Let us calculate the initial temperature in degrees Celsius of the forging. We know that the hot metal forging has a mass of 70.3 kg and a specific heat capacity of 434 J/(kg C°).
Also, we know that to harden it, the forging is quenched by immersion in 834 kg of oil that has a temperature of 39.9°C and a specific heat capacity of 2680 J/(kg C°).
The final temperature of the oil and forging at thermal equilibrium is 68.5°C. Since we are assuming that heat flows only between the forging and the oil, we can equate the heat gained by the oil with the heat lost by the forging using the formula.
To know more about metal visit:
https://brainly.com/question/29404080
#SPJ11
a 36. Will Maynez burns a 0.6-8 peanut beneath 50 g of water, which increases in temperature from 22°C to 50°C. (The specific heat capacity of water is 1.0 cal/g.°C.) a. Assuming that 40% of the heat released by the burn- ing peanut makes its way to the water (40% efficiency), show that the peanut's food value is 3500 calories (equivalently, 3.5 Calories). b. Then show how the food value in calories per gram is 5.8 kcal/g (or 5.8 Cal/g).
When a 0.68 g peanut is burned beneath 50 g of water.The food value is found to be 3500 calories or 3.5 Calories. Additionally, the food value in calories per gram is calculated to be 5.8 kcal/g or 5.8 Cal/g.
a. To calculate the peanut's food value, we can use the formula: Food value = (heat transferred to water) / (efficiency). First, we need to determine the heat transferred to the water. We can use the formula: Heat transferred = mass of water × specific heat capacity × change in temperature. Substituting the given values: mass of water = 50 g, specific heat capacity = 1.0 cal/g.°C, and change in temperature = (50°C - 22°C) = 28°C. Calculating the heat transferred, we find: Heat transferred = 50 g × 1.0 cal/g.°C × 28°C = 1400 cal. Since the efficiency is given as 40%, we can calculate the food value: Food value = 1400 cal / 0.4 = 3500 calories or 3.5 Calories.
b. To calculate the food value in calories per gram, we divide the food value (3500 calories) by the mass of the peanut (0.68 g): Food value per gram = 3500 cal / 0.68 g = 5147 cal/g. This value can be converted to kilocalories (kcal) by dividing by 1000: Food value per gram = 5147 cal / 1000 = 5.147 kcal/g. Rounding to one decimal place, we get the food value in calories per gram as 5.1 kcal/g. Since 1 kcal is equivalent to 1 Cal, the food value can also be expressed as 5.1 Cal/g or 5.8 Calories per gram.
To learn more about food value click here : brainly.com/question/32340768
#SPJ11
A uniform electric field is directed in the +x-direction and has a magnitude E. A mass 0.072 kg and charge +2.90 mC is suspended by a thread between the plates. The tension in the thread is 0.84 N.
Find the magnitude of the electric force. Give answers in N to three significant figures.
The magnitude of the electric field is approximately 290.34 N/C, rounded to three significant figures.
The magnitude of the electric force acting on the charged mass suspended between the plates, we can use the following equation:
Electric force (F) = charge (q) × electric field (E)
Given: Mass (m) = 0.072 kg Charge (q) = +2.90 mC = +2.90 × 10^(-3) C Electric field (E) = directed in the +x-direction
We need to convert the charge to coulombs, as the equation requires SI units.
Now, we can calculate the electric force by multiplying the charge and electric field:
F = q × E = (2.90 × 10^(-3) C) × E
Since the tension in the thread is 0.84 N and the force acting upwards on the mass is balanced by the tension, we have:
F = Tension = 0.84 N
Now we can set up the equation and solve for the electric field:
0.84 N = (2.90 × 10^(-3) C) × E
For E:
E = (0.84 N) / (2.90 × 10^(-3) C) ≈ 290.34 N/C
Therefore, the magnitude of the electric field is approximately 290.34 N/C, rounded to three significant figures.
Learn more about electric field from the link
https://brainly.com/question/19878202
#SPJ11
Explain the working principle of scanning tunnelling microscope.
List examples of
barrier tunnelling occurring in the nature and in manufactured
devices?
The scanning tunneling microscope is based on the principle of quantum tunneling, which enables atomic-scale imaging of surfaces. Barrier tunneling occurs in various natural processes and is harnessed in manufactured devices for various applications.
The scanning tunneling microscope (STM) operates based on the principle of quantum tunneling. It uses a sharp conducting probe to scan the surface of a sample and measures the tunneling current that flows between the probe and the surface.
By maintaining a constant tunneling current, the STM can create a topographic image of the surface at the atomic level. Examples of barrier tunneling can be found in various natural phenomena, such as radioactive decay and electron emission, as well as in manufactured devices like tunnel diodes and flash memory.
The scanning tunneling microscope (STM) works by bringing a sharp conducting probe very close to the surface of a sample. When a voltage is applied between the probe and the surface, quantum tunneling occurs.
Quantum tunneling is a phenomenon in which particles can pass through a potential barrier even though they do not have enough energy to overcome it classically. In the case of STM, electrons tunnel between the probe and the surface, resulting in a tunneling current.
By scanning the probe across the surface and measuring the tunneling current, the STM can create a topographic map of the surface with atomic-scale resolution. Variations in the tunneling current reflect the surface's topography, allowing scientists to visualize individual atoms and manipulate them on the atomic level.
Barrier tunneling is a phenomenon that occurs in various natural and manufactured systems. Examples of natural barrier tunneling include radioactive decay, where atomic nuclei tunnel through energy barriers to decay into more stable states, and electron emission, where electrons tunnel through energy barriers to escape from a material's surface.
In manufactured devices, barrier tunneling is utilized in tunnel diodes, which are electronic components that exploit tunneling to create a negative resistance effect.
This allows for applications in oscillators and high-frequency circuits. Another example is flash memory, where charge is stored and erased by controlling electron tunneling through a thin insulating layer.
Overall, the scanning tunneling microscope is based on the principle of quantum tunneling, which enables atomic-scale imaging of surfaces. Barrier tunneling occurs in various natural processes and is harnessed in manufactured devices for various applications.
Learn more about scanning tunneling from the given link:
https://brainly.com/question/17091478
#SPJ11
Singly charged uranium-238 ions are accelerated through a potential difference of 2.00kV and enter a uniform magnetic field of magnitude 1.20 T directed perpendicular to their velocities.(c) What If? How does the ratio of these path radii depend on the accelerating voltage?
The ratio of the path radii for the uranium-238 ions is not affected by the accelerating voltage. The ratio is solely determined by the mass of the ions and the magnitude of the magnetic field.
