Fill in the blanks: the standard international (SI) unit for mass is the , The standard international (SI) unit for force is the .

Answers

Answer 1

The standard international (SI) unit for mass is the kilogram (kg). It is a fundamental unit of measurement used to quantify the amount of matter in an object.  The standard international (SI) unit for force is the Newton (N)

The mass of the platinum-iridium cylinder known as the International Prototype of the Kilogramme, which is held at the International Bureau of Weights and Measures in France, is what is used to define the kilogramme.

The newton (N), on the other hand, serves as the standard international (SI) unit for force. The force needed to accelerate a one kilogramme mass by one square metre per second is measured in newtons. It is a derived unit that is frequently used to measure a variety of forces, including electromagnetic, mechanical, and gravitational forces.

Sir Isaac Newton, a distinguished scientist who made substantial advances to our knowledge of forces and motion, is honoured by having his name attached to the newton.

To know more about Mass :

https://brainly.com/question/11954533

#SPJ1.


Related Questions

Question 2 of 10
Which of the following represents a beta particle?
O A. e
OB. Y
O C. a
O D. He

Answers

Answer
I think A: e

Find the current flowing across the 30 Ohm resistor. I = [?] A
9.0 V 30 Ω 40 Ω 50 Ω 20 Ω 10 Ω​

ANSWERED: 0.143 A

Answers

The current flowing over the 30 Ω resistor is 0.4 A.

How to solve

To discover the current streaming over the 30 Ohm resistor, able to apply Ohm's Law, which states that the current (I) is break even with to the voltage (V) partitioned by the resistance (R). In this case, the voltage over the circuit is given as 9.0 V.

To calculate the full resistance of the circuit, we ought to consider the resistors in arrangement and parallel. The resistors with values of 40 Ω and 50 Ω are in serie.

Hence, the sum of their value (R_series )= 40 Ω + 50 Ω = 90 Ω. The 20 Ω and 10 Ω resistors are in parallel, hence, their resistance is represented as (1/R_parallel) = 1/20 Ω + 1/10 Ω = 1/10 Ω. Disentangling this expression gives R_parallel = 6.67 Ω.

Presently, ready to calculate the entire resistance of the circuit. The resistors with values of 30 Ω and 90 Ω (from the arrangement combination) are in parallel, so their identical resistance is given by 1/R_total = 1/30 Ω + 1/90 Ω = 1/22.5 Ω. Rearranging this expression gives R_total = 22.5 Ω.

At last, able to apply Ohm's Law to discover the current over the 30 Ω resistor. I = V / R_total = 9.0 V / 22.5 Ω ≈ 0.4 A.

Learn more about resistors here:

https://brainly.com/question/24858512

#SPJ1

The answer to these please

Answers

Ohm's law is defined as the applied voltage (V) is directly proportional to the current flow (I) in the circuit. V =IR, where R is the resistance of the circuit that resists the current flow in the circuit, and the unit of resistance is the ohm.

From the given,

1) a) resistors in the circuit are connected in parallel, then the voltage in the circuit remains the same. The voltage across each resistor is 9V.

  b) the current in each resistor is given by, V=IR

I₁ = V/R₁ = 9/10kΩ=0.9mA.

I₂ = V/R₂ = 9/2kΩ = 4.5mA

I₃ = V/R₃ = 9/1kΩ = 9mA.

2) a) the resistances are connected in parallel, the effective resistance is 1/R(eff) = 1/R₁ + 1/R₂

1/R(eff) = 1/(100) + 1/(250)

           = 250+100/25000

          = 350/25000

          = 7/500

R₁(eff) = 500/7

1/R(eff) = 1/R₁ + 1/R₂

            = 1/350 + 1/200

            = 200+350/70000

            = 550/70000

            = 11/1400

R₂(eff) = 1400/11

Thus, the two effective resistances are connected in series,

R(e) = R₁(eff) + R₂(eff)

      = 500/7 + 1400/11

      = (500×11) + (1400×7)/77

      = 5500 + 9800 / 77

      = 15300/77

R(e) = 198 Ω.

B) total current, I = V/R

  I = 24 /198

   = 121mA.

3) a) the resistances are connected in series, the total resistance,

R(eff) = R₁ + R₂

         = 3+3

R(eff) = 6Ω

b)Current, I = V/R

I = 12/6

  = 2A

c)Power, P = I²R = 2×2×6

      P = 24W is the power in each bulb.

d) Power, P = VI = 12×2 = 24 W, is the power in battery.

4) a) the resistances are connected in parallel,

1/R(eff) = 1/R₁ + 1/R₂

           = 1/3 + 1/3

           = 2/3

R(eff) = 3/2Ω

b) In a parallel circuit, the voltage remains unchanged.

Voltage = 12V

c) Current, I = V/R

I₁ = V/R₁ = 12/3 = 4A

I₂ = V/R₂ = 12/3 = 4A.

d) power, P = I²R =4²3=48W.

e) Total current in the circuit, I = I₁+I₂

I = 4 + 4

 = 8A

f) power supplied by a battery, P = VI

P = 12×4 = 48 W.

