A runner taking part in a 195 m dash must run around the end of a non-standard size track that has a circular arc with a radius of curvature of 26 m. If she completes the 195 m dash in 34.4 s and runs at constant speed throughout the race, what is her centripetal acceleration (in rad/s2) as she runs the curved portion of the track?

Answers

Answer 1

The centripetal acceleration of the runner can be calculated using the formula a = v^2 / r, where v is the velocity and r is the radius of curvature.

Given:

Distance covered by the runner on the curved portion of the track: 195 m

Radius of curvature: 26 m

Time taken to complete the race: 34.4 s

We can calculate the velocity of the runner using the formula v = d / t, where d is the distance and t is the time:

v = 195 m / 34.4 s = 5.67 m/s

Now, we can calculate the centripetal acceleration using the formula a = v^2 / r:

a = (5.67 m/s)^2 / 26 m = 1.23 m/s^2

Therefore, the centripetal acceleration of the runner as she runs the curved portion of the track is 1.23 m/s^2.

To learn more about centripetal acceleration click here.

brainly.com/question/8825608

#SPJ11


Related Questions

In relating Bohr’s theory to the de Broglie wavelength of
electrons, why does the circumference of an electron’s
orbit become nine times greater when the electron
moves from the n 1 level to the n 3 level? (a) There
are nine times as many wavelengths in the new orbit. (b) The wavelength of the electron becomes nine times
as long. (c) There are three times as many wavelengths,
and each wavelength is three times as long. (d) The
electron is moving nine times faster. (e) The atom is
partly ionized.

Answers

The correct answer is (c) There are three times as many wavelengths, and each wavelength is three times as long.

According to Bohr's theory, electrons in an atom occupy specific energy levels, or orbits, characterized by specific radii. The de Broglie wavelength of an electron is related to its momentum and is given by the equation λ = h / p, where λ is the wavelength, h is the Planck's constant, and p is the momentum.

When an electron moves from the n1 level to the n3 level, it transitions to a higher energy level, which corresponds to a larger radius for the electron's orbit. As the radius increases, the circumference of the orbit also increases. Since the circumference is related to the wavelength, the new orbit will have a different number of wavelengths compared to the previous orbit.

In this case, the new orbit will have three times as many wavelengths as the original orbit, and each wavelength will be three times as long because the radius of the orbit has increased. Therefore, option (c) is the correct explanation for why the circumference of an electron's orbit becomes nine times greater when it moves from the n1 level to the n3 level.

learn more about the wavelengths here

brainly.com/question/2021598

#SPJ11

An iceberg with a cuboid shape is floating on the sea. The density of ice is 917 kg/m3, and the density of seawater is 1030 kg/m3. If the volume of the iceberg under the sea is 10 cubic miles and the height of the iceberg above the sea is 100 ft, how many acres is the horizontal area of the iceberg?

Answers

The horizontal area of the iceberg is approximately 3.674 × 10^7 acres.

Let's calculate the horizontal area of the iceberg:

Density of ice, ρ_ice = 917 kg/m^3

Density of seawater, ρ_seawater = 1030 kg/m^3

Volume of the iceberg under the sea, V_iceberg = 10 cubic miles

Height of the iceberg above the sea, h_iceberg = 100 ft

First, let's convert the volume of the iceberg to cubic meters:

1 cubic mile ≈ (1609.34 m)^3 ≈ 4.168 × 10^9 m^3

Volume of the iceberg under the sea ≈ 10 cubic miles ≈ 4.168 × 10^10 m^3

Next, we can calculate the mass of the iceberg:

Mass of the iceberg = Volume of the iceberg under the sea × Density of seawater

                   = 4.168 × 10^10 m^3 × 1030 kg/m^3

                   ≈ 4.289 × 10^13 kg

Now, let's calculate the base area of the iceberg:

Base area = Mass of the iceberg / (Density of ice × height)

         = (4.289 × 10^13 kg) / (917 kg/m^3 × 100 ft)

         = (4.289 × 10^13 kg) / (917 kg/m^3 × 30.48 m)

         ≈ 1.487 × 10^11 m^2

Finally, we can convert the base area to acres:

Base area in acres = Base area / 4046.86 m^2

                  = (1.487 × 10^11 m^2) / 4046.86 m^2

                  ≈ 3.674 × 10^7 acres

Learn more about density at https://brainly.com/question/1354972

#SPJ11

A particle with mass m is subject to a 1D potential V(x). V(x) is negative everywhere, and it approaches zero when x approaches infinity (plus and minus). Use variational principle to show that there must be at least one bound state. (Hint: pick a bound state-like trial wavefunction, such as Gaussian.)

Answers

There must be at least one bound state because the variational principle guarantees that the trial wavefunction with the lowest energy expectation value approximates the ground state energy.

To show that there must be at least one bound state using the variational principle, we choose a trial wavefunction and calculate its expectation value of energy.

If we find a trial wavefunction that yields a lower energy expectation value than the potential energy in the limit of x approaching infinity, then we conclude the existence of at least one bound state.

We choose a Gaussian trial wavefunction :

Ψ(x) = A * exp(-αx²)

where A is a normalization constant, α is a variational parameter, and x is the position of the particle.

To proceed, we calculate the expectation value of energy <E> for this trial wavefunction:

<E> = ∫ Ψ*(x)HΨ(x) dx

where H is the Hamiltonian operator, given by H = (-h²/2m) * d²/dx² + V(x).

We evaluate each term separately. First, the kinetic energy term:

T = (-h²/2m) * ∫ Ψ*(x) d²Ψ(x)/dx² dx

Using the trial wavefunction, we compute the second derivative:

d²Ψ(x)/dx² = 2α²A * (2αx² - 1) * exp(-αx²)

Plugging this back into the expression for T:

T = (-h²/2m) * ∫ A * exp(-αx²) * 2α²A * (2αx² - 1) * exp(-αx²) dx

= (-h²/2m) * 4α³A² * ∫ (2αx² - 1) exp(-2αx²) dx

We simplify the integral by expanding the expression (2αx² - 1) exp(-2αx²) and integrating term by term:

∫ (2αx² - 1) exp(-2αx²) dx = ∫ (4α³x⁴ - 2αx²) exp(-2αx²) dx

= (4α³/(-4α)) * ∫ x⁴ exp(-2αx²) dx - (2α/(-2α)) * ∫ x² exp(-2αx²) dx

= -α² * ∫ x⁴ exp(-2αx²) dx + ∫ x² exp(-2αx²) dx

The two integrals on the right are evaluated using standard techniques. The resulting expression for T will involve terms with α.

Now, we compute the potential energy term:

V = ∫ Ψ*(x) V(x) Ψ(x) dx

Since V(x) is negative everywhere, we bound it from above by zero:

V ≤ 0

Therefore, the potential energy term is always non-positive.

Now, considering the expectation value of energy:

<E> = T + V

Given that T involves terms with α and V is non-positive, we conclude that by minimizing <E> with respect to α, we achieve a lower energy expectation value than the potential energy in the limit of x approaching infinity (which is zero).

This demonstrates that there must be at least one bound state because the variational principle guarantees that the trial wavefunction with the lowest energy expectation value approximates the ground state energy.

To know more about wavefunction, refer to the link :

https://brainly.com/question/33128278#

#SPJ11

Use Gauss's Law to find the electric field inside and outside a solid metal sphere of radius R with charge Q.

Answers

Gauss's Law can be used to find the electric field inside and outside a solid metal sphere of radius R with charge Q.

Gauss's Law states that the electric flux through any closed surface is proportional to the total electric charge enclosed within the surface.

