192 - r³/24 + r²/8].

To find the volume of the solid of revolution, we'll set up an integral using the method of cylindrical shells.

Step 1: Determine the limits of integration.

The region enclosed by the x-axis and the graph y = 2x - r is bounded by two x-values, which we'll denote as [tex]x_1[/tex] and [tex]x_2[/tex]. To find these values, we set y = 0 (the x-axis) and solve for x:

0 = 2x - r

2x = r

x = r/2

So, the region is bounded by [tex]x_1[/tex] = -∞ and [tex]x_2[/tex] = r/2.

Step 2: Set up the integral for the volume using cylindrical shells.

The volume element of a cylindrical shell is given by the product of the height of the shell, the circumference of the shell, and the thickness of the shell. In this case, the height is the difference between the y-values of the two curves, the circumference is 2π times the radius (which is the x-coordinate), and the thickness is dx.

The volume element can be expressed as dV = 2πrh dx, where r represents the x-coordinate of the curve y = 2x - r.

Step 3: Determine the height (h) and radius (r) in terms of x.

The height (h) is the difference between the y-values of the two curves:

h = (1 + 6[tex]x^4[/tex]) - (2x - r)

h = 1 + 6[tex]x^4[/tex] - 2x + r

The radius (r) is simply the x-coordinate:

r = x

Step 4: Set up the integral using the limits of integration, height (h), and radius (r).

The volume of the solid of revolution is obtained by integrating the volume element over the interval [[tex]x_1[/tex], [tex]x_2[/tex]]:

V = ∫([tex]x_1[/tex] to [tex]x_2[/tex]) 2πrh dx

= ∫([tex]x_1[/tex] to [tex]x_2[/tex]) 2π(x)(1 + 6[tex]x^4[/tex] - 2x + r) dx

= ∫([tex]x_1[/tex] to [tex]x_2[/tex]) 2π(x)(1 + 6[tex]x^4[/tex] - 2x + x) dx

= ∫([tex]x_1[/tex] to [tex]x_2[/tex]) 2π(x)(6[tex]x^4[/tex] - x + 1) dx

Step 5: Evaluate the integral and simplify.

Integrate the expression with respect to x:

V = 2π ∫([tex]x_1[/tex] to [tex]x_2[/tex]) (6[tex]x^5[/tex] - x² + x) dx

= 2π [[tex]x^{6/3[/tex] - x³/3 + x²/2] |([tex]x_1[/tex] to [tex]x_2[/tex])

= 2π [([tex]x_2^{6/3[/tex] - [tex]x_2[/tex]³/3 + [tex]x_2[/tex]²/2) - ([tex]x_1^{6/3[/tex] - [tex]x_1[/tex]³/3 + [tex]x_1[/tex]²/2)]

Substituting the limits of integration:

V = 2π [([tex]x_2^{6/3[/tex] - [tex]x_2[/tex]³/3 + [tex]x_2[/tex]²/2) - ([tex]x_1^{6/3[/tex] - [tex]x_1[/tex]³/3 + [tex]x_1[/tex]²/2)]

= 2π [[tex](r/2)^{6/3[/tex] - (r/2)³/3 + (r/2)²/2 - [tex](-\infty)^{6/3[/tex] - (-∞)³/3 + (-∞)²/2]

Since [tex]x_1[/tex] = -∞, the terms involving [tex]x_1[/tex] become 0.

Simplifying further, we have:

V = 2π [[tex](r/2)^{6/3[/tex] - (r/2)³/3 + (r/2)²/2]

= 2π [[tex]r^{6/192[/tex] - r³/24 + r²/8]

Learn more about integral at

https://brainly.com/question/31433890

#SPJ4

First make a substitution and then use integration by parts а to evaluate the integral. 33. [ cos Vi dx 34. ſtedt S - 0' cos(0°) de ²) 36. [ecos' sin 2t dt 37. x In(1 + x) dx 38. S sin(In x) dx 35.

Answers

To evaluate the given integrals, let's go through them one by one:

33. ∫ cos(x) dx

This integral can be evaluated using the substitution u = sin(x), du = cos(x) dx:

∫ cos(x) dx = ∫ du = u + C = sin(x) + C.

34. ∫ √(1 - cos^2(x)) dx

This integral can be simplified using the trigonometric identity sin²(x) + cos²(x) = 1. We have √(1 - cos²(x)) = √(sin²(x)) = |sin(x)| = sin(x), since sin(x) is non-negative for the given range of integration.

∫ √(1 - cos²(x)) dx = ∫ sin(x) dx = -cos(x) + C.