The ratio of the path radii for singly charged uranium-238 ions depends on the accelerating voltage.
When a charged particle enters a uniform magnetic field perpendicular to its velocity, it experiences a force called the magnetic force. This force acts as a centripetal force, causing the particle to move in a circular path.
The magnitude of the magnetic force is given by the equation:
F = qvB
Where:
F is the magnetic force
q is the charge of the particle
v is the velocity of the particle
B is the magnitude of the magnetic field
In this case, the uranium-238 ions have a charge of +1 (since they are singly charged). The magnetic force acting on the ions is equal to the centripetal force:
qvB = mv²/r
Where:
m is the mass of the uranium-238 ion
v is the velocity of the ion
r is the radius of the circular path
We can rearrange this equation to solve for the radius:
r = mv/qB
The velocity of the ions can be determined using the equation for the kinetic energy of a charged particle:
KE = (1/2)mv²
The kinetic energy can also be expressed in terms of the accelerating voltage (V) and the charge (q) of the ion:
KE = qV
We can equate these two expressions for the kinetic energy:
(1/2)mv² = qV
Solving for v, we get:
v = sqrt(2qV/m)
Substituting this expression for v into the equation for the radius (r), we have:
r = m(sqrt(2qV/m))/qB
Simplifying, we get:
r = sqrt(2mV)/B
From this equation, we can see that the ratio of the path radii is independent of the charge (q) of the ions and the mass (m) of the ions.
Therefore, the ratio of the path radii is independent of the accelerating voltage (V).
Learn more about voltage
https://brainly.com/question/32002804
#SPJ11
The magnitude of a force vector ₽ is 80.8 newtons (N). The x component of this vector is directed along the +x axis and has a magnitude of 73.4 N. The y component points along the +y axis. (a) Find the angle between F and the +x axis. (b) Find the component of F along the +y
axis.
The magnitude of a force vector P is 80.8 newtons (N). The x component of this vector is directed along the +x axis and has a magnitude of 73.4 N. The y component points along the +y axis. (a) the angle between F and the +x axis is 48.1 degrees.(b)the component of F along the +y is 80.8 N.
Given:
Magnitude of the force vector F = 80.8 N
Magnitude of the x-component of F (Fx) = 73.4 N
(a) To find the angle between F and the +x axis, we can use the arctan function:
θ = arctan(Fy / Fx)
Since the y-component of the force vector is along the +y axis, the magnitude of the y-component (Fy) is the same as the magnitude of the force vector F:
Fy = F = 80.8 N
Now we can calculate the angle:
θ = arctan(80.8 N / 73.4 N)
θ ≈ 48.1°
Therefore, the angle between the force vector F and the +x axis is approximately 48.1 degrees.
(b) The component of F along the +y axis is equal to the magnitude of the y-component (Fy):
Component of F along the +y axis = Fy = 80.8 N
Therefore, the component of the force vector F along the +y axis is 80.8 N.
To learn more about force visit: https://brainly.com/question/12785175
#SPJ11
What is the period of a 1.4 m long pendulum? T= unit
The period of a 1.4m long pendulum is 2.98 seconds. Pendulum period is the time taken for a pendulum to complete one full oscillation.
The period is directly proportional to the square root of the length of the pendulum, as well as to the reciprocal of the square root of the acceleration due to gravity. The formula for calculating the period of a pendulum is as follows: T = 2π√(L/g)where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.
The given length of the pendulum is L = 1.4 mWe have to find the period T. The acceleration due to gravity g is approximately 9.81 m/s².Substitute these values into the formula and solve for T.T = 2π√(L/g)T = 2π√(1.4/9.81)T = 2π(0.52)T = 3.28 secondsThe period of a 1.4m long pendulum is 2.98 seconds.
To know more about oscillation visit:
https://brainly.com/question/30111348
#SPJ11
According to the Law of Universal Gravitation, when the distance between the centers of two objects is doubled and the masses remain constant, the force between the objects... 1. is multiplied by a factor of 2 2. is multiplied by a factor of 1/2
3. is multiplied by a factor of 1/4
4. remains constant 5. is multiplied by a factor of 4
The force between the objects is multiplied by a factor of 1/4 when the distance between their centers is doubled and the masses remain constant.
According to the Law of Universal Gravitation, when the distance between the centers of two objects is doubled and the masses remain constant, the force between the objects is multiplied by a factor of 1/4.
The Law of Universal Gravitation, formulated by Sir Isaac Newton, states that the force of gravitational attraction between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Mathematically, it can be expressed as:
F = G * (m1 * m2) / [tex]r^2[/tex]
Where F is the gravitational force, G is the gravitational constant, m1 and m2 are the masses of the objects, and r is the distance between their centers.
When the distance between the centers of the objects is doubled, the new distance becomes 2r. Plugging this into the formula, we get:
F' = G * (m1 * m2) / [tex](2r)^2[/tex]
= G * (m1 * m2) / [tex]4r^2[/tex]
= (1/4) * (G * (m1 * m2) /[tex]r^2[/tex])
Learn more about Law of Universal Gravitation from the given link:
https://brainly.com/question/858421
#SPJ11
What is the effect on the period of a pendulum if you double its length? The period increases by a factor of _____
Doubling the length of a pendulum increases its period by a factor of √2.
The period of a pendulum is directly proportional to the square root of its length, so if you double the length of a pendulum, the period will increase by a factor of √2.An increase in the length of a pendulum leads to an increase in the period. The length of the pendulum is directly proportional to the square of the period and inversely proportional to the square of the frequency.A pendulum is a physical system with a natural frequency that is determined by its mass, length, and amplitude. The period of a pendulum is the time it takes for the pendulum to complete one cycle (swing back and forth). A simple pendulum consists of a weight suspended from a fixed point by a string or wire that swings back and forth under the influence of gravity.The formula for the period of a pendulum is:T=2π√L/gWhere T is the period of the pendulum, L is the length of the pendulum, and g is the acceleration due to gravity. Doubling the length of a pendulum increases its period by a factor of √2.
Learn more about pendulum:
https://brainly.com/question/29702798
#SPJ11
Calculate the p-value for the following conditions and determine whether or not to reject the null hypothesis.
a) one-tail (lower) test,zp= -1. 05 and α=0. 05
b) one-tail (upper) test,zp=1. 79 and α=0. 10
c) two-tail test,zp=2. 16 and α=0. 05
d) two-tail test, zp=−1. 18, and α=0. 10
To calculate the p-value for the given conditions, we need to use the standard normal distribution table. The p-value represents the probability of observing a test statistic as extreme as or more extreme than the calculated value.
a) For a one-tail (lower) test with zp = -1.05 and α = 0.05:
The p-value can be found by looking up the z-score -1.05 in the standard normal distribution table. The area to the left of -1.05 is 0.1469. Since this is a one-tail (lower) test, the p-value is equal to this area: p-value = 0.1469.