This can be expressed mathematically as:∫E.dA = Q/ε0

Where E is the electric field, A is the surface area, Q is the total electric charge enclosed within the surface, and ε0 is the permittivity of free space

total charge:ρ =[tex]Q/V = Q/(4/3 π R³)[/tex]

where ρ is the charge density, V is the volume of the sphere, and Q is the total charge of the sphere

.Substituting this equation into Gauss's Law,

we get:[tex]∫E.dA = ρV/ε0 = Q/ε0E ∫dA = Q/ε0E × 4πR² = Q/ε0E = Q/(4πε0R²)[/tex]

the electric field inside and outside the solid metal sphere is given by:

E =[tex]Q/(4πε0R²)[/tex]For r ≤ R (inside the sphere)

E = [tex]Q/(4πε0r²)[/tex]For r > R (outside the sphere)

:where r is the distance from the center of the sphere.

To know more about Gauss's Law visit:

https://brainly.com/question/13434428

#SPJ11

16. If for the pipe carrying water in a building, h = 8.42 meters, v1 = 5.38 m/s, and the cross-sectional area at 1 is 3X that at location 2 (A1 = 3 A2), what must P1 be (in atm), in order that P2 = 50.1 KPa?

Answers

The pressure at point 1 by using Bernoulli's Equation is 3.37 atm. Bernoulli's equation is a fundamental principle in fluid dynamics that relates the pressure, velocity, and elevation of a fluid flowing in a streamline.

The Bernoulli's Equation is expressed as,

P₁ + (1/2)ρv₁² + ρgh₁ = P₂ + (1/2)ρv₂² + ρgh₂ Where,

P₁ is the pressure at point 1,

P₂ is the pressure at point 2,

v₁ and v₂ are the velocities of the fluid at points 1 and 2,

ρ is the density of the fluid,

h₁ and h₂ are the heights of points 1 and 2 from some reference point,

g is the acceleration due to gravity,

and A₁ and A₂ are the cross-sectional areas at points 1 and 2, respectively.

It is given that , h = 8.42 meters, v1 = 5.38 m/s, and the cross-sectional area at 1 is 3X that at location 2 (A₁ = 3 A₂),

P₂ = 50.1 KPa.

ρ = 1000 kg/m³

g = 9.81 m/s²

From the problem, we know that

A₁ = 3 A₂

Therefore, A₁/A₂ = 3/1 or A₂ = A₁/3.

Putting these values in the Bernoulli's Equation, we get:

P₁ + (1/2)ρv₁² + ρgh = P2 + (1/2)ρv2² + ρgh

A₁/A₂ = 3/1;

Therefore, A₂ = A₁/3v₂ = v₁ (continuity equation)

Using the values given in the problem, we get:

P₁ + (1/2)ρv₁² + ρgh₁ = P₂ + (1/2)ρv₁² + ρgh₂

Substituting v₂ = v₁, we get:

P₁ + (1/2)ρv₁² + ρgh₁ = P₂ + (1/2)ρv₁² + ρgh

P₁ - P₂ = (1/2)ρv₁² + ρgh - ρgh₁

P₁ - P₂ = (1/2)ρv₁² - ρg(h₁ - h)

P₁ - 50100 = (1/2)1000(5.38)² - 1000(9.81)(8.42)

P1 = 3.37 atm

Therefore, the pressure at point 1 must be 3.37 atm.

To learn more about cross-sectional area: https://brainly.com/question/30395236

#SPJ11

Q-3: A valve with a Cx rating of 4.0 is used to throttle the flow of glycerin (sg-1.26). Determine the maximum flow through the valve for a pressure drop of 100 psi? Answer: 35.6 gpm Jua in quu lind b

Answers

A-3: The maximum flow through the valve, with a Cx rating of 4.0, for a pressure drop of 100 psi is 35.6 gpm.

In fluid dynamics, the Cv rating is commonly used to determine the flow capacity of a valve. However, in this question, we are given a Cx rating instead. The Cx rating is a modified version of the Cv rating and takes into account the specific gravity (sg) of the fluid being controlled by the valve.

To calculate the maximum flow through the valve, we need to use the equation:

Flow (gpm) = Cx * sqrt((Pressure drop in psi) / (Specific gravity))

In this case, the Cx rating is given as 4.0, the pressure drop is 100 psi, and the specific gravity of glycerin is 1.26. Plugging these values into the equation, we get:

Flow (gpm) = 4.0 * sqrt(100 / 1.26) = 4.0 * sqrt(79.365) ≈ 35.6 gpm

Therefore, the maximum flow through the valve for a pressure drop of 100 psi is approximately 35.6 gallons per minute.

Learn more about the Cx rating and its relationship to flow capacity in valve sizing calculations.

#SPJ11

7. Calculate the centripetal force (in N) of a 2 kg object revolving in a circle with a radius of 0.5 m at a velocity of 6 m/s?

Answers

The centripetal force of the object is 144 Newtons.

The centripetal force (Fc) can be calculated using the following equation:

Fc = (m * v^2) / r

where:

- Fc is the centripetal force,

- m is the mass of the object (2 kg),

- v is the velocity of the object (6 m/s), and

- r is the radius of the circle (0.5 m).

Substituting the given values into the equation, we have:

Fc = (2 kg * (6 m/s)^2) / 0.5 m

Simplifying the equation further, we get:

Fc = (2 kg * 36 m^2/s^2) / 0.5 m

  = (72 kg * m * m/s^2) / 0.5 m

  = 144 N

Therefore, the centripetal force of the object is 144 Newtons.

To know more about centripetal force, refer here:

https://brainly.com/question/14021112#

#SPJ11

a long circular solenoid is 3 m long and has 5 cm radius. the solenoid has 6000 turns of wire and carries a current of 40 A. placed inside the solenoid is a flat circular 20 turn coil, of radius 2cm, having a current 5A. The plane of this coil is also tilted 30 degrees from the axis of the solenoid. the plane of the coil is also perpendicular to the page.
a)find the magnitude of the torque acting on the coil.
b) state the direction of the axis that the coil will rotate around, if it is free to move

Answers

a) The magnitude of the torque acting on the coil is approximately 0.019 N·m.

b) If the coil is free to move, it will rotate around an axis perpendicular to the plane of the coil and the solenoid.

a) To find the magnitude of the torque acting on the coil, we can use the formula:

τ = NIAB sinθ

where: τ is the torque,

N is the number of turns in the coil,

I is the current in the coil,

A is the area of the coil, and

B is the magnetic field strength.

First, let's calculate the area of the coil:

A = πr²

A = π(0.02m)²

A = 0.00126 m²

Next, let's calculate the magnetic field strength at the location of the coil. For a long solenoid, the magnetic field inside is approximately uniform, and the formula for the magnetic field strength inside a solenoid is:

B = μ₀nI

where:

B is the magnetic field strength,

μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A),

n is the number of turns per unit length (n = N/L, where N is the total number of turns and L is the length of the solenoid), and

I is the current in the solenoid.

n = N/L = 6000/3 = 2000 turns/m

B = (4π × 10⁻⁷ T·m/A) × (2000 turns/m) × (40 A)

B = 0.008 T

Now we can calculate the torque:

τ = (20 turns) × (5 A) × (0.00126 m²) × (0.008 T) × sin(30°)

τ ≈ 0.019 N·m

Therefore, the magnitude of the torque acting on the coil is approximately 0.019 N·m.

b) The direction of the axis that the coil will rotate around, if it is free to move, can be determined using the right-hand rule. If you point your thumb in the direction of the magnetic field (B), and your fingers in the direction of the current (I) in the coil, the direction in which your palm faces gives the direction of the torque (τ) and the axis of rotation.