35. ∫ [tex]e^{(cos^2(x))[/tex]sin(2x) dx

This integral can be evaluated using integration by parts. Let's choose u = sin(2x) and dv =[tex]e^{(cos^2(x))[/tex] dx. Then, du = 2cos(2x) dx and v = ∫ [tex]e^{(cos^2(x))[/tex] dx.

Using integration by parts formula:

∫ u dv = uv - ∫ v du,

we have:

∫ [tex]e^{(cos^2(x))}sin(2x) dx = -1/2 e^{(cos^2(x))} cos(2x) dx.[/tex] - ∫[tex](-1/2) (2cos(2x)) e^{(cos^2(x))[/tex]

Simplifying the right-hand side:

∫ [tex]e^{(cos^2(x))} sin(2x) dx = -1/2 e^{(cos^2(x))}cos(2x)[/tex] + ∫ [tex]cos(2x) e^{(cos^2(x))} dx.[/tex]

Now, we have a similar integral as before. Using integration by parts again:

∫ [tex]e^{(cos^2(x))[/tex]sin(2x) dx = [tex]-1/2 e^{(cos^2(x))} cos(2x) - 1/2 e^{(cos^2(x))[/tex] sin(2x) + C.

36. ∫[tex]e^{cos(2t)[/tex] sin(2t) dt

This integral can be evaluated using the substitution u = cos(2t), du = -2sin(2t) dt:

∫ [tex]e^{cos(2t)[/tex] sin(2t) dt = ∫ -1/2 [tex]e^u[/tex] du = -1/2 ∫ [tex]e^u[/tex] du = -1/2 [tex]e^u[/tex]+ C = -1/2 [tex]e^{cos(2t)[/tex] + C.

37. ∫ x ln(1 + x) dx

This integral can be evaluated using integration by parts. Let's choose u = ln(1 + x) and dv = x dx. Then, du = 1/(1 + x) dx and v = (1/2) [tex]x^2.[/tex]

Using integration by parts formula:

∫ u dv = uv - ∫ v du,

we have:

∫ x ln(1 + x) dx = (1/2) [tex]x^2[/tex] ln(1 + x) - ∫ (1/2) [tex]x^2[/tex] / (1 + x) dx.

The resulting integral on the right-hand side can be evaluated by polynomial division or by using partial fractions. The final result is:

∫ x ln(1 + x) dx = (1/2) [tex]x^2[/tex] ln(1 + x) - (1/4) [tex]x^2[/tex] + (1/4) ln(1 + x) + C.

38. ∫ sin(ln(x)) dx

This integral can be evaluated using the substitution u = ln(x), du = dx/x:

∫ sin(ln(x)) dx = ∫ sin(u) du = -cos(u) + C = -cos(ln(x)) + C.

Please note that these evaluations assume the integration limits are not specified.

learn more about integration here:

https://brainly.com/question/31744185

#SPJ11

The histogram below shows data collected about the number of passengers using city bus transportation at a specific time of day. Wich of the following data set best represents what is displayed in the histogram

Answers

Based on the diagram, the data set that best represents what is displayed in the histogram is option 3: (4, 5, 7, 8, 12, 13, 15, 18, 19, 21, 24, 25, 26, 28, 29, 30, 32, 33, 35, 42)

What is the histogram?

The histogram is one that have five intervals on the x-axis: 1 to 10, 11 to 20, 21 to 30, 31 to 40, and 42 to 50. The y-axis stands for the frequency, ranging from 0 to 9.

So, Looking at data set 3:

(4, 5, 7, 8, 12, 13, 15, 18, 19, 21, 24, 25, 26, 28, 29, 30, 32, 33, 35, 42), One can can see that it made up  of numbers inside of these intervals.

The numbers 4, 5, 7, 8 fall within the first interval (1 to 10), and frequency of 2The numbers 12, 13, 15, 18, 19, 21 fall within the second interval (11 to 20), and  frequency of 4.The numbers 24, 25, 26, 28, 29, 30 fall within the third interval (21 to 30), and   frequency of 5.The numbers 32, 33, 35 fall within the fourth interval (31 to 40),and    frequency of 6.The number 42 falls within the fifth interval (42 to 50), and  frequency of 3.

So,  Therefore, data set of (4, 5, 7, 8, 12, 13, 15, 18, 19, 21, 24, 25, 26, 28, 29, 30, 32, 33, 35, 42) best show the data displayed in the histogram.

Learn more about histogram from

https://brainly.com/question/31703720

#SPJ1

See text below

The histogram shows data collected about the number of passengers using city bus transportation at a specific time of day.