To determine whether or not to reject the null hypothesis, we compare the p-value to the significance level (α). If the p-value is less than or equal to α, we reject the null hypothesis. In this case, since the p-value (0.1469) is greater than α (0.05), we do not reject the null hypothesis.
b) For a one-tail (upper) test with zp = 1.79 and α = 0.10:
Using the standard normal distribution table, the area to the right of 1.79 is 0.0367. Since this is a one-tail (upper) test, the p-value is equal to this area: p-value = 0.0367.
Comparing the p-value (0.0367) to the significance level (α = 0.10), we find that the p-value is less than α. Therefore, we reject the null hypothesis.
c) For a two-tail test with zp = 2.16 and α = 0.05:
We need to find the area to the right of 2.16 and double it since it's a two-tail test. The area to the right of 2.16 is 0.0158. Doubling this gives the p-value: p-value = 2 * 0.0158 = 0.0316.
Comparing the p-value (0.0316) to the significance level (α = 0.05), we find that the p-value is less than α. Therefore, we reject the null hypothesis.
d) For a two-tail test with zp = -1.18 and α = 0.10:
Similarly, we find the area to the left of -1.18 and double it. The area to the left of -1.18 is 0.1190. Doubling this gives the p-value: p-value = 2 * 0.1190 = 0.2380.
Comparing the p-value (0.2380) to the significance level (α = 0.10), we find that the p-value is greater than α. Therefore, we do not reject the null hypothesis.
In summary:
a) p-value = 0.1469, Do not reject the null hypothesis.
b) p-value = 0.0367, Reject the null hypothesis.
c) p-value = 0.0316, Reject the null hypothesis.
d) p-value = 0.2380, Do not reject the null hypothesis.
to know more about normal distribution table refer here
brainly.com/question/29291264#
#SPJ11
Given the vector A=i+ j and A=j + k. Find A+B and magnitude of A + B. write only the answers and round to two decimal places Answer:
Given vectors A = i + j and A = j + k, we are asked to find A + B and the magnitude of A + B.
To find A + B, we add the corresponding components of the vectors:
A + B = (1i + 1j) + (1i + 2j + 1k)
= 2i + 3j + 1k
To find the magnitude of A + B, we use the magnitude formula:
Magnitude of A + B = sqrt((2)^2 + (3)^2 + (1)^2)
= sqrt(4 + 9 + 1)
= sqrt(14)
Therefore, A + B is equal to 2i + 3j + 1k, and the magnitude of A + B is sqrt(14).
To learn more about vectors and their properties, you can visit the following link:
brainly.com/question/31154073
#SPJ11
We are 7.8 meters from a speaker putting out 0.625 Watts of sound power uniformly in all directions, and also 4.3 meters from a speaker putting out .258 Watts uniformly. Find the decibel level for the sound noise we will hear. (Hint: this will take a couple steps)
The decibel level of the sound noise that we will hear is the sum of the decibel level of the two speakers. Thus the sound power will be 190 dB.
The formula for sound power is:
Sound Power (P) = I * A
Where,
I = intensity
A = the surface area of the sphere (A = 4πr²)
The formula for decibels is:
D = 10 * log(P₁/P₂)
Where,
P₁ is the initial power
P₂ is the final power
Therefore,
Sound Power of the first speaker (P₁) = 0.625 Watts
Sound Power of the second speaker (P₂) = 0.258 Watts
Distance from the first speaker = 7.8 meters
Distance from the second speaker = 4.3 meters
Radius of the first sphere (r₁) = 7.8 meters
Radius of the second sphere (r₂) = 4.3 meters
Surface Area of the first sphere (A₁) = 4π(7.8)²
= 1928.61 m²
Surface Area of the second sphere (A₂) = 4π(4.3)²
= 232.83 m²
Using the formula of intensity above,
The intensity of the sound for the first speaker (I₁) = P₁ / A₁= 0.625 / 1928.61
= 0.000324 watts/m²
The intensity of the sound for the second speaker (I₂) = P₂ / A₂
= 0.258 / 232.83
= 0.001107 watts/m²
Using the formula for decibels,
The decibel level of the first speaker (D₁) is,
D₁ = 10 * log(I₁ / (1E-12))
= 10 * log(0.000324 / (1E-12))
= 89.39 dB
The decibel level of the second speaker (D₂) is,
D₂ = 10 * log(I₂ / (1E-12))
= 10 * log(0.001107 / (1E-12))
= 100.37 dB
Therefore, the decibel level of the sound noise that we will hear is the sum of the decibel level of the two speakers, i.e.,D = D₁ + D₂= 89.39 + 100.37= 189.76 ≈ 190 dB
Learn more about sound intensity here:
https://brainly.com/question/32194259
#SPJ11
: A space shuttle astronaut has a mass of 110 kg with her space suit on. She is on a spacewalk and picks up a full can of spray with a mass of 20 kg. Relative to the space shuttle, she is at rest. She then holds the can directly in front of her centre of mass to avoid rotation and releases 3.0 kg of spray at a speed of 15 m/s. The astronaut's speed, relative to the space shuttle, when she has stopped spraying is approximately m/s. Enter your three-digit numerical value.
The astronaut's speed, relative to the space shuttle, when she has stopped spraying is approximately -0.35 m/s.
We can apply the law of conservation of momentum. Initially, the total momentum of the astronaut and the can is zero, as they are both at rest relative to the space shuttle. When the astronaut releases the spray, it will gain a forward momentum, which must be balanced by an equal and opposite momentum for the astronaut to maintain a net momentum of zero.
The momentum of the released spray can be calculated by multiplying its mass (3.0 kg) by its velocity (15 m/s), resulting in a momentum of 45 kg·m/s. To maintain a net momentum of zero, the astronaut must acquire a momentum of -45 kg·m/s in the opposite direction.
Assuming no external forces act on the astronaut-can system during this process, the total momentum before and after the spray is released must be conserved. Since the astronaut's initial momentum is zero, she must acquire a momentum of -45 kg·m/s to counterbalance the spray.
Considering the astronaut's initial mass (110 kg), we can calculate her velocity using the equation:
Momentum = Mass × Velocity
-45 kg·m/s = (110 kg + 20 kg) × Velocity
Simplifying the equation:
-45 kg·m/s = 130 kg × Velocity
Velocity = -45 kg·m/s / 130 kg
Velocity ≈ -0.35 m/s (approximately -0.35 m/s)
Therefore, the astronaut's speed, relative to the space shuttle, when she has stopped spraying is approximately -0.35 m/s.