To learn more about series and parallel circuits:

https://brainly.com/question/32020955

#SPJ1

It is to be constructed in the shape of a hollow ring of mass 48,500 kg. The structures other than the ring shown in the figure have negligible mass compared to the ring. Members of the crew will walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius
r = 115 m.
The thickness of the ring is very small compared to the radius, so we can model the ring as a hoop. At rest when constructed, the ring is to be set rotating about its axis so that the people standing inside on this deck experience an effective free-fall acceleration equal to g. The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. Your supervisor asks you to determine the following: (a) the time interval during which the rockets must be fired if each exerts a thrust of 120 N and (b) the period of rotation of the space station after it has reached its target rotation.
1. Determine the time interval (in hr) during which the rockets must be fired if each exerts a thrust of 120 N.
2. Determine the period of rotation of the space station (in s) after it has reached its target rotation.

Answers

a) Converting the time interval to hours is 0.2 hr

b) The time in seconds is 691468 sec

To determine the time interval during which the rockets must be fired, we can analyze the forces acting on the ring. The rockets provide a tangential force that causes the ring to rotate. This force creates a torque, which results in an angular acceleration. To maintain an effective free-fall acceleration equal to g, the angular acceleration should be equal to g divided by the radius of the ring.

(a) To calculate the time interval, we can use the equation:

θ = ω_i * t + (1/2) * α * t^2

where θ is the angle through which the ring rotates, ω_i is the initial angular velocity, α is the angular acceleration, and t is the time interval. Since the ring starts from rest, ω_i = 0.

The angle θ is given by:

θ = 2π

The angular acceleration α can be calculated using:

α = g / r

where g is the acceleration due to gravity and r is the radius of the ring.

Substituting the given values, we have:

2π = (1/2) * (g / r) * t^2

Solving for t, we get:

t = sqrt((4πr) / g)

Converting the time interval to hours, we divide by 3600:

t = sqrt((4πr) / g) / 3600= 0.2 hr

(b) The period of rotation can be calculated using the equation:

T = 2π / ω

where T is the period and ω is the angular velocity.

Since the angular velocity ω is related to the angular acceleration α by the equation:

ω = α * t

Substituting the values, we have:

T = 2π / (α * t)

Substituting the values of α and t, we get:

T = 2π / (g / r * sqrt((4πr) / g) / 3600)

Simplifying the expression, we have:

T = (2π * r * 3600) / sqrt(4πr * g)= 691468 sec

For more such questions on time interval visit:

https://brainly.com/question/479532

#SPJ8

Power electronics and motion control system

A single-phase full-bridge uncontrolled (diode) rectifier is supplied by 220 V, 50 Hz source. Neglecting the diodes volt-drops,

a. Calculate the Average and rms values of the Output Voltage, Output (load) Current, the Ripple and Form Factors, when load is pure resistive R=10 Ohm.

b. Assume that load has inductive nature and L>> R and load current is flat and equal to 12 Ampere. Calculate the input Active Power, input Apparent Power and Power Factor (neglect diode losses)

Answers

a.  output voltage is 110 V, the RMS output voltage is approximately 155.56 V, the output (load) current is 15.56 A, the ripple factor is 0.866, and the form factor is 0.866. b. the input active power is 2640 W, the input apparent power is 2640 VA, and the power factor is 1 (or unity).

a. For a single-phase full-bridge uncontrolled (diode) rectifier with a pure resistive load of R = 10 Ohms and neglecting diode volt-drops, we can calculate the following values:

Average Output Voltage:

The average output voltage of a full-bridge rectifier can be calculated as half of the peak input voltage. Since the input voltage is 220 V, the average output voltage will be:

Average Output Voltage = (220 V) / 2 = 110 V

RMS Output Voltage:

The RMS output voltage of a full-bridge rectifier can be calculated as the peak input voltage divided by the square root of 2. In this case, the RMS output voltage will be:

RMS Output Voltage = (220 V) / √2 ≈ 155.56 V

Output (Load) Current:

Since the load is pure resistive, the output (load) current will be the same as the RMS output voltage divided by the load resistance. Therefore:

Output (Load) Current = RMS Output Voltage / R = 155.56 V / 10 Ω = 15.56 A

Ripple Factor:

The ripple factor for a full-bridge rectifier can be calculated as the ratio of the RMS value of the ripple voltage to the average output voltage. In this case, since we are neglecting diode volt-drops, the ripple factor is:

Ripple Factor = √(3/4) ≈ 0.866

Form Factor:

The form factor is the ratio of the RMS value of the output current to its average value. Since the load is purely resistive, the form factor is the same as the ripple factor:

Form Factor = 0.866

b. Now, assuming the load has an inductive nature with L >> R and a load current of 12 Amperes:

Input Active Power:

The input active power can be calculated as the product of the RMS input voltage, RMS input current, and the power factor. In this case, since the load current is flat and equal to 12 Amperes, and we neglect diode losses, the input active power will be:

Input Active Power = (220 V) * (12 A) = 2640 W

Input Apparent Power:

The input apparent power can be calculated as the product of the RMS input voltage and RMS input current. Therefore:

Input Apparent Power = (220 V) * (12 A) = 2640 VA

Power Factor:

The power factor is the ratio of the input active power to the input apparent power. In this case, the power factor will be:

Power Factor = Input Active Power / Input Apparent Power = 2640 W / 2640 VA = 1 (or unity)

Note: Neglecting diode losses implies that we assume the diodes are ideal, without any voltage drops or losses during the rectification process. In practical scenarios, there will be some voltage drops across the diodes, and losses should be taken into account for more accurate calculations.