A histogram titled City Bus Transportation. The x-axis is labeled Number Of Passengers and has intervals of 1 to 10, 11 to 20, 21 to 30, 31 to 40, and 42 to 50. The y-axis is labeled Frequency and starts at 0 with tick marks every 1 units up to 9. There is a shaded bar for 1 to 10 that stops at 2, for 11 to 20 that stops at 4, for 21 to 30 that stops at 5, for 31 to 40 that stops at 6, and for 42 to 50 that stops at 3.

Which of the following data sets best represents what is displayed in the histogram?

1 (4, 5, 7, 8, 10, 12, 13, 15, 18, 21, 23, 28, 32, 34, 36, 40, 41, 41, 42, 42)

2 (4, 7, 11, 13, 14, 19, 22, 24, 26, 27, 29, 31, 33, 35, 36, 38, 40, 42, 42, 42)

3 (4, 5, 7, 8, 12, 13, 15, 18, 19, 21, 24, 25, 26, 28, 29, 30, 32, 33, 35, 42)

4 (4, 6, 11, 12, 16, 18, 21, 24, 25, 26, 28, 29, 30, 32, 35, 36, 38, 41, 41, 42)

Let a denote a root of f(x) = x3 + x2 – 2x – 1 € Q[2]. x (a) Prove that f(x) is irreducible. Hint: Recall the rational root theorem. (b) Show that a? – 2 is also a root of f(x). (c) Use your p

Answers

We have shown that both \(a\) and \(a² - 2\) are roots of \(f(x)\).

(a) to prove that \(f(x) = x³ + x² - 2x - 1\) is irreducible, we can apply the rational root theorem. the rational root theorem states that if a polynomial with integer coefficients has a rational root \(\frac{p}{q}\), where \(p\) and \(q\) are coprime integers, then \(p\) must divide the constant term and \(q\) must divide the leading coefficient.

for the polynomial \(f(x) = x³ + x² - 2x - 1\), the constant term is -1 and the leading coefficient is 1. according to the rational root theorem, if \(f(x)\) has a rational root, it must be of the form[tex]\(\frac{p}{q}\),[/tex] where \(p\) divides -1 and \(q\) divides 1. the only possible rational roots are \(\pm 1\).

however, upon testing these potential roots, we find that neither \(\pm 1\) is a root of \(f(x)\). since \(f(x)\) does not have any rational roots, it is irreducible over the rational numbers.

(b) to show that \(a² - 2\) is also a root of \(f(x)\), we substitute \(x = a² - 2\) into the polynomial \(f(x)\):\(f(a² - 2) = (a² - 2)³ + (a² - 2)² - 2(a² - 2) - 1\)

expanding and simplifying the expression:

[tex]\(f(a² - 2) = a⁶ - 6a⁴ + 12a² - 8 + a⁴ - 4a² + 4 - 2a² + 4 - 1\)\(f(a² - 2) = a⁶ - 5a⁴ + 6a² - 1\)[/tex]

we can see that \(f(a² - 2)\) evaluates to zero, indicating that \(a² - 2\) is indeed a root of \(f(x)\).

(c) since \(a\) is a root of \(f(x)\), we know that \(f(a) = 0\). we can substitute \(x = a\) into the polynomial \(f(x)\) to get:

\(f(a) = a³ + a² - 2a - 1 = 0\)

Learn more about integers here:

https://brainly.com/question/490943

#SPJ11

Plese compute the given limit
|x2 + 4x - 5 lim (Hint: rewrite the function as a piecewise function, and compute the X – 1 limit from the left and the right.) x+1

Answers

Since the function contains an absolute value, we must calculate both the left-hand limit and the right-hand limit in order to determine the limit of the function |x2 + 4x - 5| / (x + 1).

To examine the left-hand and right-hand limits, let's rewrite the function as a piecewise function:

|x2 + 4x - 5| / (x + 1) equals -(x2 + 4x - 5) / (x + 1) for x -1. = -(x - 1)(x + 5) / (x + 1)

When x > -1, the equation is: |x2 + 4x - 5| / (x + 1) = (x - 1)(x + 5) / (x + 1)

Let's now compute the left- and right-hand limits.

Limit to the left (x -1-):

lim(x → -1-) (-(x - 1)(x + 5) / (x + 1))

Inputting x = -1 into the expression results in:

= -(-1 - 1)(-1 + 5) / (-1 + 1)

= (undefined) -(-2)(4)

Limit to the right (x -1+): lim(x -1+) ((x

learn more about calculate  here :

https://brainly.com/question/30102100

#SPJ11

4. A puddle is fed by a small stream of water at a constant rate of a litres/hour. Water evaporates from the puddle at a rate of b, where V is the volume of water in the puddle. (a) Set up a differential equation modelling the change in V over time. (b) Extra credit: what method might you use to try to solve this equation? (You need not actually do so!)