Learn more about speed from the link
https://brainly.com/question/13943409
#SPJ11
3. Mass & heat transfer + pseudo-homogeneous reaction in a packed bed of catalyst particles. Part I: Consider a packed bed of catalyst particles in a cylindrical plug flow reactor of length L. Aga stream consisting of species "A" and carrier gas "B" is introduced into the reactor with a uniform mass- average velocity (plug flow) of v=V. A chemical reaction that consumes species A occurs at the particle surfaces; however, here it will be modeled as "pseudo-homogeneous:" within a given unit volume, the reaction can be modeled as an effective consumption term RAI=) mole/volume "time). The reaction is first-order and irreversible with rate R* = k'c. The gas stream enters the reactor () with a concentration of C. Because the reactor is "long." species A is completely consumed after it exists the reactor (L). The tube walls are impenetrable to species A: thus, assume that ca varies only in the 3- direction and is independent of the radial coordinate (ex = c.lt) only). Assume constant physical properties that are temperature independent. Assume that the molar-average velocity and mass-average FINAL EXAM 204 The www De hedehus What is the What are the boundary cow to Non dimme the due dimensiones de familiarde de parameter Welpen Non dimenticate the boy Selve for the non-dimensional to the or when and words differential equation. This will yieldni hotel ved for Tom Formule might be the show the -bb-ac 2 Note that we values of we powite otel them, and this yields for with we terms and the cost of integrationes.C.) (V) Solve for the constants of integration and this the new dimensional concentration. I. Parell: The chemical reaction has an exothermkenthalpy of reaction, a...-- ArmeeThe release of energy associated with the preado homogeneous chemical reaction the heat up the everywhere in the fluid. The gas streamentes at temperature T. The tube walls are perfectly in thus, assume that varies only in the direction (778) only). Anume constant physical properties that are temperature independent. The aim of this part is to set up the equations necessary to model the temperature in the reactor at seady state Write the source term of chemical energy, 8, 1-energy/(volumetime), in terms of the enthly of reaction AH... and the reaction rate Rex Check your units (1) Derive the differential equation that governs the temperature. T. within the reactor. What is the physical meaning of each term? Neglect viscous dissipation and any thermal effects due to compressibility (D Non-dimensionalize the differential equation in (ii) using appropriate scales, letting 8.1, and the the dimensionless temperatures, concentration, and coordinate, respectively. Re-arrange the equation such that two dimensionless parameters emerge, recalling the thermal diffusivity kiloc. One of these parameters is familiar, the other is not. What are the physical meanings of these parameters?
The differential equation that governs the temperature within the packed bed reactor can be derived by considering the heat transfer and pseudo-homogeneous reaction occurring in the system. By neglecting viscous dissipation and thermal effects due to compressibility, the differential equation can be non-dimensionalized using appropriate scales. This yields two dimensionless parameters, one of which is familiar and the other is not. These parameters play a crucial role in understanding the physical behavior of the system.
In a packed bed reactor, the temperature distribution is influenced by both heat transfer and the pseudo-homogeneous reaction occurring at the catalyst particle surfaces. To model the temperature, the source term of chemical energy, 8, is expressed in terms of the enthalpy of reaction (AH) and the reaction rate (R). This source term represents the energy released or absorbed during the exothermic or endothermic reaction.
The differential equation that governs the temperature within the reactor can be derived by considering the energy balance. It takes into account the convective heat transfer from the gas stream to the catalyst particles, the energy released or absorbed by the chemical reaction, and any energy exchange with the surroundings. Neglecting viscous dissipation and thermal effects due to compressibility simplifies the equation.
To facilitate analysis and comparison, the differential equation is non-dimensionalized using appropriate scales. This involves introducing dimensionless variables for temperature, concentration, and coordinate. The resulting non-dimensional equation contains two dimensionless parameters. One of these parameters is familiar, the thermal diffusivity (k). It represents the ratio of thermal conductivity to the product of density and specific heat capacity, and it characterizes the rate at which heat is conducted through the system.
The other dimensionless parameter is specific to the system and depends on the specific reaction and reactor conditions. Its physical meaning can vary depending on the specific case. However, it typically captures the interplay between the reaction rate and the convective heat transfer, providing insights into the relative dominance of these processes in influencing the temperature profile within the reactor.
Learn more about temperature
brainly.com/question/7510619
#SPJ11
: (1) The decay of a pure radioactive source follows the radioactive decay law N = Newhere N is the number of radioactive nuclei at time. Ne is the number at time and is the decay constant a) Define the terms half-life and activity and derive expressions for them from the above law.
Half-life:The half-life of a radioactive substance is defined as the time taken for half of the initial number of radioactive nuclei to decay. In terms of the decay constant, λ, the half-life, t1/2, is given by [tex]t1/2=0.693/λ.[/tex]
The value of t1/2 is specific to each radioactive nuclide and depends on the particular nuclear decay mode.Activity:
Activity, A, is the rate of decay of a radioactive source and is given by [tex]A=λN.[/tex]
The SI unit of activity is the becquerel, Bq, where 1 [tex]Bq = 1 s-1.[/tex]
An older unit of activity is the curie, Ci, where 1 [tex]Ci = 3.7 × 1010 Bq.[/tex]
The activity of a radioactive source decreases as the number of radioactive nuclei decreases.The decay law is given by [tex]N = N0e-λt[/tex]
Where N is the number of radioactive nuclei at time t, N0 is the initial number of radioactive nuclei, λ is the decay constant and t is the time since the start of the measurement.
The half-life of a radioactive substance is defined as the time taken for half of the initial number of radioactive nuclei to decay.
In terms of the decay constant, λ, the half-life, t1/2, is given by[tex]t1/2=0.693/λ.[/tex]
The activity of a radioactive source is the rate of decay of a radioactive source and is given by [tex]A=λN.[/tex]
To know more about radioactive visit:
https://brainly.com/question/1770619
#SPJ11
9. Speed of sound in this classroom is 342 m/s. If a sound is produced by a tuning fork having a frequency of 500 Hertz, calculate its wavelength?
the wavelength of the sound produced by the tuning fork having a frequency of 500 Hertz in the classroom where the speed of sound is 342 m/s is 68.4 cm
The formula for wavelength is given by;
λ = v/f, where λ = wavelength
v = speed of sound, and f = frequency
Therefore, if a sound is produced by a tuning fork having a frequency of 500 Hertz in a classroom where the speed of sound is 342 m/s, then the wavelength can be calculated using the formula above.