Therefore, a. For a single-phase full-bridge uncontrolled (diode) rectifier with a pure resistive load of 10 Ohms, neglecting diode volt-drops, the average output voltage is 110 V, the RMS output voltage is approximately 155.56 V, the output (load) current is 15.56 A, the ripple factor is 0.866, and the form factor is 0.866. b. Assuming a load with an inductive nature, L >> R, and a flat load current of 12 A, the input active power is 2640 W, the input apparent power is 2640 VA, and the power factor is 1 (or unity).

To learn more about Power electronics click:

https://brainly.com/question/32157326

#SPJ1

In the diagram, R₁ = 40.0 , R2= 25.4 , and R3 = 70.8 . What is the equivalent resistance of the group? ​

Answers

According to the diagram the equivalent resistance of the group is

40.05 ohms

How to find the equivalent resistance

The equivalent resistance is calculated by investigating the diagram to note that R2 and R3 are in parallel and both are in series to R1

Resistors in parallel is solved by

Resistors in parallel = 1/25.4 + 1/70.8

Resistors in parallel = 0.0535 ohms

Equivalent resistance

Equivalent resistance = Resistors in parallel + Resistor in series

Equivalent resistance = 0.0535 + 40

Equivalent resistance = 40.0535

Learn more about equivalent resistance at

https://brainly.com/question/30901006

#SPJ1

Gas and plasma are phases of matter, yet gas runs a car and plasma is part of your blood. Compare and contrast these terms and offer an explanation for the use of similar names.

Answers

Plasma lacks a precise form or volume, much like gas. It completes the empty space. Even though it is in the gaseous form, there is a difference because some of the particles are plasma-ionized.

High-energy particles are free to move around and fill the area they inhabit in the state of matter known as gas.

Neutral atoms or molecules often make up gaseous substances like air.

The ionised gas known as plasma, on the other hand, contains both positively and negatively charged particles.

It develops when a gas is subjected to an intense electric field or heated to incredibly high temperatures.

Plasma is a substance that may be found in stars, lightning, and fluorescent lights. It is also an essential component of many modern technology, like plasma TVs and fusion reactors.

To learn more about phases of matter, click:

https://brainly.com/question/2141361

#SPJ1

please answer all the three question i am not sure of my answer i have final exam it would mean alot for u to help

Answers

Answer:

3 : Presence of a catalyst and Temperature

4 : correct, nothing needed to change

5 : Le Chatelier's principle states that when an equilibrium system is subjected to a disturbance or stress, it will undergo a shift in the direction that counteracts the impact of the stress, ultimately reestablishing a new state of equilibrium.

How much effort will be required on the small piston having cross section area zam to lift a lead of 4000N on a large piton having cross sectional area 1m². also calculate pressure exerted on the small piston.​

Answers

Answer:

4000 Nm^-2

Explanation:

Dude that "zam" drove me away, anyway:

Given:

Force on the large piston (F1) = 4000 N

Cross-sectional area of the large piston (A1) = 1 m²

Cross-sectional area of the small piston (A2) = zam (let's assume zam represents the area in square meters)

According to Pascal's law, the pressure exerted on the large piston (P1) is equal to the pressure exerted on the small piston (P2):

P1 = P2

Pressure is defined as force divided by area:

P1 = F1 / A1

P2 = F2 / A2

Since P1 = P2, we can equate the two expressions:

F1 / A1 = F2 / A2

Rearranging the equation to solve for F2, the force on the small piston:

F2 = (F1 / A1) * A2

Substituting the given values:

F2 = (4000 N / 1 m²) * zam

Now, to calculate the pressure exerted on the small piston (P2), we can divide the force by the area:

P2 = F2 / A2

Substituting the values we obtained:

P2 = [(4000 N / 1 m²) * zam] / zam

The area "zam" cancels out in the equation, leaving us with:

P2 = 4000 N/m²

Therefore, the pressure exerted on the small piston is 4000 N/m².

To determine the effort required on the small piston, we need to know the area of the small piston. Once we have that information, we can substitute it into the equation for F2 to calculate the effort required

Please tell me the answer ASPA

Answers

Answer:

both objects are negatively charged.

A car travels from point A to B in 3 hours and returns back to point A in 5 hours. Points A and B are 150 miles apart along a straight highway. Calculate: a) Total distance and total displacement (in mile and meter) b) Average speed and Average velocity (in mile/hr and m/s​

Answers

The total distance covered by the car is 300 miles.

The total displacement covered by the car is zero.

The average speed of the car is 17.88 m/s.

The average velocity of the car is also zero.

Distance between the points A and B, d = 150 miles

Time taken by the car to travel from A to B, t₁ = 3 hours

Time taken by the car to travel from B to A, t₂ = 5 hours

a) Given that the car travelled from A to B and then back to A.

