Henry left Terminal A 15 minutes earlier than Xavier, but reached Terminal B 30 minutes later than him. When Xavier reached Terminal B, Henry had completed & of his journey and was 30 km away from Terminal B. Calculate Xavier's average speed.

Answers

Answer 1

Answer: 30t + 450 = 30t

Step-by-step explanation:

To calculate Xavier's average speed, we need to determine the time it took for him to travel from Terminal A to Terminal B. Let's assume Xavier's time is represented by "t" minutes.

Since Henry left Terminal A 15 minutes earlier than Xavier, we can express Henry's time as "t + 15" minutes.

We are given that when Xavier reached Terminal B, Henry had completed 2/3 (or 2/3 * 100% = 66.67%) of his journey and was 30 km away from Terminal B.

Since Xavier has completed the entire journey, the distance he traveled is the same as the remaining distance for Henry, which is 30 km.

Now, let's set up a proportion using the time and distance for Xavier and Henry:

t/(t + 15) = 30/30

Cross-multiplying the proportion:

30(t + 15) = 30t

Simplifying the equation:

30t + 450 = 30t

We can see that the "t" terms cancel out, resulting in 450 = 0, which is not possible.

Therefore, there seems to be an error or inconsistency in the given information or calculations. Please double-check the details or provide any additional information so that I can assist you further.


Related Questions

find the z-score for the value 75, when the mean is 74 and the standard deviation is 5, rounding to two decimal places.

Answers

The z-score for the value 75, with a mean of 74 and a standard deviation of 5, is 0.20.

The z-score measures the number of standard deviations a particular value is away from the mean.

It is calculated using the formula: z = (x - μ) / σ, where x is the value, μ is the mean, and σ is the standard deviation.

In this case, the value is 75, the mean is 74, and the standard deviation is 5.

Plugging these values into the formula, we get: z = (75 - 74) / 5 = 0.20.

The positive value of the z-score indicates that the value of 75 is 0.20 standard deviations above the mean.

Since the standard deviation is 5, we can interpret this as 75 being 1 unit (0.20 × 5) above the mean.

The z-score is a useful measure as it allows us to compare values from different distributions and determine their relative positions.

It also helps in understanding the significance of a particular value in relation to the distribution it belongs to.

Learn more about standard deviation here:

https://brainly.com/question/475676

#SPJ11

If an industry invests x thousand labor-hours, 105x520, and Sy million, 1sys2, in the production of thousand units of a certain item, then N is given by the following formula. N(x.y)=x0.80 0.20 What i

Answers

To find the derivatives of the given functions, we will apply the power rule and the chain rule as necessary. Answer :   0.20 * x^0.80 * y^(0.20 - 1) = 0.20 * x^0.80 * y^(-0.80)

a) f(x) = 2 ln(x) + 12:

Using the power rule and the derivative of ln(x) (which is 1/x), we have:

f'(x) = 2 * (1/x) + 0 = 2/x

b) g(x) = ln(sqrt(x^2 + 3)):

Using the chain rule and the derivative of ln(x) (which is 1/x), we have:

g'(x) = (1/(sqrt(x^2 + 3))) * (1/2) * (2x) = x / (x^2 + 3)

c) H(x) = sin(sin(2x)):

Using the chain rule and the derivative of sin(x) (which is cos(x)), we have:

H'(x) = cos(sin(2x)) * (2cos(2x)) = 2cos(2x) * cos(sin(2x))

For the given formula N(x, y) = x^0.80 * y^0.20, it seems to be a multivariable function with respect to x and y. To find the partial derivatives, we differentiate each term with respect to the corresponding variable.

∂N/∂x = 0.80 * x^(0.80 - 1) * y^0.20 = 0.80 * x^(-0.20) * y^0.20

∂N/∂y = 0.20 * x^0.80 * y^(0.20 - 1) = 0.20 * x^0.80 * y^(-0.80)

Please note that these are the partial derivatives of N with respect to x and y, respectively, assuming the given formula is correct.

Learn more about derivative  : brainly.com/question/24062595

#SPJ11

The best player on a basketball team makes 95% of all free throws. The second-best player makes 90% of all free throws. The third-best player makes 80% of all free throws. Based on their experimental probabilities, estimate the number of free throws each player will make in his or her next 60 attempts. Explain ​

Answers

Answer:

the best player will make 57 the second best will make 54 and the third will make 48

Step-by-step explanation:

3 4- If S (t)=(t²-1) ³ c. Find all the points that minimizes or maximizes the function Find if there are any inflection points in the function d.