Thus,λ = v/f= 342/500= 0.684 m or 68.4 cm Therefore, the wavelength of the sound produced by the tuning fork having a frequency of 500 Hertz in the classroom where the speed of sound is 342 m/s is 68.4 cm .
To know more about wavelength visit :
https://brainly.com/question/31143857
#SPJ11
In the equation:
work = applied force x displacement
Is "work" net work? Or just the work of the one applied
force?
The equation "work = applied force x displacement" represents the net work done on an object, taking into account the contributions of all applied forces. It quantifies the total energy transfer associated with the displacement of the object.
In the equation "work = applied force x displacement," the term "work" refers to the net work done on an object. It takes into account the contributions of all the applied forces acting on the object. Therefore, it represents the total energy transfer that occurs as a result of all the forces acting on the object, not just the work of one applied force.
When multiple forces are acting on an object, each force contributes to the total work done. If the forces are in the same direction as the displacement, their work is positive, while if they are in the opposite direction, their work is negative. The net work is the algebraic sum of these individual works.
For example, if an object is being pulled in one direction with a certain force and pushed in the opposite direction with another force, the net work accounts for the combined effect of both forces. The equation considers the magnitudes and directions of the forces and the corresponding displacements to calculate the overall work.
For more such information on: work
https://brainly.com/question/25573309
#SPJ8
An ideal pulley system makes 12 points of contact with the load. What minimum input force is required to lift an object that weighs 5000 lbs?
In an ideal pulley system, the mechanical advantage is equal to the number of supporting ropes or strands that hold the load. The minimum input force required to lift the object is approximately 416.67 lbs.
Each point of contact with the load corresponds to one supporting rope or strand.
Given that the pulley system has 12 points of contact with the load, the mechanical advantage is also 12. This means that the tension in the supporting ropes is 12 times the force applied at the input end.
To lift the object that weighs 5000 lbs, we need to determine the minimum input force required. Let's denote this force as F_input.
According to the mechanical advantage formula:
Mechanical Advantage = Output Force / Input Force
In this case, the output force is the weight of the object (5000 lbs), and the input force is F_input.
Mechanical Advantage = 5000 lbs / F_input
Since the mechanical advantage is 12:
12 = 5000 lbs / F_input
To find F_input, we can rearrange the equation:
F_input = 5000 lbs / 12
F_input ≈ 416.67 lbs
Therefore, the minimum input force required to lift the object is approximately 416.67 lbs.
Learn more about pulley system here: brainly.com/question/14196937
#SPJ11
Question 9 ( 5 points) Given, R1 =44 Ohms and R2 = 38 Ohms, what is the equivalent resistance of this portion of a circuit? (in Ohms)
The equivalent resistance of this portion of a circuit the equivalent resistance of this portion of the circuit is 82 Ohms.
To find the equivalent resistance of the portion of the circuit with resistors R1 and R2, we need to consider their arrangement. In this case, the resistors R1 and R2 are connected in series.
When resistors are connected in series, the total resistance is the sum of the individual resistances. In other words, the equivalent resistance is obtained by adding the resistances together.
For the given values, R1 = 44 Ohms and R2 = 38 Ohms. To find the equivalent resistance (Req), we can use the formula:
Req = R1 + R2
Substituting the given values, we get:
Req = 44 Ohms + 38 Ohms
Req = 82 Ohms
Therefore, the equivalent resistance of this portion of the circuit is 82 Ohms.
To know more about equivalent refer here:
https://brainly.com/question/14672772#
#SPJ11
You inflate the tires of your car to a gauge pressure of 43.5 lb/in2. If your car has a mass of 1250 kg and is supported equally by its four tires, determine the following. (a) Contact area between each tire and the road m2 (b) Will the contact area increase, decrease, or stay the same when the gauge pressure is increased? increase decrease stay the same (c) Gauge pressure required to give each tire a contact area of 114 cm2 lb/in2
A) The contact area between each tire and the road is 7.50 m².
B) The answer is: Increase.
C) The gauge pressure is 6.49 lb/in².
Given information:
A) Gauge pressure of the car tire, p = 43.5 lb/in2
The mass of the car, m = 1250 kg
Contact area, A = ?
Pressure required to get contact area, p₁ = ?
The formula for calculating the contact area between the tire and the road is:
A = (2*m*g)/(p*d) Where,
g = acceleration due to gravity = 9.8 m/s²
d = number of tires = 4
From the formula,
B) Contact area between each tire and the road is:
A = (2*m*g)/(p*d)
= (2*1250*9.8)/(43.5*4)
= 7.50 m²
The contact area between the tire and the road increases when the gauge pressure is increased.
C) To calculate the gauge pressure required to give each tire a contact area of 114 cm², we have:
114 cm² = 114/10,000
= 0.0114 m².
A = (2*m*g)/(p*d)
=> p = (2*m*g)/(A*d)
Gauge pressure required to give each tire a contact area of 114 cm² is:
p₁ = (2*m*g)/(A*d)
= (2*1250*9.8)/(0.0114*4)
= 4,480,284.03 Pa
= 6.49 lb/in².
Learn more about Gauge pressure from the given link
https://brainly.com/question/30425554
#SPJ11
A spider spins a web with silk threads of mass density μ = 9.18 × 10−9 kg/m. A typical tension in the long radial threads of such a web is 0.007 N. Suppose a fly hits the web, sending a wave pulse down a radial thread toward a spider sitting 0.5 m away from the point of impact. How long does the wave pulse take to reach the spider?
The time taken for the wave pulse to reach the spider is 1.667 × 10^-6 s or 1.67 microseconds. The speed of the wave pulse is 299729.6376 m/s
The time taken for a wave pulse to travel down a radial thread from the point of impact to the spider can be determined using the formula;
t= L/v
where t is the time, L is the length of the radial thread, and v is the speed of the wave pulse.The mass density of silk threads is given as;μ = 9.18 × 10−9 kg/m.
Typical tension in the long radial threads of such a web is 0.007 N.A radial thread transmits a wave pulse after a fly hits the web to the spider sitting 0.5 m away from the point of impact.
Therefore, the length of the radial thread is equal to 0.5 m. We can also calculate the speed of the wave pulse using the formula;
v = √(T/μ) where T is the tension in the radial thread.
The tension in the radial thread is given as 0.007 N.
Substituting the value of T and μ in the formula for v,
v = √(T/μ)
= √(0.007/9.18 × 10−9)
= 299729.6376 m/s
Therefore, the speed of the wave pulse is 299729.6376 m/s.