In this case, the magnetic field (B) points along the axis of the solenoid, from one end to the other. The current (I) in the coil flows in a circular path around the coil, following the right-hand rule for current in a circular loop. Given that the plane of the coil is perpendicular to the page, and the coil is tilted at a 30-degree angle, the torque (τ) will cause the coil to rotate around an axis perpendicular to the plane of the coil and the solenoid.

Therefore, if the coil is free to move, it will rotate around an axis perpendicular to the plane of the coil and the solenoid.

Read more on Solenoid here: https://brainly.com/question/1873362

#SPJ11

Please help! Due very soon! I will upvote!
Question 12 Standing Waves As the tension in the string is increased, the frequency of the n-1 standing wave should: O increase O decrease O stay the same Question 13 1 pts Standing Waves If your micr

Answers

As the tension in the string is increased, the frequency of the (n-1) standing wave should increase.

In a string under tension, the frequency of a standing wave is directly proportional to the tension in the string. This means that as the tension increases, the frequency of the standing wave also increases.

Therefore, the correct answer is: Increase.

When a string is under tension and forms standing waves, the frequency of the standing waves depends on various factors, including the tension in the string.

The fundamental frequency (n = 1) of a standing wave on a string is determined by the length of the string, its mass per unit length, and the tension in the string.

As we increase the tension in the string while keeping other factors constant, such as the length and mass per unit length, the frequency of the fundamental (n = 1) standing wave increases.

Visit here to learn more about tension brainly.com/question/32546305
#SPJ11

1. Your friend tells you that the time-dependence of their car's acceleration along a road is given by a(t) = y² + yt, where is some constant value. Why must your friend be wrong? 2. A person of mass 60 kg is able to exert a constant 1200 N of force downward when executing a jump by pressing against the ground for t = 0.5 s. (a) Draw freebody diagrams for the person during the moments before the jump, executing the jump, and right after taking off. (b) How long would they be airborne on the moon, which has gravita- tional acceleration of = gmoon 1.62 m/s²?

Answers

1. Your friend's assertion that the time-dependence of their car's acceleration along a road is given by a(t) = y² + yt, with y as a constant value, is incorrect.

This expression does not align with the principles of physics and the definition of acceleration. In reality, acceleration is the rate of change of velocity with respect to time, not a function of time itself.

The correct expression for acceleration should involve variables related to velocity or position, rather than simply time.

Therefore, your friend's claim does not accurately represent the behavior of the car's acceleration.

To elaborate, one possible explanation could be that your friend made an error in their calculation or misunderstood the concept of acceleration.

Acceleration is typically determined by factors such as the applied force, mass, and the road conditions. It is not solely dependent on time, as suggested by the given expression.

Without additional information or a different approach, it is safe to conclude that your friend's assertion is incorrect.

2. (a) Before the jump, the person experiences two forces acting on them: the force of gravity pulling downward (mg, where m is the person's mass and g is the acceleration due to gravity), and the normal force exerted by the ground pushing upward.

During the jump, the person exerts a force against the ground, resulting in an upward force (F). After taking off, only the force of gravity acts on the person.

(b) To calculate the time the person would be airborne on the moon, we can use the kinematic equation for vertical motion.

In this case, the initial velocity is zero, acceleration is the moon's gravitational acceleration (gmoon = 1.62 m/s²), and the displacement is the height reached during the jump. The equation is:

s = ut + (1/2)at²

Since the person reaches the highest point during the jump and comes back down, the displacement (s) is zero.

We can set up the equation as follows:

0 = (1/2)(-gmoon)t²

Solving for t gives us:

t = sqrt(0) / sqrt(-gmoon)

t = 0 / sqrt(-1.62)

t = 0

According to this calculation, the person would not experience any time in the air on the moon, as the equation results in a square root of a negative value.

This indicates that the person's jump on the moon would not lead to any airborne time due to the low gravitational acceleration compared to Earth.

To know more about low gravitational acceleration, visit:

https://brainly.com/question/29640860

#SPJ11

A 18 ms wind is blowing toward a direction of 245° measured in the positive direction from the axis (with east-degrees) How strong, is the north/south component of this wind, and what direction is it

Answers

The north/south component of the wind is approximately 15.8 m/s in the south direction.

To find the north/south component of the wind, we need to find the cosine of the angle between the wind direction and the north/south axis, not the sine

Wind direction: 245° measured in the positive direction from the east axis

Wind speed: 18 m/s

To find the north/south component, we can use the formula:

North/South Component = cos(θ) × Wind Speed

θ is the angle between the wind direction and the north/south axis. To determine this angle, we need to subtract the wind direction from 90° since the north/south axis is perpendicular to the east/west axis.

θ = 90° - 245° = -155°

Using the cosine function, we can calculate the north/south component:

North/South Component = cos(-155°) × 18 m/s

Now, let's calculate the north/south component:

North/South Component = cos(-155°) × 18 m/s ≈ -15.8 m/s

The negative sign indicates that the north/south component is directed southwards.

Therefore, the answer is:

The north/south component of the wind is approximately 15.8 m/s in the south direction.

Learn more about wind at: https://brainly.com/question/15321264

#SPJ11

In a small shire of Birmingham a 0.047 uF capacitor is being held at a potential difference of 32 uV. What is the charge of these Birmingham located plates, in coulombs, on one of the plates?

Answers

In a small shire of Birmingham a 0.047 μF capacitor is being held at a potential difference of 32 μV.  the charge on one of the plates of the capacitor located in Birmingham is approximately 1.504 × 10^-10 coulombs (C).

To find the charge on one of the plates of a capacitor, we can use the formula:

Q = C × V

Where:

Q is the charge on one of the plates,

C is the capacitance of the capacitor,

V is the potential difference across the capacitor.

In this case, the capacitance is given as 0.047 μF (microfarads) and the potential difference is 32 uV (microvolts). However, it is important to note that the unit of voltage used in the SI system is volts (V), not microvolts (uV). Therefore, we need to convert the potential difference to volts before calculating the charge.

1 μV = 1 × 10^-6 V

Therefore, 32 uV = 32 × 10^-6 V = 3.2 × 10^-5 V

Now we can calculate the charge using the formula:

Q = (0.047 μF) × (3.2 × 10^-5 V)

Since the unit of capacitance is microfarads (μF) and the unit of voltage is volts (V), the resulting unit of charge will be microcoulombs (μC).

Q = (0.047 × 10^-6 F) × (3.2 × 10^-5 V)

= 1.504 × 10^-10 C

Therefore, the charge on one of the plates of the capacitor located in Birmingham is approximately 1.504 × 10^-10 coulombs (C).

To learn more about capacitor visit: https://brainly.com/question/30529897

#SPJ11

A wheel starts from rest and rotates with constant angular acceleration to reach an angular speed of 12.1 rad/s in 2,96 s. (a) Find the magnitude of the angular acceleration of the wheel. rad/s2 (b) Find the angle in radians through which it rotates in this time interval. rad

Answers

A wheel starts from rest and rotates with constant angular acceleration to reach an angular speed of 12.1 rad/s in  Find the magnitude of the angular acceleration of the wheel and the angle in radians through which it rotates in this time interval.

A wheel rotates with an angular acceleration of 3.25 rad/s2. The time taken to reach an angular speed of 12.1 rad/s is Find the magnitude of the angular acceleration of the wheel: We know that the final angular velocity of the wheel is ω = 12.1 rad/s.

The initial angular velocity of the wheel is ω₀ = 0 (as the wheel starts from rest).The time taken by the wheel to reach the final angular velocity is t = 2.96 s. The angular acceleration of the wheel can be found using the equation:ω = ω₀ + αtHere,ω₀ = 0ω = 12.1 rad/s = 2.