Answers

The function [tex]S(t) = (t^2 - 1)^3[/tex] can have points that minimize or maximize the function. To find them, we need to determine the critical points by finding where the derivative equals zero or is undefined.

There are no inflection points in the function since it is a polynomial of degree 6.

To find the points that minimize or maximize the function [tex]S(t) = (t^2 - 1)^3[/tex], we need to examine the critical points. The critical points occur where the derivative equals zero or is undefined.

Taking the derivative of S(t) with respect to t, we get:

[tex]S'(t) = 3(t^2 - 1)^2 * 2t = 6t(t^2 - 1)^2[/tex]

To find the critical points, we set S'(t) = 0 and solve for t:

[tex]6t(t^2 - 1)^2 = 0[/tex]

This equation gives us two possibilities: t = 0 or [tex]t^2 - 1 = 0[/tex]. For t = 0, we have a critical point. For t^2 - 1 = 0, we get t = -1 and t = 1 as additional critical points.

To determine if these critical points correspond to local minima, local maxima, or neither, we can use the first or second derivative test. However, since the second derivative is not provided, we cannot definitively determine the nature of these critical points.

Regarding inflection points, an inflection point occurs where the concavity changes. Since the function [tex]S(t) = (t^2 - 1)^3[/tex] is a polynomial of degree 6, its concavity does not change, and therefore, there are no inflection points in the function.

To learn more about inflection points visit:

brainly.com/question/29183031

#SPJ11

For what values of a is F = (x² + yz)i + a(y + 2zx)j + (xy+z)k a conservative vector field? For this value of a, find a potential such that F= Vy. (b) A particle is moved from the origin (0, 0)

Answers

(a) For a = 1, the vector field F is conservative, (b) For a = 1, the potential function V such that F = ∇V is: V = (1/3)x³ + xy z + (y²/2 + 2xyz) + xyz + z²/2 + C

To determine the values of a for which the vector field F = (x² + yz)i + a(y + 2zx)j + (xy+z)k is conservative, we need to check if the curl of F is zero. If the curl is zero, then F is conservative.

The curl of a vector field F = P i + Q j + R k is given by the following determinant:

curl(F) = ( ∂R/∂y - ∂Q/∂z ) i + ( ∂P/∂z - ∂R/∂x ) j + ( ∂Q/∂x - ∂P/∂y ) k

The curl of F:

∂R/∂y = 1

∂Q/∂z = a

∂P/∂z = -2ax

∂R/∂x = y

∂Q/∂x = 0

∂P/∂y = 0

Plugging these values into the curl formula, we have:

curl(F) = (1 - a) i + (-2ax) j + y k

For the curl to be zero, each component of the curl must be zero. Therefore, we have the following conditions:

1 - a = 0  (from the i-component)

-2ax = 0  (from the j-component)

y = 0     (from the k-component)

From the first condition, we find that a = 1.

Substituting a = 1 into the second and third conditions, we have:

-2x = 0

y = 0

∴ x = 0 and y = 0.

Therefore, the vector field F is conservative for a=1.

To obtain a potential function V such that F = ∇V, we integrate each component of F with respect to the corresponding variable:

V = ∫(x² + yz) dx = (1/3)x³ + xy z + g(y,z)

V = ∫a(y + 2zx) dy = a(y²/2 + 2xyz) + h(x,z)

V = ∫(xy + z) dz = xyz + z²/2 + k(x,y)

Combining these terms, we have:

V = (1/3)x³ + xy z + a(y²/2 + 2xyz) + xyz + z²/2 + C

Therefore, for a = 1, the potential function V such that F = ∇V is:

V = (1/3)x³ + xy z + (y²/2 + 2xyz) + xyz + z²/2 + C

To know more about  potential function refer here:

https://brainly.com/question/28156550#

#SPJ11

Use the Fundamental Theorem of Calculus to decide if the definite integral exists and either evaluate the integral or enter DNE if it does not exist. 4 ſ* (5 + eva) de Use the Fundamental Theorem of Calculus to decide if the definite integral exists and either evaluate the integral or enter DNE if it does not exist. 4 ſ* (5 + eva) de Use the Fundamental Theorem of Calculus to decide if the definite integral exists and either evaluate the integral or enter DNE if it does not exist. 4 ſ* (5 + eva) de

Answers

The definite integral of this expression does not exist and can be entered as DNE.