Therefore, the total distance covered by the car is,

Distance = 2 x d

Distance = 2 x 150

Distance = 300 miles

Since the car is travelling from A to B and then returning back to the initial point A, the total displacement covered by the car is zero.

b) The speed with which the car travelled from A to B is,

v₁ = d/t₁

v₁ = 150/3

v₁ = 50 miles/hr

v₁ = 22.35 m/s

The speed with which the car travelled from B to A is,

v₂ = d/t₂

v₂ = 150/5

v₂ = 30 miles/hr

v₂ = 13.41 m/s

Therefore, the average speed of the car is,

v = (v₁ + v₂)/2

v = (22.35 + 13.41)/2

v = 17.88 m/s

As, the total displacement of the car is zero, the average velocity of the car is also zero.

To learn more about average speed, click:

https://brainly.com/question/10449029

#SPJ1

The diagram shows the electric field due to point charge Q. The negative charge, A, is within the field. Charge Q has vectors radially inward starting perpendicular from the surface. The farther you get from the charge, the shorter the vectors. All vectors point towards the charge. A point labeled A is just to the right of the charged object. Which statements are correct? Check all that apply. Charge Q is positive. Charge Q is negative. The electric field is uniform. The electric field is nonuniform. If charge A is negative, it moves away from charge Q. If charge A is positive, it moves away from charge Q.

Answers

The correct statements are:Charge Q is positive, the electric field is nonuniform and if charge A is negative, it moves away from charge Q.

Based on the given information, we can make the following conclusions:

Charge Q is positive: The diagram shows that the electric field vectors point radially inward towards charge Q. Since like charges repel each other, for the vectors to point towards charge Q, it must be positive.

The electric field is nonuniform: The statement mentions that "the farther you get from the charge, the shorter the vectors." This implies that the magnitude of the electric field decreases with distance from charge Q. Therefore, the electric field is nonuniform.If charge A is negative, it moves away from charge Q: In the diagram, charge A is within the electric field of charge Q. Since opposite charges attract each other, if charge A is negative, it will experience a force that pulls it towards charge Q. Therefore, it will move towards charge Q, not away from it.

If charge A is positive, it moves away from charge Q: This statement is incorrect. According to the previous conclusion, if charge A is positive, it will experience a force that attracts it towards charge Q. Therefore, it will move towards charge Q, not away from it.

The provided information does not specify the behavior of charge A when it is positive. It is possible that charge A could move towards charge Q, or it could experience other forces depending on its position and the magnitude of the charges involved.

for such more questions on  electric

https://brainly.com/question/1100341

#SPJ8

400g of cold water is added to 200g of water at 70 degree celsius if they are properly mixed and the temperature is mixed and it is 30 degrees Celsius calculate the initial temperature of the cold water.​

Answers

The initial temperature of the cold water is 10°C.

Mass of the cold water, m₁ = 400 g = 0.4 g

Mass of the water to which the cold water is added, m₂ = 200 g = 0.2 g

Temperature of the water to which the cold water is added, T₂ = 70°C

Temperature of the mixture, T = 30°C

According to the principle of calorimetry,

m₁T₁ + m₂T₂ = (m₁ + m₂)T

(0.4 x T₁) + (0.2 x 70) = (0.4 + 0.2) x 30

0.4T₁ + 14 = 18

0.4T₁ = 18 - 14

0.4T₁ = 4

Therefore, the initial temperature of the cold water is,

T₁ = 4/0.4

T₁ = 10°C

To learn more about temperature, click:

https://brainly.com/question/20892641

#SPJ1

3. North America's weather is
mostly controlled by?

Answers

The third-largest continent, North America, with an area of 24,346,000 sq km.

Thus, The entire continent of North America, including any associated offshore islands, is located north of the Panama Canal, which connects it to South America.

It features a wide range of climates, from the sweltering heat of the tropics to the dry, icy cold of the Arctic. An icecap is always there, keeping the interior of Greenland permanently cold and climate.

Only briefly each summer do temperatures above zero degrees Fahrenheit rise in the vast, treeless tundra of North America. Low-lying regions in the deep south are constantly hot and wet. The majority of the rest of North America experiences chilly winters and mild summers.

Thus, The third-largest continent, North America, with an area of 24,346,000 sq km.

Learn more about Climates, refer to the link:

https://brainly.com/question/31682134

#SPJ1

A car has a displacement of 150 kilometers to the south in 5 hours. What is its velocity in kilometers per hour?​

Answers

Velocity = Displacement/Time
Velocity = 150/5 = 30 km/h
That’s the answer if you take south as the positive sense. If it’s taken as the negative sense then the displacement will be negative
Velocity = -150/5=-30 km/h

1. Calculate the increase in length of an iron wire that is 30m long at 20°c when it is warmed to 45°c (take airon 1.1x10³J/k)
2. If 2200 Joule of heat is added to a 190 g object its temperature increases by 12°c.W hat is
a. specific heat capacity
b. heat capacity of the object​

Answers

The increase in length of the iron wire when warmed from 20°C to 45°C is approximately 8.25 millimeters. The specific heat capacity of the object is approximately 9.62 J/kg°C. The heat capacity of the object is approximately 1.83 J/°C.

ΔL = L × α × ΔT

Where:

ΔL is the change in length

L is the original length of the wire

α is the coefficient of linear expansion for iron

ΔT is the change in temperature

The coefficient of linear expansion for iron is typically 1.1 x [tex]10^(^-^5^)[/tex] °[tex]C^(^-^1^)[/tex].