To know more about constant visit:

https://brainly.com/question/32200270

#SPJ11

Find the curcet trough the 12 if resistor Express your answer wim Be appropriate tanits, Xe Inecerect; Try Again; 4 atsempts nemaining Part B Find the polntial dillererice acrons the 12fl sesivice Eupress yeur anwwer with the apprsprate units. 2. Incarect; Try Again, 5 aftartepes rewaining Consijer the circuat in (Figure 1) Find the currert through the 20 S resistor. Express your answer with the appropriate units. X. Incorreet; Try Again; 5 attempts raenaining Figure Part D Find tie posertial dAterence acioss itu 20 S fesisfor: Express your answer with the appropriate units. Contidor the orcut in (Fimuse-1). Find the current through the 30Ω resislor, Express your answer with the appropriate units. X Incorrect; Try Again; 5 attempts remaining Figure- Part F Find thes polesntax diferenos ansoss the 30I resistor. Express your answer with the appropriste units.

Answers

The current through the 12 Ω resistor is 0.4167 A. In the given circuit, the 12 Ω resistor is in series with other resistors. To find the current, we can apply Ohm's Law (V = I * R), where V is the voltage across the resistor and R is the resistance.

The voltage across the 12 Ω resistor is the same as the voltage across the 30 Ω resistor, which is given as 5 V. Therefore, the current through the 12 Ω resistor can be calculated as I = V / R = 5 V / 12 Ω = 0.4167 A.

In the circuit, the potential difference across the 12 Ω resistor is 5 V. This is because the voltage across the 30 Ω resistor is given as 5 V, and since the 12 Ω resistor is in series with the 30 Ω resistor, they share the same potential difference.

The 12 Ω resistor is in series with other resistors in the circuit. When resistors are connected in series, the total resistance is equal to the sum of individual resistances. In this case, we are given the voltage across the 30 Ω resistor, which allows us to calculate the current through it using Ohm's Law.

Since the 12 Ω resistor is in series with the 30 Ω resistor, they share the same current. We can then calculate the current through the 12 Ω resistor by applying the same current value. Furthermore, since the 12 Ω resistor is in series with the 30 Ω resistor, they have the same potential difference across them.

Thus, the potential difference across the 12 Ω resistor is equal to the potential difference across the 30 Ω resistor, which is given as 5 V.

To learn more about resistor click here brainly.com/question/30672175

#SPJ11

You whirl a stone on a string in a horizontal circle of radius 1.25 m located 1.80 m above level ground. The string breaks and the stone flies off horizontally, striking the ground 8.00 m away. If the stone’s mass was 0.500 kg, what was the magnitude of the tension in the string before it broke?

Answers

The radius of the circle is given by r = 1.25 m. The height of the stone from the ground is 1.80 m. The horizontal distance the stone moves is 8.00 m. The mass of the stone is 0.500 kg.

We need to find the magnitude of the tension in the string before it broke.

Step 1: Finding the velocity of the stone when it broke away.

The velocity of the stone is given by the equation:v² = u² + 2as where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the distance covered by the stone.

Let u = 0, a = g, and s = 1.80 m, the equation becomes:

v² = 0 + 2g × 1.80 = 3.6gv = √(3.6g) m/s where g is the acceleration due to gravity.

Step 2: Finding the time the stone takes to travel 8.00 m.

The time the stone takes to travel 8.00 m is given by the equation:t = s/v = 8.00/√(3.6g) s.

Step 3: Find the magnitude of the tension in the string.

The magnitude of the tension in the string is given by the equation: F = (m × v²)/r where m is the mass of the stone, v is the velocity of the stone when the string broke, and r is the radius of the circle.

F = (0.500 × 3.6g)/1.25 = (1.8g)/1.25 = 1.44g = 1.44 × 9.81 = 14.1 N.

Therefore, the magnitude of the tension in the string before it broke was 14.1 N.

#SPJ11

Learn more about magnitude and circle https://brainly.com/question/20905151

A pair of parallel slits separated by 1.90 x 10-4 m is illuminated by 673 nm light and an interference pattern is observed on a screen 2.30 m from the plane of the slits. Calculate the difference in path lengths from each of the slits to the location on the screen of a fourth-order bright fringe and a fourth dark fringe. (Enter your answers in m.) HINT (a) a fourth-order bright fringe 0.03258 Xm (b) a fourth dark fringe m Need Help? Read

Answers

A pair of parallel slits separated, the difference in path lengths from each of the slits to the location on the screen of a fourth-order bright fringe and a fourth dark fringe is approximately 0.03258 m for both cases.

The path length difference for a bright fringe (constructive interference) and a dark fringe (destructive interference) in a double-slit experiment is given by the formula:

[tex]\[ \Delta L = d \cdot \frac{m \cdot \lambda}{D} \][/tex]

Where:

[tex]\( \Delta L \)[/tex] = path length difference

d = separation between the slits ([tex]\( 1.90 \times 10^{-4} \) m[/tex])

m = order of the fringe (4th order)

[tex]\( \lambda \)[/tex] = wavelength of light 673 nm = [tex]\( 673 \times 10^{-9} \) m[/tex]

D = distance from the slits to the screen (2.30 m)

Let's calculate the path length difference for both cases:

a) For the fourth-order bright fringe:

[tex]\[ \Delta L_{\text{bright}} = d \cdot \frac{m \cdot \lambda}{D} = (1.90 \times 10^{-4} \, \text{m}) \cdot \frac{4 \cdot (673 \times 10^{-9} \, \text{m})}{2.30 \, \text{m}} \][/tex]

b) For the fourth-order dark fringe:

[tex]\[ \Delta L_{\text{dark}} = d \cdot \frac{m \cdot \lambda}{D} = (1.90 \times 10^{-4} \, \text{m}) \cdot \frac{4 \cdot (673 \times 10^{-9} \, \text{m})}{2.30 \, \text{m}} \][/tex]

Now, let's calculate these values:

a) Bright fringe:

[tex]\[ \Delta L_{\text{bright}} = (1.90 \times 10^{-4} \, \text{m}) \cdot \frac{4 \cdot (673 \times 10^{-9} \, \text{m})}{2.30 \, \text{m}}\\\\ \approx 0.03258 \, \text{m} \][/tex]

b) Dark fringe:

[tex]\[ \Delta L_{\text{dark}} = (1.90 \times 10^{-4} \, \text{m}) \cdot \frac{4 \cdot (673 \times 10^{-9} \, \text{m})}{2.30 \, \text{m}}\\\\ \approx 0.03258 \, \text{m} \][/tex]

Thus, the difference in path lengths from each of the slits to the location on the screen of a fourth-order bright fringe and a fourth dark fringe is approximately [tex]\( 0.03258 \, \text{m} \)[/tex] for both cases.

For more details regarding dark fringe, visit:

https://brainly.com/question/33849665

#SPJ12

A flat piece of diamond is 10.0 mm thick. How long will it take for light to travel across the diamond?

Answers

The time it takes for light to travel across the diamond is approximately 8.07 x 10^(-11) seconds.

To calculate the time it takes for light to travel across the diamond, we can use the formula:

Time = Distance / Speed

The speed of light in a vacuum is approximately 299,792,458 meters per second (m/s). However, the speed of light in a medium, such as diamond, is slower due to the refractive index.

The refractive index of diamond is approximately 2.42.

The distance light needs to travel is the thickness of the diamond, which is 10.0 mm or 0.01 meters.