The time taken for the wave pulse to reach the spider can be calculated as;t=
L/v= 0.5/299729.6376
= 1.667 × 10^-6 s
Therefore, the time taken for the wave pulse to reach the spider is 1.667 × 10^-6 s or 1.67 microseconds (approximately).
To learn more about wave visit;
brainly.com/question/3045247
#SPJ11
What is the period of a simple pendulum 67 cm long on Mars? The
mass and radius of Mars are 6.39 × 1023 kg and 3.39 × 106 m,
respectively. (a) 28.4 s (b) 14.8 (c) 2.67 s (d) 0.067 s
The period of a simple pendulum 67 cm long on Mars is option (c) 2.67 s.
simple pendulumA simple pendulum is a weight that is suspended from a pivot point, allowing it to swing back and forth under the influence of gravity. The period of a pendulum is the amount of time it takes for it to complete one full back-and-forth swing. Here, the length of the pendulum, the mass of Mars, and its radius are given. We can calculate the time period of a simple pendulum as follows:
Where, L is the length of the pendulum, g is the acceleration due to gravity and r is the radius of the planet.
g can be calculated as follows:
Where, M is the mass of Mars, G is the gravitational constant, and r is the radius of Mars.
Substituting values in the formula,
T = 2π(0.67 / 9.83)0.5 / (3.39 × 10^6 / 6.39 × 10^23)
T = 2.67 s
Therefore, the time period of a simple pendulum 67 cm long on Mars is option (c) 2.67 s.
Learn more About simple pendulum from the given link
https://brainly.com/question/26449711
#SPJ11
A diode, a resistor, and a battery are connected in a series circuit. The diode is at a temperature for which kB T=25.0 meV , and the saturation value of the current is I₀ = 1.00 μ A . The resistance of the resistor is R=745ω, and the battery maintains a constant potential difference of ε = 2.42 V between its terminals. (a) Use Kirchhoff's loop rule to show that.ε - ΔV = I₀R(eeΔv/kBT - 1)where ΔV is the voltage across the diode.
To use Kirchhoff's loop rule, we need to consider the loop formed by the battery, resistor, and diode in the series circuit.
According to Kirchhoff's loop rule, the sum of the voltage drops across the elements in the loop must be equal to the potential difference provided by the battery. Let's denote the voltage drop across the resistor as ΔVR, the voltage drop across the diode as ΔV, and the potential difference provided by the battery as ε.
Applying Kirchhoff's loop rule, Now, let's express the voltage drop across the resistor ΔVR using Ohm's law: Substituting this expression back into the equation, we get: Rearranging the terms, we have: So, the equation holds true when using Kirchhoff's loop rule in this series circuit.
To know more about resistor visit :
https://brainly.com/question/30672175
#SPJ11
Show that x(t) = xm exp(-ßt) exp(±iwt) is a solution of the equation m kx = 0, where w and are defined by functions of m, k, and b. (10 pts) Show that y(x, t) = ym exp(i(kx ± wt)) is a solution of the wave equation dx² where v = w/k. (10 pts) d²y1d²y v² dt²³
The equation is satisfied, as both sides are equal. Therefore, y(x, t) = ym exp(i(kx ± wt)) is a solution of the wave equation d²y/dx² = (1/v²) d²y/dt², where v = w/k.
To show that x(t) = xm exp(-ßt) exp(±iwt) is a solution of the equation m kx = 0, where w and β are defined by functions of m, k, and b, we need to substitute x(t) into the equation and verify that it satisfies the equation.
Starting with the equation m kx = 0, let's substitute x(t) = xm exp(-βt) exp(±iwt):
m k (xm exp(-βt) exp(±iwt)) = 0
Expanding and rearranging the terms:
m k xm exp(-βt) exp(±iwt) = 0
Since xm, exp(-βt), and exp(±iwt) are all non-zero, we can divide both sides by them:
m k = 0
The equation angular frequency reduces to 0 = 0, which is always true. Therefore, x(t) = xm exp(-βt) exp(±iwt) satisfies the equation m kx = 0.
Now let's move on to the second part of the question.
To show that y(x, t) = ym exp(i(kx ± wt)) is a solution of the wave function equation d²y/dx² = (1/v²) d²y/dt², where v = w/k, we need to substitute y(x, t) into the wave equation and verify that it satisfies the equation.
Starting with the wave equation:
d²y/dx² = (1/v²) d²y/dt²
Substituting y(x, t) = ym exp(i(kx ± wt)):
d²/dx² (y m exp(i(kx ± wt))) = (1/v²) d²/dt² (ym exp(i(kx ± wt)))
Taking the second derivative with respect to x:
-(k² ym exp(i(kx ± wt))) = (1/v²) d²/dt² (ym exp(i(kx ± wt)))
Expanding the second derivative with respect to t:
-(k² ym exp(i(kx ± wt))) = (1/v²) (ym (-w)² exp(i(kx ± wt)))
Simplifying:
-(k² ym exp(i(kx ± wt))) = (-w²/v²) ym exp(i(kx ± wt))
Dividing both sides by ym exp(i(kx ± wt)):
-k² = (-w²/v²)
Substituting v = w/k:
-k² = -w²/(w/k)²
Simplifying:
-k² = -w²/(w²/k²)
-k² = -k²
The equation is satisfied, as both sides are equal. Therefore, y(x, t) = ym exp(i(kx ± wt)) is a solution of the wave equation d²y/dx² = (1/v²) d²y/dt², where v = w/k.
To know more about angular frequency:
https://brainly.com/question/33195438
#SPJ4
The magnetic quantum number can have any number ranging from...
a) 0 to n
b)-n to n
c) 0 to l
d) -l to +l
The magnetic quantum number can have any number ranging from -l to +l. It is used to determine the number of orbitals in a given subshell. The value of the magnetic quantum number determines the angular momentum component of an electron moving around the nucleus on a specific axis.
The magnetic quantum number can have any number ranging from -l to +l. When an electron revolves around the nucleus, its orbit can be determined by four quantum numbers. The principal quantum number, the azimuthal quantum number, the magnetic quantum number, and the spin quantum number are the four quantum numbers.The magnetic quantum number defines the orientation of the orbital around the nucleus, whether it is clockwise or anticlockwise. The magnetic quantum number can have any value from -l to +l, including zero. This value determines the angular momentum component of an electron moving around the nucleus on a specific axis. The magnetic quantum number, represented by m, can be used to determine the number of orbitals in a given subshell.Therefore, the correct option is d. -l to +l.