Given:

L = 30 m (original length of the wire)

α = 1.1 x [tex]10^(^-^5^)[/tex] °[tex]C^(^-^1^)[/tex] (coefficient of linear expansion)

ΔT = 45°C - 20°C = 25°C (change in temperature)

ΔL = 30 m × (1.1 x [tex]10^(^-^5^)[/tex] °[tex]C^(^-^1^)[/tex]) × 25°C

= 30 m × 1.1 x[tex]10^(^-^5^)[/tex] × 25

= 8.25 x [tex]10^(^-^3^)[/tex] m

2) Q = mcΔT

Where:

Q is the heat energy transferred

m is the mass of the object

c is the specific heat capacity

ΔT is the change in temperature

Given:

Q = 2200 J (heat energy transferred)

m = 190 g (mass of the object)

ΔT = 12°C (change in temperature)

a. Specific heat capacity (c):

one need to rearrange the formula to solve for c:

c = Q / (m × ΔT)

Substituting the given values:

c = 2200 J / (190 g × 12°C)

First, need to convert the mass to kilograms:

m = 190 g = 190 g / 1000 = 0.19 kg

Now can calculate the specific heat capacity:

c = 2200 J / (0.19 kg × 12°C)

= 9.62 J/(kg°C)

b. Heat capacity (C):

The heat capacity is the amount of heat energy required to raise the temperature of the object by 1 degree Celsius.

C = mc

Substituting the given values:

C = 0.19 kg × 9.62 J/(kg°C)

= 1.83 J/°C

Learn more about the specific heat here

https://brainly.com/question/16792262

#SPJ1

Ex) A wire has resistance R. Another wire, of the same material, has half the length and half the diameter of the first wire. The resistance of the second wire is? ​

Answers

Answer:
R(2nd wire)= 2R(1st wire)

Explanation:
Resistivity= (resistance*area)/length

Both have same resistivity since they are made of the same materials

So make 2 equations and equate them

Hope this helps :)

The resistance of the second wire is twice the resistance of the first wire R₂ = 2R₁

Understanding Resistance

The resistance of a wire is directly proportional to its length and inversely proportional to the cross-sectional area.

Let:

R₁ = resistance of the first wire

R₂ = resistance of the second wire

L₁ = length of the first wire

L₂ = length of the second wire

r₁ = radius of the first wire

r₂ = radius of the second wire

Given:

L₂ = L₁/2

r₂ = r₁/2

A₂ = A₁/4

Since resistance is inversely proportional to the cross-sectional area, which is proportional to the square of the radius.

Now, we can use the formula for resistance:

R = (ρL) / A

where

ρ is the resistivity,

L is the length,  

A is the cross-sectional area.

For the first wire:

R₁ = (ρL₁) / A₁

For the second wire:

R₂ = (ρL₂) / A₂

Substituting the relationships we derived earlier:

R₂ = (ρ(L₁/2)) / (A₁/4)

R₂ = (ρL₁) / (A₁/2)

R₂ = 2(ρL₁) / A₁

Since ρL₁/A₁ is equal to R₁ (the resistance of the first wire), we can substitute:

R₂ = 2R₁

Learn more about resistance here:

https://brainly.com/question/17563681

#SPJ1

A 21.1-N force is applied to a cord wrapped around a pulley of mass M = 4.49-kg and radius R = 25.0-cm The pulley accelerates uniformly from rest to an angular speed of 25.5 rad/s in 2.31-s. If there is a frictional torque \tau = 2.80-mN at the axle,

(a) determine the moment of inertia of the pulley,

(b) determine the rough estimate of the moment of inertia.

(The pulley rotates about its center)

What is the difference be (a) and (b)?

Answers

Answer:

The difference between (a) and (b) is the deviation caused by the actual pulley not being a perfect solid disk. In (a), we took into account the additional frictional torque and calculated the more accurate moment of inertia. In (b), we made a rough estimate assuming the pulley to be a solid disk, which disregards factors such as the mass distribution and the presence of the axle. The difference between the two values is the deviation caused by these factors.

A spring stretches 0.285-m when a 0.342-kg mass is gently suspended from it as in Fig. 11–3b. The spring is then set up horizontally with the 0.402-kg mass resting on a frictionless table as in Fig. 11–5. The mass is pulled so that the spring is stretched 0.194-m from the equilibrium point, and released from rest.

Determine:

(c) the magnitude of the maximum velocity vmax.

Answers

The magnitude of the maximum velocity of the mass is 1.43 m/s.

How to explain the velocity

The maximum velocity of the mass will occur when it is at the equilibrium point. At this point, the potential energy of the spring is equal to the kinetic energy of the mass.

The potential energy of the spring is equal to one-half the spring constant times the square of the displacement of the spring, and the kinetic energy of the mass is equal to one-half the mass of the object times the square of the velocity of the mass.

We are given that the spring constant is 11.7 N/m, the displacement of the spring is 0.194 m, and the mass of the object is 0.402 kg. Substituting these values into the equation, we find that the maximum velocity of the mass is 1.43 m/s.

Therefore, the magnitude of the maximum velocity of the mass is 1.43 m/s.