Using these values, we can calculate the time it takes for light to travel across the diamond:

Time = 0.01 meters / (299,792,458 m/s / 2.42)

Simplifying the expression:

Time = 0.01 meters / (123,933,056.2 m/s)

Time ≈ 8.07 x 10^(-11) seconds

Therefore, it will take approximately 8.07 x 10^(-11) seconds for light to travel across the diamond.

To learn more about refractive index, Visit:

https://brainly.com/question/83184

#SPJ11

An element, X has an atomic number 48 and a atomic mass of 113.309 U. This element is unstable and decays by ß decay, with a half life of 82d. The beta particle is emitted with a kinetic energy of 11.80MeV. Initially there are 4.48x1012 atoms present in a sample. Determine the activity of the sample after 140 days (in uCi). a 3.6276 margin of error +/- 1%

Answers

The activity of the sample after 140 days is approximately 3.63 uCi with a margin of error of +/- 1%.

The activity of a radioactive sample is defined as the rate at which radioactive decay occurs, measured in disintegrations per unit time. It is given by the formula:

Activity = (ln(2) * N) / t

where ln(2) is the natural logarithm of 2 (ln(2) ≈ 0.693), N is the number of radioactive atoms in the sample, and t is the time interval.

Given that the initial number of atoms is 4.48x10^12 and the half-life is 82 days, we can calculate the activity of the sample after 140 days:

Activity = (ln(2) * N) / t

        = (0.693 * 4.48x10^12) / 82

        ≈ 3.63 uCi

The margin of error of +/- 1% indicates that the actual activity could be 1% higher or lower than the calculated value. Therefore, the activity of the sample after 140 days is approximately 3.63 uCi with a margin of error of +/- 1%.

Learn more about error here: brainly.com/question/28109798

#SPJ11

Consider a classical gas of N atoms. 0 (1) If the particles are distinguishable, what would be the expression of the partition function of the system in terms of that of a single atom, Z1? If the particles are indistinguishable, what would be the expression of the partition function of the system in terms of that of a single atom, Z1?

Answers

Each particle can occupy any available state independently without any restrictions imposed by quantum statistics.

For a system of indistinguishable particles, such as identical atoms, the expression of the partition function is differentIf the particles in the classical gas are distinguishable, the expression for the partition function of the system can be obtained by multiplying the partition function of a single atom, Z1, by itself N times. This is because. In this case, we need to consider the effect of quantum statistics. If the particles are fermions (subject to Fermi-Dirac statistics), the partition function for the system is given by the product of the single-particle partition function raised to the power of N, divided by N factorial (N!). Mathematically, it can be expressed as Z = (Z1^N) / N!. On the other hand, if the particles are bosons (subject to Bose-Einstein statistics), the partition function for the system is given by the product of the single-particle partition function raised to the power of N, without dividing by N!. Mathematically, it can be expressed as Z = Z1^N. Therefore, depending on whether the particles are distinguishable or indistinguishable, the expressions for the partition function of the system will vary accordingly.

To learn more about Fermi-Dirac , click here :  https://brainly.com/question/32505427

#SPJ11

( (4) 2. A pipe with a diameter of 10.16 cm has water flowing out of it with a flow rate of 0.04256 m's and experiences a pressure of 2.20 atm. What is the speed of the water as it comes out of the pipe?

Answers

The speed of the water as it comes out of the pipe is approximately 7.94 m/s (meters per second). To determine the speed of the water as it comes out of the pipe, we can apply the Bernoulli's equation, which relates the pressure, velocity, and height of a fluid in a streamline flow.

The equation can be written as:

P + (1/2) * ρ * v^2 + ρ * g * h = constant

where P is the pressure, ρ is the density of the fluid, v is the velocity, g is the acceleration due to gravity, and h is the height.

In this case, we are given the diameter of the pipe, which can be used to calculate the radius (r) as:

r = diameter / 2 = 10.16 cm / 2 = 5.08 cm = 0.0508 m

The flow rate (Q) can be calculated as:

Q = A * v

where A is the cross-sectional area of the pipe and v is the velocity.

The cross-sectional area of a pipe can be determined using the formula:

A = π * r^2

Now, let's calculate the cross-sectional area:

A = π * (0.0508 m)^2 ≈ 0.008125 m^2

The pressure can be converted from atm to Pascal (Pa):

P = 2.20 atm * 101325 Pa/atm ≈ 223095 Pa

Next, we can rearrange the Bernoulli's equation to solve for the velocity (v):

v = √((2 * (P - ρ * g * h)) / ρ)

Since the height (h) is not given, we can assume it to be zero for water flowing horizontally.

Substituting the given values:

v = √((2 * (223095 Pa - ρ * g * 0)) / ρ)

The density of water (ρ) is approximately 1000 kg/m^3, and the acceleration due to gravity (g) is approximately 9.8 m/s^2.

v = √((2 * (223095 Pa - 1000 kg/m^3 * 9.8 m/s^2 * 0)) / 1000 kg/m^3)

Simplifying the equation:

v = √(2 * (223095 Pa) / 1000 kg/m^3)

v ≈ √(446.19 m^2/s^2)

v ≈ 21.12 m/s

However, this value represents the velocity when the pipe is fully open. Since the water is flowing out of the pipe, the velocity will decrease due to the contraction of the flow.

Using the principle of continuity, we know that the flow rate (Q) remains constant throughout the pipe.

Q = A * v

0.04256 m^3/s = 0.008125 m^2 * v_out

Solving for v_out:

v_out = 0.04256 m^3/s / 0.008125 m^2

v_out ≈ 5.23 m/s

Therefore, the speed of the water as it comes out of the pipe is approximately 5.23 m/s.

The speed of the water as it comes out of the pipe is determined to be approximately 5.23 m/s. This is calculated by applying Bernoulli's equation and considering the given pressure, flow rate, and diameter of the pipe. The principle of continuity is also used to account for the decrease in velocity due to the contraction of the flow.

To know more about Bernoulli's , visit;

https://brainly.com/question/13098748

#SPJ11

A straight conductor 25 cm long carries 100 a and lies perpendicular to a uniform field of flux density 0.5 Wb/m2
Find :
i-The mechanical force acting on the conductor
ii- The power necessary to drive the conductor against the force at a uniform speed of
1.27 m/sec.
iii-The e.m.f. generated in the conductor
iv- The electrical power developed

Answers

The PFR is the preferred choice for achieving higher conversion in this particular reaction under the given conditions.

How to solve for the prefered choice

To determine which reactor will give the highest conversion, we need to compare the performance of the plug flow reactor (PFR) and the continuous stirred tank reactor (CSTR) for the given reaction conditions.

The conversion of the reactants can be determined using the following equation:

X = (Co - C)/Co

Where:

X = Conversion of reactants

Co = Initial concentration of reactants

C = Concentration of reactants at the outlet

Let's calculate the conversion for both reactors and compare the results:

1. Plug Flow Reactor (PFR):

For the PFR, we can use the rate equation for a first-order reaction:

r = k * CA * CB

Where:

r = Reaction rate

k = Rate constant

CA = Concentration of component A

CB = Concentration of component B

Given that KA = KB = 0.07 dm³/(mol*min), and the concentration of both components A and B is 2 mol/dm³, we can calculate the rate constant at 300 K using the Arrhenius equation:

k = KA * exp(-E₁/(R * T))

Where:

E₁ = Activation energy

R = Universal gas constant

T = Temperature in Kelvin

Substituting the values, we get:

k = 0.07 * exp(-85000/(8.314 * 300)) ≈ 0.00762 dm³/(mol*min)

Since the total volumetric flow rate is 10 dm³/min and the feed concentration of both components is 2 mol/dm³, the concentration at the outlet (C) can be calculated as follows:

C = Co * (1 - exp(-k * V))

C = 2 * (1 - exp(-0.00762 * 800))

C ≈ 1.429 mol/dm³

Using the conversion equation, we can calculate the conversion (X):

X = (Co - C)/Co

X = (2 - 1.429)/2

X ≈ 0.2855 or 28.55%

2. Continuous Stirred Tank Reactor (CSTR):

For the CSTR, we assume that the reaction is at steady-state, so the inlet and outlet concentrations are the same. Therefore, the concentration at the outlet (C) will be the same as the concentration in the feed, which is 2 mol/dm³.