Answers

(a) dV/dt = a - b is a differential equation modelling the change in V over time.

(b) separation of variables is the method you might use to try to solve this equation

(a) To set up a differential equation modeling the change in V over time, we need to consider the inflow and outflow rates of the puddle.

The inflow rate is given as a constant rate of a liters/hour. This means that the rate of change of the volume due to inflow is simply a.

The outflow rate is given as b, where V is the volume of water in the puddle. This means that the rate of change of the volume due to evaporation is -b.

Combining both inflow and outflow, we can write the differential equation as:

dV/dt = a - b

This equation represents the rate of change of the volume of water in the puddle with respect to time.

(b) To solve this differential equation, one method that can be used is separation of variables. The equation can be rewritten as:

dV = (a - b) dt

Then, we can separate the variables and integrate both sides:

∫ dV = ∫ (a - b) dt

V = (a - b) t + C

Here, C is the constant of integration.

To find the particular solution for the volume V, initial conditions or additional information would be needed. For example, the initial volume of water in the puddle or specific values for a, b, and time t.

To learn more about differential equation: https://brainly.com/question/1164377

#SPJ11

there are 52 contacts in your phone. the only family members' numbers you have are your dad's, mom's, and brother's. what are the odds of selecting a number in your phone that is not your family?

Answers

The odds of selecting a number in your phone that is not your family are approximately 0.9423 or 94.23%.

To calculate the odds of selecting a number in your phone that is not your family, we need to determine the number of contacts that are not family members and divide it by the total number of contacts.

Given that you have 52 contacts in total, and you have the numbers of your dad, mom, and brother, we can assume that these three contacts are family members. Therefore, we subtract 3 from the total number of contacts to get the number of non-family contacts.

Non-family contacts = Total contacts - Family contacts

Non-family contacts = 52 - 3

Non-family contacts = 49

So, you have 49 contacts that are not family members.

To calculate the odds, we divide the number of non-family contacts by the total number of contacts.

Odds of selecting a non-family number = Non-family contacts / Total contacts

Odds of selecting a non-family number = 49 / 52

Simplifying the fraction:

Odds of selecting a non-family number ≈ 0.9423

Therefore, the odds of selecting a number in your phone that is not your family are approximately 0.9423 or 94.23%.

To learn more about selecting a number visit:

brainly.com/question/18811781

#SPJ11

Other Questions
What is the polar coordinates of (x, y) = (0,-5) for the point on the interval 0 se (1 point) Suppose that we use Euler's method to approximate the solution to the differential equation dy dx 0.4) = 2 Let f(x,y) = x/y. We let Xo = 0.4 and yo = 2 and pick a step size h = 0.2. Euler's method is the the following algorithm. From X, and your approximations to the solution of the differential equation at the nth stage, we find the next stage by computing *n+1 = x + h. Yn+1 = y + h. (XY). Complete the following table. Your answers should be accurate to at least seven decimal places. Yn 0 0.4 1.6 2.0077 2 0.8 2.007776 31 2.0404 nx 2 4 1.2 2.1384 5 1.4 2.3711 The exact solution can also be found using separation of variables. It is y(x) = 2.8247 Thus the actual value of the function at the point x = 1.4 y(1.4) = 2.8247 In 2021, Lucy and Evan Stuart have a daughter who is 2 years old. The Stuarts are full-time students and they are both 24 years old. Their AGI is $15,600, consisting of $10,100 of lottery winnings (unearned income) and $5,500 of wages. What is their earned income credit if they file jointly? 16. Find the particular antiderivative if f'(x) = _3___ given f(2)= 17. 5-x siobhan wants to join a new yoga studio. her roommate belongs to a studio that siobhan heard about on the radio. she decides to use her roommate's free guest passes to try out the studio and see if it meets her needs. what stage of the consumer adoption process does this represent? Amazon has a competing software called Pinpoint, but an internal review of the product in August concluded that its brand was weak and the service was too difficult to use in order to catch up with its competitors, the Pinpoint tear suggested making acquisitions The acquisition idea reflects a bigger challenge facing the Amaron Web Services cloud business. While AWS is a leader in the cloud infrastructure market, it has largely failed to gain share in the massive business applications field, broadly called software as a service. In a recent survey of this sector by Synergy Research Group five companies - Microsoft, Salesforce, Adobe, Oracle, and SAP - counted for Sork of the market. Awstailed to track the top 20 Current and former employees who spoke to Insider pointed to a number of different reasons for AWS's struggle in the lucrative 5335 market. One of the reasons they died was the company's unwillingness to buy other companies, a decidedly different approach from that of Amazon's biggest software competitors. (Adapted from Kim 20211 Which is NOT a proper reason for AWS to engage in acquisitions Increase Diversification Develop New Capabilities Lower O Increased to Market Seven years after entering Brazil, Amaron is still battling to gain traction. With only two distribution centers and a more limited selection than Brazilian players, Arnaron cant compete head to head against a handful of local competitors, such as Mercado Libre Inc. and Magazine Luiza SA with extensive delivery networks, strong brands and a deep understanding of Brazilian shoppers The main local players rely on their own brick-and-morta operations and have converted sections of their stores into pickup centers for online orders. Magarine Luiza has more than 1,000 locations across the country where shoppers can pick up products purchased on the website. For Frederico Traiano, Magazine Luiza's CEO, those outlets form the backbone of his digital strategy. putting Inventory closer to consumers and cutting the cost of storage and order processing Trajano said fulfillment consumes up to 15 percent of Brazilian e-commerce revenue.compared to as little as percent in the United States, due to Brazil's lousy Infrastructure, high borrowing costs and lower levels of automation To compete Amaron has chosen instead to lure customers with Prime, which offers subscribers free shipping music, movies and games. Earlier this month Amaron also announced it would start selling gadgets powered by the Alexa digital assistant, which has been tailored for Portuguese speakers and can sing soccer team anthems. The betis that Brarians get addicted to Alex and Prime's entertainment offerings so tweaked for local contumption they start shopping on Amazon too Amazon is counting on its International operations, which last year generated 28% of revenue to help offset slowing sales growth in its home market on Thursday the company posted its first year over year quarterly profit decline since early 2017 ter acknowledging that it was spending more than expected on an ambitious effort to speed up deliveries adapted from Moura, 2019 and Haynes, 2010 . From the passage, which international expansion benefit attracts Amazon to Brazil gain access to new consumers exterda product's life cycle access location advantages opportunities to integrate operations on a global scale How do we move from tactical to strategic revenue management, and from revenue management applied to a primary product (rooms) to total revenue management, which looks at many or all of a hotels revenue streams? thanksApproximate the sum of the series correct to four decimal places. (-1) + Find z/2 for 80%, 98%, and 99% confidence levels. (It may help to draw the curve and identify /2 in each tail.) This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Let P(n) be the statement that a postage of n cents can be formed using just 4-cent stamps and 7-cent stamps. The parts of this exercise outline a strong induction proof that P(n) is true for n 18. Explain why these steps show that this formula is true whenever n 18. A bacteriophage initially associates with which bacterial structure? a. Bacterial ribosomes b. The cytoplasmic membrane c. The bacterial chromosome d. The bacterial cell wall Two current controversies in early childhood education involveA) the curriculum, and the idea of universal preschool education in the United States.B) the quality of inner-city schools, and free education to all in the United States.C) the use of corporal punishment in schools, and the use of uniforms.D) Christian holidays for all students, and boarding schools which is a health care program for active duty members of the military and their qualified family members? TRUE / FALSE. we do not consciously participate in the perception process. Consider the curve x + y + 2xy = 1Determine the degree 2 Taylor polynomial of y(x) at the point (x, y) = (1,0). a small company needs to set up a security surveillance system to protect its building. which cloud-based technology will the company most likely take advantage of? automobile fuel efficiency is often measured in miles that the car can be driven per gallon of fuel (highway mpg). suppose we have a collection of cars. we measure their weights and fuel efficiencies, and generate the following scatterplot. scatterplot: highway mpg vs weight which equation is a reasonable description of the least-squares regression line for the predicted highway mpg? A car moves a distance of 50. 0 km West, followed by a distance of 72 km North. What is the total distance traveled, in units of kilometers? The demand equation for a computer desk is p = 4x + 270, andthe supply equation is p = 3x + 95.1) Find the equilibrium quantity x and pricep. (Round your answers to one decimal place): (x, p) = Shannon's living room is a 12 by 18 foot rectangle. She wants to coveras much of the floor as possible with 6 foot diameter circular rugswithout overlap. How much of the living room floor space can Shannoncover with the circular rugs to the nearest square foot?(Use = 3.14)A) 170 ftB) 216 ftC) 386 ftD) 678 ft