Learn more about velocity on

https://brainly.com/question/24445340

#SPJ1

HELPLP NEED FOR AN ASSIGNENT ! In the string pull illustration above, a shark on the button string results in the bottom string breaking, does this occur because of the balls weight of its mass?

Answers

Answer:

Yes, the shark's weight or mass is what causes the bottom string to break. The weight of the shark creates tension on the bottom string, which can cause it to snap if the tension becomes too great.

A block of wood is attached to a very lightweight metal rod, which is attached to a fixed pivot point on a table. The block is able to slide on the table with negligible friction, and the pivot is also free to rotate with negligible friction. The block's mass is M and the rod's length is ℓ. A bullet is moving parallel to the table and perpendicular to the rod when it collides and embeds within the block. The bullet's speed just before entering the block is v and its mass is m.
1. Find the angular momentum of the combined bullet–block system about the vertical pivot axis. (Use any variable or symbol stated above as necessary. Enter the magnitude.)
2. Find the fraction of the original kinetic energy of the bullet that is converted into internal energy within the bullet-block system during the collision. (Use any variable or symbol stated above as necessary.)

Answers

1. The angular momentum of the combined bullet-block system about the vertical pivot axis is 0.

2. The fraction of the original kinetic energy of the bullet converted into internal energy within the bullet-block system during the collision is given by [m * v² - (M + m) * V²] / [m * v²].

1. To find the angular momentum of the combined bullet-block system about the vertical pivot axis, we need to consider the initial and final angular momentum.

Initially, before the collision, the bullet has no angular momentum about the pivot axis since it is moving parallel to the table and perpendicular to the rod.

After the collision, when the bullet embeds within the block, the combined bullet-block system starts rotating about the pivot axis due to the conservation of angular momentum.

The angular momentum of the system can be calculated using the formula:

Angular momentum = moment of inertia × angular velocity

The moment of inertia of the system depends on the distribution of mass and the axis of rotation. Assuming the block and bullet have negligible rotational inertia compared to the rod, we can consider the moment of inertia to be that of the rod.

The moment of inertia of a rod rotating about one end (pivot) is given by:

I = (1/3) * M * ℓ²

where M is the mass of the block, and ℓ is the length of the rod.

The angular velocity (ω) can be determined by considering the conservation of angular momentum:

Initial angular momentum = Final angular momentum

0 = (1/3) * M * ℓ² * ω

Since the initial angular momentum is zero, the final angular momentum of the system is also zero.

Therefore, the angular momentum of the combined bullet-block system about the vertical pivot axis is 0.

2. To find the fraction of the original kinetic energy of the bullet that is converted into internal energy within the bullet-block system during the collision, we can use the principle of conservation of kinetic energy.

The initial kinetic energy of the bullet before the collision is given by:

Initial kinetic energy = (1/2) * m * v²

After the collision, the bullet embeds within the block, and both the bullet and the block gain internal kinetic energy due to their rotational motion.

The final kinetic energy of the bullet-block system is given by:

Final kinetic energy = (1/2) * (M + m) * V²

where V is the final velocity of the combined bullet-block system after the collision.

Since the bullet and block are now rotating about the pivot axis, part of the initial kinetic energy is converted into internal rotational kinetic energy.

The fraction of the original kinetic energy converted into internal energy can be calculated as:

Fraction of kinetic energy converted = (Initial kinetic energy - Final kinetic energy) / Initial kinetic energy

Substituting the values:

Fraction of kinetic energy converted = [(1/2) * m * v² - (1/2) * (M + m) * V²] / [(1/2) * m * v²]

Simplifying the equation, we can cancel out common terms:

Fraction of kinetic energy converted = [m * v² - (M + m) * V²] / [m * v²]

Therefore, the fraction of the original kinetic energy of the bullet converted into internal energy within the bullet-block system during the collision is given by [m * v² - (M + m) * V²] / [m * v²].

For more such questions on angular momentum visit:

https://brainly.com/question/4126751

#SPJ8

An astronaut has a total mass of 110 kg.
On the moon, he climbs into his spacecraft, 5 m up a ladder.
His GPE increases by 880 J.
What is the strength of gravity on the moon?

Answers

The strength of gravity on the moon is approximately 1.6 J/kg.

The change in gravitational potential energy (GPE) is given by the equation:

ΔGPE = m * g * Δh

where ΔGPE is the change in gravitational potential energy, m is the mass of the object, g is the strength of gravity, and Δh is the change in height.

In this case, the astronaut's GPE increases by 880 J as he climbs up the ladder by 5 m. We can rewrite the equation as:

880 J = (110 kg) * g * (5 m)

To find the strength of gravity on the moon (g), we can rearrange the equation:

g = 880 J / (110 kg * 5 m)

g = 1.6 J/kg

Therefore, the strength of gravity on the moon is approximately 1.6 J/kg.

It's important to note that the value of gravity on the moon is significantly lower than that on Earth. The moon has about one-sixth the gravity of Earth, which means objects weigh less on the moon compared to Earth. This lower gravity is due to the moon's smaller mass and smaller radius compared to Earth.

As a result, astronauts experience a different gravitational environment on the moon, which affects their movements and the energy required to perform tasks such as climbing.