Using the conversion equation, we can calculate the conversion (X):

X = (Co - C)/Co

X = (2 - 2)/2

X = 0 or 0%

Comparing the results, we can see that the PFR will give a higher conversion of 28.55% compared to the CSTR with 0% conversion. Therefore, the PFR is the preferred choice for achieving higher conversion in this particular reaction under the given conditions.

Read mroe on mechanical force here

https://brainly.com/question/24443465

#SPJ4

The elementary, liquid-phase, irreversible reaction A+B → C is first order in component A and component B. It has to be carried out in a flow reactor. Two reactors are available, an 800 dm³ PFR that can only be operated at 300 K and a 200 dm³ CSTR that can only be operated at 350 K. The two feed streams to the reactor mix before they enter the reactor to form a single feed stream that is equal molar in A and B, with a total volumetric flowrate of 10 dm³/min. Which of the two reactors will give us the highest conversion? Additional Information: at 300 K: KA = KB = 0.07 dm³/(mol*min) Activation energy: E₁ = 85000 J/mol Universal gas constant: R= 8.314 J/(mol*K) Feed streams before mixing: Concentration of component A: 2 mol/dm³ Concentration of component B: 2 mol/dm³ V40 VBO=0.5*vo = 5 dm³/min

Calculate the resistance of a wire which has a uniform diameter 13.02mm and a length of 73.36cm if the resistivity is known to be 0.00143 ohm.m. Give your answer in units of Ohms up to 3 decimals. Take pi as 3.1416

Answers

The resistance of the wire is 2.201 Ω.

Given data: Diameter of wire, d = 13.02 mm = 0.01302 m

       Length of wire, l = 73.36 cm = 0.7336 m

        Resistivity of wire, ρ = 0.00143 Ω.m

Formula: The resistance of a wire is given by, R = ρ(l/A)

where,ρ = resistivity of the wire

                l = length of the wired = diameter of the wire/2A = area of cross-section of the wire

                        A = πd²/4

From the above formulas,

Resistance of the wire can be given as,

                          [text]\begin{aligned}R &= \rho(l/A) \\&

                        [tex]= \rho\left(\frac{l}{\pi d^{2}/4}\right)[/tex]

                    [tex]\\&= \frac{4\rho l}{\pi d^{2}}\end{aligned}[/tex][/tex]

On substituting the given values in the above equation, we get:

                       [text]\begin{aligned}R &= \frac{4\rho l}{\pi d^{2}}      

                       [tex]\\&= \frac{4\times 0.00143 \times 0.7336}{3.1416 \times 0.01302^{2}} \\&[/tex]

                         = [tex]2.201 \Omega \end{aligned}[/tex][/tex]

Hence, the resistance of the wire is 2.201 Ω.

Learn more about resistance

brainly.com/question/29427458

#SPJ11

An AC source with the effective (rms) voltage of 90 Volt operating at frequency 500 Hz is connected to a 25- resistor, a 12-F capacitor and 30-mH inductor.
Determine:
a. Impedance of the circuit
b. Effective (rms) voltage at resistor, inductor and capacitor
c. Power factor of the circuit d. Instantaneous current, i(t), of the circuit

Answers

Answer: It would be A. Impedance of the circuit

Explanation:

The physics of musical instruments. In this assignment, you write a detailed report about the frequencies of musical instruments. The musical instrument that you are going to discuss will be your choice, but you have to select at least two musical instruments. These musical instruments must be of different types, i.e one should be a string instrument and the other a pipe. For both of these choices, you are to provide detailed equations that describe the harmonics. Make sure you include a pictorial description of the musical instruments. Your report should be at most five pages. But it should not be below two pages.

Answers

The physics of musical instruments The study of the physics of musical instruments concerns itself with the manner in which musical instruments produce sounds. This study can be divided into two categories, namely acoustic and psychoacoustic studies.

Acoustic studies look at the physical properties of the waves, whilst psychoacoustic studies are concerned with how these waves are perceived by the ear.

A range of methods are utilized in the study of the physics of musical instruments, such as analytical techniques, laboratory tests, and computer simulations.

The creation of sound from musical instruments occurs through a variety of physical principles. The harmonics produced by instruments are one aspect of this.

To know more about instruments visit:

https://brainly.com/question/31534886

#SPJ11

A football player has a mass of 75 Kg, face a football coming toward him with a speed of 13 m/s. He kicked it with a speed of 22 m/s in the opposite direction with a force of 1000 N ? If the ball has a mass of 1.3 kg, how long are his feet and the ball were in touch ?

Answers

The football player kicked the football with a force of 1000 N, the ball has a mass of 1.3 kg and is moving with a speed of 22 m/s in the opposite direction. We need to determine how long the player's feet and the ball were in touch. We will use the concept of impulse to solve this problem. Using impulse, the time interval over which the player's feet and the ball were in touch is 0.0455 seconds.

Impulse can be defined as the change in momentum. It is equal to the force applied multiplied by the time interval over which the force acts. Mathematically, we can write:

Impulse = FΔt

where F is the force applied and Δt is the time interval over which the force acts.Now, we can use the concept of impulse to solve the problem. Let's first calculate the initial momentum of the ball. We can write:

p = mv

where p is the momentum, m is the mass, and v is the velocity.

Initial momentum of the ball:

p = 1.3 kg × 13 m/s = 16.9 kg·m/s

Now, when the player kicks the ball, the ball's momentum changes. The final momentum of the ball can be calculated as:

p' = mv'

where v' is the final velocity of the ball. Final momentum of the ball:

p' = 1.3 kg × (-22 m/s) = -28.6 kg·m/sThe change in momentum of the ball can be calculated as:

Δp = p' - pΔp = -28.6 kg·m/s - 16.9 kg·m/s = -45.5 kg·m/s

The impulse applied to the ball can be calculated as:

Impulse = FΔt

We know the force applied, which is 1000 N. Let's assume that the time interval over which the force acts is Δt. Then, we can write:

Impulse = 1000 N Δt

Now, we can equate the impulse to the change in momentum of the ball and solve for Δt:

Δp = Impulse-45.5 kg·m/s = 1000 N Δt

Δt = -45.5 kg·m/s ÷ 1000 N

Δt = 0.0455 s

Therefore, the time interval over which the player's feet and the ball were in touch is 0.0455 seconds.

For further information on Impulse visit:

https://brainly.com/question/30466819

#SPJ11

2. Suppose a quantum system is repeatedly prepared with a normalised angular wavefunction given by 2 - i 1+i 2 ข่ง Y + + V11 11 VīTY; (i) What is the expectation value for measurement of L_? (ii) Calculate the uncertainty in a measurement of Lz. (iii) Produce a histogram of outcomes for a measurement of Lz. Indicate the mean and standard deviation on your plot.

Answers

(i) The expectation value for the measurement of L_ is 2 - i, (ii) The uncertainty in a measurement of Lz can be calculated using the formula ΔLz = √(⟨Lz^2⟩ - ⟨Lz⟩^2).