Let's see the further explanation:

The Fundamental Theorem of Calculus states that the definite integral of a continuous function from a to b is equal to the function f(b) - f(a)

In this case, the definite integral is 4 * (5 + e^v a) de which is not a continuous function.

The expression is not a continuous function because it relies on undefined variables. The variable e^v has no numerical value, and thus it is a non-continuous function.

As a result, the definite integral of this equation cannot be calculated and can instead be entered as DNE.

To know more about integral refer here:

https://brainly.com/question/31059545#

#SPJ11

15 8 14. Given sint = — and cost = — use the reciprocal 17 17 and quotient identities to find the value of tant and csct.

Answers

We can apply the reciprocal identities to find the values of tant (tangent of angle t) and csct (cosecant of angle t). By utilizing these trigonometric identities, we can determine that tant is equal to -15/8 and csct is equal to -17/15.

Given that sint = -15/17 and cost = 8/17, we can use the reciprocal and quotient identities to find the values of tant and csct.

The reciprocal identity states that the tangent (tant) is equal to the reciprocal of the cotangent (cot). Therefore, we can find the value of tant by taking the reciprocal of cost:

tant = 1 / cot = 1 / (cost / sint) = sint / cost = (-15/17) / (8/17) = -15/8

Next, the quotient identity states that the cosecant (csct) is equal to the reciprocal of the sine (sint). Thus, we can find the value of csct by taking the reciprocal of sint:

csct = 1 / sin = 1 / sint = 1 / (-15/17) = -17/15

Therefore, the value of tant is -15/8 and the value of csct is -17/15.

To learn more about reciprocal identity click here : brainly.com/question/27642948

#SPJ11

Find the minimum value of the function f(x, y) = x² + y2 subject to the constraint xy = = 15."

Answers

To find the minimum value of the function f(x, y) = x² + y² subject to the constraint xy = 15, we can use the method of Lagrange multipliers.

Let's define the Lagrangian function L(x, y, λ) as L(x, y, λ) = f(x, y) - λ(xy - To find the minimum value, we need to solve the following system of equations:

∂L/∂x = 2x - λy = 0

∂L/∂y = 2y - λx = 0

∂L/∂λ = xy - 15 = 0

From the first equation, we get x = (λy)/2. Substituting this into the second equation gives y - (λ²y)/2 = 0, which simplifies to y(2 - λ²) = 0. This gives us two possibilities: y = 0 or λ² = 2.

If y = 0, then from the third equation we have x = ±√15. Plugging these values into f(x, y) = x² + y², we find that f(√15, 0) = 15 and f(-√15, 0) = 15.

If λ² = 2, then from the first equation we have x = ±√30/λ and from the third equation we have y = ±√30/λ. Plugging these values into f(x, y) = x² + y², we find that f(√30/λ, √30/λ) = 2λ²/λ² + 2λ²/λ² = 4.

Therefore, the minimum value of the function f(x, y) = x² + y² subject to the constraint xy = 15 is 4.

To learn more about  constraints click here: brainly.com/question/32387329

#SPJ11

make answers clear please
Determine whether Rolle's Theorem can be applied to fon the closed interval (a, b). (Select all that apply.) f(x) = (x - 1)(x - 5)(x - 6), (4,6] Yes, Rolle's Theorem can be applied. No, because fis no

Answers

No, Rolle's Theorem cannot be applied to the function [tex]f(x) = (x - 1)(x - 5)(x - 6)\\[/tex]  on the closed interval (4, 6].

Rolle's Theorem states that for a function to satisfy the conditions of the theorem, it must be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). Additionally, the function must have equal values at the endpoints of the interval.

In this case, the function [tex]f(x) = (x - 1)(x - 5)(x - 6)[/tex] is continuous on the closed interval (4, 6], as it is a polynomial function and polynomials are continuous everywhere. However, the function is not differentiable at x = 5 because it has a point of non-differentiability (a vertical tangent) at x = 5.

Since f(x) fails to meet the condition of differentiability on the open interval (4, 6), Rolle's Theorem cannot be applied to this function on the interval (4, 6].