For more such questions on strength of gravity visit:

https://brainly.com/question/940770

#SPJ8

What is the result of two displacement vectors having opposite directions? Question 6 options: The resultant is the sum of the two displacements, having the same direction as the smaller vector. The resultant is the sum of the two displacements, having the same direction as the larger vector. The resultant is the difference of the two displacements, having the same direction as the smaller vector. The resultant is the difference of the two displacements, having the same direction as the larger vector.

Answers

The resultant of two displacement vectors having opposite directions is the difference of the two displacements, having the same direction as the smaller vector.

When two displacement vectors have opposite directions, it means they are pointing in opposite ways. In other words, one vector is in the opposite direction of the other. To find the resultant of these vectors, we need to subtract one vector from the other.

If we consider two displacement vectors, let's say vector A and vector B, and they have opposite directions, we can represent them as A and -B.

To find the resultant, we subtract vector B from vector A: A - (-B) or A + B.

The resultant will have the same direction as the smaller vector. This is because when we subtract a larger vector from a smaller vector, the resultant will have the direction of the smaller vector.

Therefore, the correct option is: "The resultant is the difference of the two displacements, having the same direction as the smaller vector."

For more such questions on displacement vectors.

https://brainly.com/question/30615410

#SPJ8

A helicopter flies southeast with a ground of 220 km/h. If the wind speed is 32 km/h southeast, what is the air speed?

Answers

The speed of the air during the motion of the helicopter is 188 km/h.

The speed of the helicopter, v₁ = 220 km/h

The speed of wind, v₂ = 32 km/h

The speed of one moving body in comparison to another is referred to as the relative speed.

The relative speed of two bodies travelling in the same direction is determined by the speed differential between them.

The expression for the relative speed is given by,

Relative speed = v₁ - v₂

Therefore, the speed of the air is given by,

v = v₁ - v₂

v = 220 - 32

v = 188 km/h

To learn more about relative speed, click:

https://brainly.com/question/29350953

#SPJ1

A 5.00-ohm resistor, a 10.0-ohm resistor, and a 15.0-ohm resistor are connected in parallel with a battery. The current through the 5.00-ohm resistor is 2.4 amperes.

Calculate the potential difference.
Group of answer choices

12.0 V
12.5 V
6.55 V
2.08 V

Answers

I’m not 100% sure but my math says it’s A. 12.0 V



Explanation: 2.4 (amperes) * 5.00 (ohm) = 12.0V

what is the pressure of a tank of uniform cross sectional area 4.0m2 when the tank is filled with water a depth of 6m when given that 1 atm=1.013 x 10^5pa density of water=1000kgm-3 g=9.8m/s2​

Answers

The pressure of a tank of uniform cross-sectional area 4.0m2 when the tank is filled with water at a depth of 6m is 58800 Pa.

Pressure calculation

To find the pressure in the tank, we can use the formula for pressure:

Pressure = density x gravity x height

Density of water (ρ) = 1000 kg/m³

Acceleration due to gravity (g) = 9.8 m/s²

Height (h) = 6 m

Thus:

Pressure = 1000 kg/m³ x 9.8 m/s² x 6 m

Pressure = 58800 kg/(m·s²)

Since the unit of pressure is Pascal (Pa), which is equivalent to kg/(m·s²), the pressure in the tank is:

Pressure = 58800 Pa

Therefore, the pressure in the tank when it is filled with water to a depth of 6 m is 58800 Pascal.

More on pressure can be found here: https://brainly.com/question/21611721

#SPJ1

According to figure below where the point P is located so that the magnitude of the Field at point p= Zero ?

Answers

According to figure where the point P is located so that the magnitude of the Field at point p= Zero electric field will be [tex]E=\frac{1}{4\pi \epsilon_0s^3} \sqrt{q^2d^2}[/tex].

The electric field is a fundamental concept in physics that describes the force experienced by a charged particle in the presence of other charges. It is a vector field, which means it has both magnitude and direction at each point in space.

The electric field is created by electric charges. A positive charge creates an outward electric field, while a negative charge creates an inward electric field.

The strength or magnitude of the electric field at a given point depends on the magnitude of the charge creating the field and the distance from that point to the charge.

E due to the dipole formed by charges at extreme end,

[tex]E_x=k_p/d^3[/tex] in the x-direction

E due to the charge at center

[tex]E_y=k_q/d^3[/tex]

Net electric field is,

[tex]E=\frac{1}{4\pi \epsilon_0s^3} \sqrt{q^2d^2}[/tex]. as p = 0.

Thus, the answer is  [tex]E=\frac{1}{4\pi \epsilon_0s^3} \sqrt{q^2d^2}[/tex].

For more details regarding electric field, visit:

https://brainly.com/question/11482745

#SPJ1

Your question seems incomplete, the probable complete question is:

According to figure below where the point P is located so that the magnitude of the Field at point p= Zero ?

A freighter needs to travel up the savannah River to the port, moving against the flow of the water. if theriver flows at 3 m/s relative to the shore, and the maximum speed of the freighter relative to the river is 7 m/s, what is the maximum velocity of the freighter relative to the shore

Answers

The maximum velocity of the freighter relative to the shore is 4 m/s.

To determine the maximum velocity of the freighter relative to the shore, we need to consider the velocities of the river and the freighter separately and then combine them. Since the freighter needs to travel against the flow of the water, we subtract the velocity of the river from the maximum speed of the freighter relative to the river.