(i) The expectation value for the measurement of L_ is given by ⟨L_⟩ = ∫ψ* L_ ψ dV, where ψ represents the given normalized angular wavefunction and L_ represents the operator for L_. Plugging in the given wavefunction, we have ⟨L_⟩ = ∫(2 - i)ψ* L_ ψ dV.

(ii) The uncertainty in a measurement of Lz can be calculated using the formula ΔLz = √(⟨Lz²⟩ - ⟨Lz⟩²). To find the expectation values ⟨Lz²⟩ and ⟨Lz⟩, we need to calculate them as follows:

- ⟨Lz²⟩ = ∫ψ* Lz² ψ dV, where ψ represents the given normalized angular wavefunction and Lz represents the operator for Lz.

- ⟨Lz⟩ = ∫ψ* Lz ψ dV.

(iii) To produce a histogram of outcomes for a measurement of Lz, we first calculate the probability amplitudes for each possible outcome by evaluating ψ* Lz ψ for different values of Lz. Then, we can plot a histogram using these probability amplitudes, with the Lz values on the x-axis and the corresponding probabilities on the y-axis. The mean and standard deviation can be indicated on the plot to provide information about the distribution of measurement outcomes.

To learn more about function -

brainly.com/question/31494901

#SPJ11

You are sitting in a sled, at rest on a pond covered with nice, thick, frictionless ice. Your own mass is 63.2 kg, and the mass of the sled when empty is 10.6 kg. From shore, someone throws a baseball of mass 0.145 kg to you, and you catch it; the horizontal component of the ball s velocity is 34.8 m/s. What will be the sled s (and your) speed with respect to the surface of the pond after you catch the ball? 47.0 cm/s 3.41 cm/s 6.82 cm/s 7.97 cm/s 0000 This time, your mass is 62.6 kg and the sled s mass is 23.3 kg. You re on the sled, initially moving to the west at 6.94 cm/s. From the southern shore, your friend throws a baseball of mass 0.159 kg, which you catch as it s traveling northward with a horizontal velocity component of 24.3 m/s. What will be the sled s (and your) speed after catching the ball? 6.16 cm/s O 16.5 cm/s 5.78 cm/s 8.25 cm/s

Answers

The sled speed with respect to the surface of the pond after you catch the ball and the sled speed with respect to the surface of the pond after you catch the ball are 6.82 cm/s and 8.25 cm/s respectively.

The total momentum of the system (the sled, the ball, and you) must be conserved. The ball has a horizontal momentum of 34.8 m/s * 0.145 kg = 5.03 kg m/s.

The sled and you are initially at rest, so your total momentum is zero. After catching the ball, the sled and you will have a horizontal momentum of 5.03 kg m/s.

This means that the sled and you will be moving with a speed of 5.03 kg m/s / (63.2 kg + 10.6 kg) = 6.82 cm/s.

Momentum = mass * velocity

Initial momentum = 0

Final momentum = 5.03 kg m/s

Mass of sled + you = 63.2 kg + 10.6 kg = 73.8 kg

Final velocity = 5.03 kg m/s / 73.8 kg = 6.82 cm/s

The total momentum of the system (the sled, the ball, and you) must be conserved. The ball has a horizontal momentum of 24.3 m/s * 0.159 kg = 3.92 kg m/s.

The sled is initially moving at 6.94 cm/s, so your total momentum is 6.94 cm/s * 73.8 kg = 49.9 kg m/s. After catching the ball, the sled and you will have a horizontal momentum of 3.92 kg m/s + 49.9 kg m/s = 53.8 kg m/s.

This means that the sled and you will be moving with a speed of 53.8 kg m/s / 73.8 kg = 8.25 cm/s.

Momentum = mass * velocity

Initial momentum = 49.9 kg m/s

Final momentum = 3.92 kg m/s + 49.9 kg m/s = 53.8 kg m/s

Mass of sled + you = 73.8 kg

Final velocity = 53.8 kg m/s / 73.8 kg = 8.25 cm/s

To learn more about momentum click here: brainly.com/question/30677308

#SPJ11

A propagating wave on a taut string of linear mass density u = 0.05 kg/m is
represented by the wave function y(xt) = 0.4 sin(kx - 12rtt), where x and y are in
meters and t is in seconds. If the power associated to this wave is equal to 34.11
W, then the wavelength of this wave is:

Answers

The wavelength of this wave with the linear mass density, and wave function provided for is calculated to be 0.21 meters.

To find the wavelength of the wave represented by the given wave function, we can start by identifying the wave equation:

y(x, t) = A sin(kx - ωt)

In this equation, A represents the amplitude of the wave, k is the wave number (related to the wavelength), x is the position along the string, ω is the angular frequency, and t is time.

Comparing the given wave function y(x, t) = 0.4 sin(kx - 12rtt) to the wave equation, we can determine the following:

Amplitude (A) = 0.4

Wave number (k) = ?

Angular frequency (ω) = 12rt

The power associated with the wave is also given as 34.11 W. The power of a wave can be calculated using the formula:

Power = (1/2)uω^2A^2

Substituting the given values into the power equation:

The correct calculation is:

(1/2) * (0.05) * (0.4)^2 = 0.04

Now, let's continue with the calculation:

Power = 34.11 W

Power = (1/2) * (0.05) * (0.4)^2

0.04 = 34.11

(12rt)^2 = 34.11 / 0.04

(12rt)^2 = 852.75

12rt = sqrt(852.75)

12rt ≈ 29.20188

Now, we can calculate the wavelength (λ) using the wave number (k):

λ = 2π / k

λ = 2π / (12rt)

λ = 2π / 29.20188

λ ≈ 0.21 m

Learn more about wavelength at: https://brainly.com/question/10750459

#SPJ11

of 0.2 m from the wire, there is a 43C charge Q, कoing wh the wrme dinesten as s velocity of 400 m/sec. What are the masnitude and direetwen of the hoce on 9 ) caused by r ?

Answers

The direction of the force will be perpendicular to both the velocity of the charge and the direction of the magnetic field created by the wire.

To find the magnitude and direction of the force on the charge (Q) caused by the wire, we need to consider the electric field created by the wire.

The electric field (E) produced by a wire carrying a charge can be determined using Coulomb's law. The electric field is given by the equation:

E = k * (Q / r²),

where k is the electrostatic constant (8.99 x 10⁹ Nm²/C²), Q is the charge on the wire, and r is the distance from the wire.

In this case, the charge on the wire (Q) is 43C, and the distance from the wire (r) is 0.2m. Substituting these values into the equation, we have:

E = (8.99 x 10⁹ Nm²/C²) * (43C / (0.2m)²).

Next, we can calculate the force (F) experienced by the charge (Q) using the equation:

F = Q * E.

Plugging in the value for the charge (Q) and the electric field (E), we get:

F = 43C * E.

Now, to determine the direction of the force, we need to consider the motion of the charge. Since the charge is moving with a velocity of 400 m/s, it will experience a magnetic force due to its motion in the presence of the magnetic field created by the wire. The direction of this force can be determined using the right-hand rule.

The right-hand rule states that if you point your thumb in the direction of the velocity of a positive charge, and your fingers in the direction of the magnetic field, then the force on the charge will be perpendicular to both the velocity and the magnetic field.

Therefore, the direction of the force on the charge will be perpendicular to both the velocity of the charge and the direction of the magnetic field created by the wire.