To know more about azimuthal quantum numbervisit:
brainly.com/question/30024510
#SPJ11
If it requires 5.5 J of work to stretch a particular spring by 2.0 cm from its equilibrium length, how much more work will be required to stretch it an additional 4.5 cm? Express your answer using two significant figures.
Given: The work required to stretch a particular spring by 2.0 cm from its equilibrium length is 5.5 J. Work done is given by the formula,W = 1/2kx² …(1)where, W = work done, k = spring constant and x = extension of the spring from its equilibrium position. Thus, it requires 8.6 J (approx) more work to stretch the spring an additional 4.5 cm.
Let W₁ be the work done to stretch the spring by 2.0 cm from its equilibrium position. So, from equation (1), we can write, W₁ = 1/2kx₁² …(2), where, x₁ = 2.0 cm = 0.02 m. Given, W₁ = 5.5 J. From equation (2), we can write, k = 2W₁/x₁²Now, we need to find out how much more work will be required to stretch the spring an additional 4.5 cm.So, let us assume that the extension of the spring from its equilibrium position is x₂ = x₁ + 4.5 cm = 0.02 + 0.045 = 0.065 mSo, the work done W₂ to stretch the spring by x₂ can be calculated as,W₂ = 1/2kx₂²Now, k = 2W₁/x₁² = 2×5.5/(0.02)² = 6,875 J/m. Using this value of k, we can now calculate the work done W₂ as,W₂ = 1/2kx₂²= 1/2×6,875×(0.065)²= 14.1 J. Therefore, the more work required to stretch it an additional 4.5 cm is 14.1 - 5.5 = 8.6 J (approx). Hence, the answer is 8.6 J (approx).
It requires 8.6 J (approx) more work to stretch the spring an additional 4.5 cm.
To know more about spring visit:
brainly.com/question/30106794
#SPJ11
Please help! Due very soon! I will upvote!
Question 20 Calorimetry When determining the latent heat of fusion for ice, we added a small handful of ice to the calorimeter without measuring its mass. This is fine because: Owe can deduce the adde
To determine the specific heat of the calorimeter:
Fill the calorimeter with a known mass of water (m1) at a known initial temperature (T1).
Measure the mass of the empty calorimeter (m2) and record its initial temperature (T2).
Heat the water to a known final temperature (T3) using a water bath or heating element.
Measure the final mass of the calorimeter and water (m3).
Measure the temperature of the water in the calorimeter after it has been heated (T4).
Calculate the heat absorbed by the calorimeter using the formula Q = mcΔT, where m is the mass of the water in the calorimeter, c is the specific heat of water (4.18 J/g°C), and ΔT is the change in temperature of the water in the calorimeter (T4 - T3).
Calculate the specific heat of the calorimeter using the formula c_cal = Q / (m3 - m2)ΔT, where Q is the heat absorbed by the calorimeter and (m3 - m2) is the mass of the water in the calorimeter.
The equation to use for this plan is: = Q / (m3 - m2)ΔT
To determine the latent heat of fusion of ice:
Fill the calorimeter with a known mass of water (m1) at a known initial temperature (T1).
Measure the mass of the empty calorimeter (m2) and record its initial temperature (T2).
Add a known mass of ice (m3) to the calorimeter.
Measure the final mass of the calorimeter, water, and melted ice (m4).
Measure the final temperature of the water in the calorimeter (T3).
Calculate the heat absorbed by the calorimeter and water using the formula Q1 = mcΔT, where m is the mass of the water in the calorimeter, c is the specific heat of water, and ΔT is the change in temperature of the water in the calorimeter (T3 - T2).
Calculate the heat absorbed by the melted ice using the formula Q2 = mL, where L is the latent heat of fusion of ice (334 J/g).
Calculate the total heat absorbed by the system using the formula = Q1 + Q2.
Calculate the mass of the melted ice using the formula = m3 - (m4 - m2).
Calculate the latent heat of fusion of ice using the formula L = Q2 /
The equation to use for this plan is: L = Q2 /
Learn more about calorimeter on:
brainly.com/question/4802333
#SPJ4
4. A 1.7 t car is accelerated at 1.7 m/s2 for 11 s on a horizontal surface. If the initial velocity was 33 km/h and the force due to friction on the road surface was 0.5 N/kg, determine force applied in the same direction as motion.
5. Immediately after reaching its final velocity, the car in question (4) breaks and comes to a stop in 7 m. Determine the breaking force acting on the car.
Explanation:
Right you are the children of the school committee meeting you at Naowa Complex before I go to bed now I love you are the children of the School
4) First, we need to convert the initial velocity from km/h to m/s:
33 km/h = 9.17 m/s
Next, we can use the formula for acceleration:
a = (v_f - v_i) / t
where a is the acceleration, v_f is the final velocity, v_i is the initial velocity, and t is the time.
Substituting the given values, we get:
1.7 m/s^2 = (v_f - 9.17 m/s) / 11 s
Solving for v_f, we get:
v_f = 28.97 m/s
Next, we can use the formula for force:
F = m * a
where F is the net force, m is the mass of the car, and a is the acceleration.
Substituting the given values, we get:
F = 1.7 t * 1.7 m/s^2
F = 2.89 kN
Finally, we need to account for the force due to friction on the road surface. The force due to friction is given by:
f_friction = friction coefficient * m * g
where friction coefficient is the coefficient of friction between the car's tires and the road surface, m is the mass of the car, and g is the acceleration due to gravity (9.81 m/s^2).
Substituting the given values, we get:
f_friction = 0.5 N/kg * 1.7 t * 9.81 m/s^2
f_friction = 8.35 kN
Since the force due to friction acts in the opposite direction to the motion of the car, we need to subtract it from the net force to get the force applied in the same direction as motion:
F_applied = F - f_friction
F_applied = 2.89 kN - 8.35 kN
F_applied = -5.46 kN
The negative sign indicates that the force applied is in the opposite direction to the motion of the car. Therefore, the force applied in the same direction as motion is 5.46 kN.
5) To determine the braking force acting on the car, we can use the formula:
F = m * a
where F is the net force acting on the car, m is the mass of the car, and a is the deceleration of the car due to braking.
First, we need to find the final velocity of the car. We can use the formula:
v_f^2 = v_i^2 + 2ad
where v_f is the final velocity, v_i is the initial velocity (which is equal to the velocity of the car when it reaches its final velocity), a is the acceleration (which is equal to the deceleration due to braking), and d is the distance over which the car comes to a stop.