Given that the river flows at 3 m/s relative to the shore, and the maximum speed of the freighter relative to the river is 7 m/s, we can subtract the river's velocity from the maximum speed of the freighter:

Max velocity of freighter relative to shore = Max velocity of freighter relative to river - Velocity of river

Max velocity of freighter relative to shore = 7 m/s - 3 m/s

Max velocity of freighter relative to shore = 4 m/s

This means that the freighter can travel upstream at a maximum speed of 4 meters per second relative to the stationary shore while overcoming the 3 m/s current flowing downstream in the Savannah River.

for such more questions on velocity

https://brainly.com/question/80295

#SPJ8

Find the current flowing out of the battery.​

Answers

Answer:

5A

Explanation:

when the trigger is pulled on a cordless drill it takes 0.36s for the drill bit to reach 5200rpm. If the drill spins counterclockwise then, what is the angular acceleration of the drill bit?

Answers

The angular acceleration of the drill is 1512.5 rad/s².

Time taken for the drill, t = 0.36 s

Angular velocity of the drill, ω = 5200 rpm = 544.5 rad/s

The change in angular velocity that a spinning object experiences per unit of time is expressed quantitatively as angular acceleration, also known as its rotational acceleration.

It is a vector quantity that has two distinct directions or senses as well as a component of magnitude. The unit of angular acceleration is rad/s².

So,

The expression for the angular acceleration is given by,

α = ω/t

α = 544.5/0.36

α = 1512.5 rad/s²

To learn more about angular acceleration, click:

https://brainly.com/question/1980605

#SPJ1

Other Questions
Shannon is paid a monthly salary of $1025.02.The regular workweek is 35 hours.(a) What is Shannon's hourly rate of pay?(b) What is What is Shannon's gross pay if she worked 7 3/4hours overtime during the month at time-and-a-half regular pay?A) The hourly rate of pay is$-------Part 2(b) The gross pay is $-- Identify the element with the largest atomic radius. A) lead B) silicon C) germanium D) carbon E) tin justice wargrave said smoothly: 'the law, my dear lady, is only an instrument; it is not justice itself. justice is the abstract ideal which we are fighting for. the law is only one of the means by which we hope to attain your goal. we seek to remove injustice, not to punish it.' true or false In this preference assessment, children have access to a variety of toys and can interact with one or more as they choose.A. Free OperantB. Multiple Stimulus Without ReplacementC. Single Stimulus what particle is emitted in the following radioactive decay? 2714si2713al1427si1327al . A recent important change to real estate brokerage practices is A) digital communication in all its forms B) fax transmissions C) use of personal assistants D) the use of electronic signatures Find the volume of the tetrahedron bounded by the coordinate planes and the plane x+2y+892=61 Discuss within your group XRP (RIPPLE)3. Discuss within your group to choose one national currency. (Jappan) (Japanese yen)Section 1: History overview of xrp (Ripple)Section 2: The cryptocurrency regulation in Japan national currency. Electrical conductivity (EC) is measured to estimate the nutrient content of the soil. True False Question Out of keynsesian and behavioural economics, which one will helpmore significantly in reducing the rate of climate change True/False. $5,000 invested at an annual rate of 6or 3 years has a smaller future value than $5,000 invested at an annual rate of 3or 6 years. Prepare journal entries to record the following transactions for Sherman Systems.A. Purchased 7,200 shares of its own common stock at $47 per share on October 11.B. Sold 1,550 treasury shares on November 1 for $53 cash per share.C. Sold all remaining treasury shares on November 25 for $42 cash per share. which of the following statements about g proteins is true? group of answer choices a) they are activated when they are bound to gdp. b) they become phosphorylated after hormone binding. c) when activated, they can activate enzymes that catalyze the production of second messengers. d) when activated, they directly catalyze the phosphorylation of other proteins. Find the derivative of f(x, y) = x2 + xy + y at the point (2, 1) in the direction towards the point (-3, - 2)." what are the four states of matter? how is fire classified? how are the sensory clues from watching a fire different from the sensory clues for watching a firefly? what elements does combustion use to create a sensory experience? what affects the different lights one sees in a fire? Which one of the following accounts is not closed at the end of an accounting period?a. Owner's Drawing accountb. Owner's Capital accountc. Service Revenue accountd. Insurance Expense account dy dx =9e7, y(-7)= 0 Solve the initial value problem above. (Express your answer in the form y=f(x).) Generate 10 realizations of length n = 200 each ofan ARMA (1,1) process n with q = 9.0=.5 and 2 1. Find the MLBs of the three parameters in teach case and compare the estimators to the true values. your risk of heat-related illness increases if you __________. The BR LLC owns an unrealized receivable with a basis of $0 and fair market value of $200,000 plus cash of $200,000. If BR distributes $20,000 of the receivable to 50% member Brenda and $20,000 of cash to 50% member Renee, which one of the following statements is true? Assume each partner has a partnership interest basis of $100,000.a.Brenda recognizes $20,000 of capital gain.b.The partnership recognizes $20,000 of ordinary income.c.Renee recognizes $10,000 of ordinary income.d.Brenda recognizes $10,000 of ordinary income.