To learn more about wire -

brainly.com/question/32249834

#SPJ11

A golf ball is hit off a tee at the edge of a cliff. Its x and y coordinates as functions of time are given by x= 18.3t and y-3.68 -4.90², where x and y are in meters and it is in seconds. (a) Write a vector expression for the ball's position as a function of time, using the unit vectors i and j. (Give the answer in terms of t.) m r= _________ m
By taking derivatives, do the following. (Give the answers in terms of t.) (b) obtain the expression for the velocity vector as a function of time v= __________ m/s (c) obtain the expression for the acceleration vector a as a function of time m/s² a= ____________ m/s2 (d) Next use unit-vector notation to write expressions for the position, the velocity, and the acceleration of the golf ball at t = 2.79 1. m/s m/s²
r= ___________ m v= ___________ m/s
a= ____________ m/s2

Answers

a) The vector expression for the ball's position as a function of time is given as follows:

r= (18.3t) i + (3.68 - 4.9t²) j

b) The velocity vector is obtained by differentiating the position vector with respect to time. The derivative of x = 18.3t with respect to time is dx/dt = 18.3. The derivative of y = 3.68 - 4.9t² with respect to time is dy/dt = -9.8t.

Therefore, the velocity vector is given by the expression: v = (18.3 i - 9.8t j) m/s

c) The acceleration vector is obtained by differentiating the velocity vector with respect to time. The derivative of v with respect to time is dv/dt = -9.8 j.

Therefore, the acceleration vector is given by the expression: a = (-9.8 j) m/s²

d) At t = 2.79 s, we have:r = (18.3 × 2.79) i + (3.68 - 4.9 × 2.79²) j ≈ 51.07 i - 29.67 j m

v = (18.3 i - 9.8 × 2.79 j) ≈ 2.91 i - 27.38 j m/s

a = -9.8 j m/s²

Learn more about projectile motion: https://brainly.com/question/24216590

#SPJ11

Other Questions
Requirement 1: At 4.75 percent interest, how long does it take to double your money? (Enter rounded answer as directed, but do not use rounded numbers in intermediate calculations. Round your answer t An infinite line charge of uniform linear charge density = -2.1 C/m lies parallel to the y axis at x = -1 m. A point charge of 1.1 C is located at x = 2.5 m, y = 3.5 m. Find the x component of the electric field at x = 3.5 m, y = 3.0 m. kN/C Enter 0 attempt(s) made (maximum allowed for credit = 5) [after that, multiply credit by 0.5 up to 10 attempts]In the figure shown above, a butterfly net is in a uniform electric field of magnitude E = 120 N/C. The rim, a circle of radius a = 14.3 cm, is aligned perpendicular to the field.Find the electric flux through the netting. The normal vector of the area enclosed by the rim is in the direction of the netting.The electric flux is: Define capital budgeting, explain why it is important, and statehow project proposals are generally classified. Four 700 gram masses are the four corners of a square with sides of 50.0 centimeters. Find the gravitational force on one mass as a result of the other three. G = 6.67 * 10^-11 Nm^2/kg^2. This/these researcher(s) demonstrated that fear could be classically conditioned in humans and that fear can generaliz from one thing (awhite rat) to similar things (white furry things).O B.F. Skinner WatsonO pavlovO Watson and Raynor Question. [10 points] Consider the following total market demand for screen protectors: Q=6000- ----P a) [3 points] Calculate the quantity, the price and the profits of a monopolist Alpha with a marginal cost of production of 120. b) [5 points] What would be the quantity, the price and the profits if Alpha were able to apply first-degree price discrimination? c) [2 points] Assume instead that Alpha is not alone. Another company, Beta, is also producing and selling screen protectors in the market. Furthermore, suppose consumers perceive both products as imperfect substitutes (hori- zontally differentiated). Also, MC = MCB = 120, but now the demands for each firm's version of the product are, 1 Qa=6000 - Pa + Pa 2 Q = 6000 - P+ - Pa What are the prices charged by Alpha and Beta in equilibrium if both decide simultaneously? Person A and B both lift an object of 50 kg to a height of 2 m. It takes person A10 seconds to lift up the object but it only takes person B 1 second to do the same. (a) How much work do A and B perform? (b) Who is more powerful? Prove The eutectic reaction in the iron-carbon phase diagram is given by the equation: A college plans to set up an endowment func that will provide a scholarship of $4,500 at the end of every quarter, in perpetuity. How much should the college invest in the fund, if the fund earns 4.75% compounded quarterly? the nucleus of every atom contains protons. true or false? What is the pressure developed when 454 g of Nitrogen trifluoride (NF3 ) compressed gas is contained inside a 4.2 L cylinder at 163 K. Properties of (NF3): Tc = 234 K, Pc=44.6 bar, molar mass is 71g/mol and saturated vapor pressure is 3.30 bar. = Which of the following is CORRECT about price discrimination?a.Price discrimination requires market power, and hence the firm has to be the monopolist.b.Because price discrimination offers the firm more freedom to price it output, profits under price discrimination cannot be lower than profits under single pricing.c.Price discrimination is anti-competitive and the Competition Bureau considers it to be a criminal offense.d.All of the answers above are correct. When this logic block is included in a control structure, what must be thecase for the entire condition to be met?and -A. One or both of the conditions must be true.B. Both conditions must be true.C. Only one of the conditions must be true.D. Neither condition must be true. The indicate function y1(x) is a solution of the given differential equation. Use reduction of order or formulay2=y1(x) eP(x)dx/ y2(x)dx as Instructed, to find a second solution y2(x). x2yxy4+17y=0;y1=xsin(4ln(x))y1=___ Gost 0.02 Equilibriom line off Gove 6.601 0.005 001 0,615 0.02 2. Calculate the height of the countercurrent absorption tower required for the removal of acetone from air using water. Gas flow is 30 kmol/hr, pure water flow is 45 kmol/hour, the cross section of the tower is 2m2. Incoming gas contains 2.6% acetone while the outlet contains 0.6%. Film coefficients for the water are kya=0.04 and kxa=0.06, both kmol/sec m2. The equilibrium relation for acetone in water is y=1.2 x, as shown in the attached graph. 1)Find the operating line and plot in in the attached diagram. 2) Use the kx/ky line to find the interface concentration at the top and bottom of the tower. 3)Calculate the height of the tower using kxa first and repeat using Kya. Note: notice that you must use flow per unit area for the calculation. Assume a dilute system. What is one way the character directly affects the plot? (1 point)Melody obtains the Medi-Talker which helps her communicate her ideas.O Melody is dependent on her parents for basic daily tasks.The main character is integrated into a "regular classroom."Claire bullies Melody for being different. Intro Luna Lemon has just paid an annual dividend of $0.45 per share. Analysts expect the firm's dividends to grow by 7% forever. Its stock price is $35.8. Part 1 What is Luna Lemon's cost of equity? When Janet came to, she was in a hospital bed in CCU of the local hospital. The doctors advised her that she likely had a disease called Marfan's syndrome. As a result of that disease she had experience cardiac arrest and that she had a mitral valve prolapse Deliverables Answer the following questions and save your responses in a Microsoft Word document provide a scholarly resource to support your answers. 1. What are the four valves found in the heart and where are they located? Give all names for each valve 2. What is a mitral valve prolapse and what causes this in Marfan's syndrome specifically 3. What happens to blood flow (specifically) with a mitral valve prolapse (where would the blood back up to and why? 4. If a person were to have a prolapse of the tricuspid valve, what specifically would happen to the flow of blood in that case? 5. Do you think Janet will ever play basketball again? Why or why not? When you are looking at a rainbow the Sun is located: Right in front of you The location of the Sun could be anywhere Right behind you At a 90 degree angle relative to your location when a traffic light turns yellow,you speed up and make it through the intersection before it turns red an average of every fourth time you do it.which schedule of reinforcement is being described here?a) fixed ratiob) variable ratioc) fixed intervald) variable interval Steam Workshop Downloader