Substituting the given values, we get:
v_f^2 = 28.97 m/s^2 + 2(-a)(7 m)
Since the car comes to a stop, the final velocity is 0. Solving for a, we get:
a = 28.97 m/s^2 / 14 m
a = 2.07 m/s^2
Now we can use the formula for force to find the braking force:
F = 1.7 t * 2.07 m/s^2
F = 3.519 kN
Therefore, the braking force acting on the car is 3.519 kN.
Two converging lenses are separated by 24.0 cm. The focal length of each lens is 14.0 cm. An object is placed 32.0 cm to the left of the lens that is on the left. Determine the final image distance relative to the lens on the right.
The image distance relative to the right lens, in a setup with two converging lenses (focal length 14.0 cm) separated by 24.0 cm and an object 32.0 cm to the left, is 22.8 cm.
To solve this problem, we can use the lens formula:
1/f = 1/v - 1/u
Where:
f is the focal length of the lens,
v is the image distance relative to the lens, and
u is the object distance relative to the lens.
Given that the focal length of each lens is 14.0 cm and the object is placed 32.0 cm to the left of the left lens, we can determine the object distance for the left lens:
u = -32.0 cm
Since the lenses are separated by 24.0 cm, the object distance for the right lens would be:
u' = u + d = -32.0 cm + 24.0 cm = -8.0 cm
Now, we can use the lens formula for the left lens to find the image distance for the left lens:
1/f1 = 1/v1 - 1/u1
Substituting the values:
1/14.0 cm = 1/v1 - 1/-32.0 cm
Simplifying:
1/v1 = 1/14.0 cm + 1/32.0 cm
1/v1 = (32.0 cm + 14.0 cm) / (14.0 cm * 32.0 cm)
1/v1 = 46.0 cm / (14.0 cm * 32.0 cm)
1/v1 = 0.1036 cm^(-1)
v1 = 9.64 cm (approx.)
Now, using the lens formula for the right lens:
1/f2 = 1/v2 - 1/u'
Substituting the values:
1/14.0 cm = 1/v2 - 1/-8.0 cm
Simplifying:
1/v2 = 1/14.0 cm + 1/8.0 cm
1/v2 = (8.0 cm + 14.0 cm) / (14.0 cm * 8.0 cm)
1/v2 = 22.0 cm / (14.0 cm * 8.0 cm)
1/v2 = 0.1964 cm^(-1)
v2 = 5.09 cm (approx.)
The final image distance relative to the lens on the right is given by:
v = v2 - d = 5.09 cm - 24.0 cm = -18.91 cm
Since the image distance is negative, it means the image is formed on the same side as the object, which indicates a virtual image. Taking the absolute value, the final image distance is approximately 18.91 cm. Therefore, the final image distance relative to the lens on the right is 22.8 cm (approx.).
To learn more about lens click here:
brainly.com/question/14413099
#SPJ11
1. A circular plate (radius 2R) with a circular hole (radius R) has a mass M. If the plate is initially placed with a small angle on a horizontal plane as shown on the right, show that the plate shows a simple harmonic motion and then, find the frequency of the motion. The plate is rolling without sliding on the plane. (10 pts) P
The frequency of the circular plate's simple harmonic motion is √((3g)/(2R))/2π√M.
To analyze the motion of the circular plate with a hole, let's consider the forces acting on it. When the plate is at an angle θ from the horizontal plane, there are two main forces: the gravitational force (mg) acting vertically downward through the center of mass, and the normal force (N) acting perpendicular to the plane of the plate. Since the plate is rolling without sliding, the frictional force is negligible.
Now, let's resolve the gravitational force into two components: one parallel to the plane (mg sin θ) and the other perpendicular to the plane (mg cos θ). The normal force N will be equal in magnitude and opposite in direction to the perpendicular component of the gravitational force (mg cos θ).
Since the plate is in equilibrium, the net torque acting on it must be zero. The torque due to the gravitational force is zero because the line of action passes through the center of mass. The torque due to the normal force is also zero because it acts at the center of mass. Therefore, no external torque is acting on the plate.
We can write the equation for torque as τ = Iα, where τ is the torque, I is the moment of inertia, and α is the angular acceleration. For a circular plate rolling without sliding, the moment of inertia is given by I = (2/3)MR², where M is the mass and R is the radius.
From the torque equation, we have (mg sin θ)(R) = (2/3)MR²α. Simplifying, we get α = (3g sin θ)/(2R).
The angular acceleration α is directly proportional to the sine of the angle θ, which implies that the motion is simple harmonic. The force acting on the plate is proportional to the angle θ, satisfying Hooke's Law. Therefore, the circular plate with a hole undergoes simple harmonic motion.
The frequency (f) of simple harmonic motion is related to the angular frequency (ω) by the equation f = ω/2π. The angular frequency is given by ω = √(k/m), where k is the spring constant and m is the mass.
In our case, the spring constant k is given by k = (3g)/(2R). The mass m is given by m = M, the mass of the plate.
Substituting the values, we have ω = √((3g)/(2R))/√M.
Therefore, the frequency of the motion is f = ω/2π = √((3g)/(2R))/2π√M.
Learn more about harmonic motion from the link
https://brainly.com/question/26114128
#SPJ11
A fully loaded, slow-moving freight elevator has a cab with a total mass of 1300 kg, which is required to travel upward 47 m in 4.6 min, starting and ending at rest. The elevator's counterweight has a mass of only 990 kg, so the elevator motor must help pull the cab upward. What average power is required of the force the motor exerts on the cab via the cable?
The average power required of the force exerted by the motor on the elevator cab is approximately 2195.36 watts.
To find the average power required of the force exerted by the motor on the elevator cab, we need to calculate the work done and divide it by the time taken.
The elevator cab has a mass of 1300 kg and travels upward a distance of 47 m in 4.6 minutes. The counterweight has a mass of 990 kg, which means the motor needs to exert an upward force greater than the force of gravity on the cab to lift it. By using the work-energy principle, we can determine the average power required.First, we need to calculate the work done on the elevator cab. The work done is equal to the change in potential energy, which can be calculated using the formula:
W = mgh
where,
m is the mass, g is the acceleration due to gravity, and h is the height.W = (1300 kg)(9.8 m/s^2)(47 m)
= 604,660 J
Next, we need to convert the time taken to seconds.
Time = 4.6 min = 4.6 x 60 s = 276 s
Finally, we can calculate the average power using the formula:
P = W/t
where,
P is the power, W is the work done, and t is the time taken.P = 604,660 J / 276 s ≈ 2195.36 W
Therefore, the average power required of the force exerted by the motor on the elevator cab is approximately 2195.36 watts.
Learn more about Average power here:
brainly.com/question/14288644
#SPJ11