Learn more about Rolle's theorem, below:

https://brainly.com/question/32056113

#SPJ11

Verify that each equation is an identity. (sin x + cos x)2 = sin 2x + 1
sec 2x = 2 + sec? x - sec4 x (cos 2x + sin 2x)2 = 1 + sin 4x (cos 2x – sin 2x"

Answers

Let's verify each equation to determine if it is an identity:

1. (sin x + cos x)² = sin 2x + 1

Expanding the left side:
(sin x + cos x)² = sin²x + 2sin x cos x + cos²x

Using the Pythagorean identity sin²x + cos²x = 1, we can simplify the equation:
sin 2x + 2sin x cos x + cos²x = sin 2x + 1

Both sides of the equation are equal, so this equation is indeed an identity.

2. sec 2x = 2 + sec²x - sec⁴x

Starting from the right side:
2 + sec²x - sec⁴x

Using the identity sec²x - 1 = tan²x, we can rewrite the equation:
2 + tan²x - sec⁴x

Using the identity sec²x = 1 + tan²x, we can further simplify:
2 + tan²x - (1 + tan²x)²
2 + tan²x - (1 + 2tan²x + tan⁴x)
2 + tan²x - 1 - 2tan²x - tan⁴x

Simplifying:
1 - tan²x - tan⁴x

Using the identity tan²x = sec²x - 1, we can rewrite:
1 - (sec²x - 1) - tan⁴x
1 - sec²x + 1 - tan⁴x
2 - sec²x - tan⁴x

This does not simplify to sec 2x, so the equation is not an identity.

3. (cos 2x + sin 2x)² = 1 + sin 4x (cos 2x – sin 2x)

Expanding the left side:
(cos 2x + sin 2x)² = cos²2x + 2cos 2x sin 2x + sin²2x

Using the identity cos²2x + sin²2x = 1, we can simplify:
1 + 2cos 2x sin 2x + sin²2x

On the right side, we have:
1 + sin 4x (cos 2x - sin 2x)

Expanding the sin 4x (cos 2x - sin 2x):
1 + cos 2x sin 4x - sin³2x

The left and right sides of the equation are not equal, so this equation is not an identity.

In summary, the first equation (sin x + cos x)² = sin 2x + 1 is an identity, but the second equation sec 2x = 2 + sec²x - sec⁴x and the third equation (cos 2x + sin 2x)² = 1 + sin 4x (cos 2x – sin 2x) are not identities.

The first equation (sin x + cos x)^2 = sin 2x + 1 is an identity. The second equation sec 2x = 2 + sec^2 x - sec^4 x is not an identity. The third equation (cos 2x + sin 2x)^2 = 1 + sin 4x (cos 2x - sin 2x) is an identity.

Let's verify each equation:

1. (sin x + cos x)^2 = sin 2x + 1

Expanding the left side of the equation, we get sin^2 x + 2sin x cos x + cos^2 x. Using the trigonometric identity sin^2 x + cos^2 x = 1, we can simplify the left side to 1 + 2sin x cos x. By applying the double angle identity sin 2x = 2sin x cos x, we can rewrite the right side as 2sin x cos x + 1. Therefore, both sides of the equation are equal, confirming it as an identity.

2. sec 2x = 2 + sec^2 x - sec^4 x

To verify this equation, we'll examine its components. The left side involves the secant function, while the right side has a combination of constants and secant functions raised to powers. These components do not match, and therefore the equation is not an identity.

3. (cos 2x + sin 2x)^2 = 1 + sin 4x (cos 2x - sin 2x)

Expanding the left side of the equation, we have cos^2 2x + 2cos 2x sin 2x + sin^2 2x. By using the Pythagorean identity cos^2 2x + sin^2 2x = 1, we can simplify the left side to 1 + 2cos 2x sin 2x. On the right side, we have sin 4x (cos 2x - sin 2x). Applying double angle identities and simplifying further, we obtain sin 4x (2cos^2 x - 2sin^2 x). By using the double angle identity sin 4x = 2sin 2x cos 2x, the right side simplifies to 2sin 2x cos 2x. Hence, both sides of the equation are equal, confirming it as an identity.

Learn more about Trigonometric identity here:

https://brainly.com/question/12537661

#SPJ11

An equation is shown below: 2(3x − 5) = 1 Which of the following correctly shows the first two steps to solve this equation? (1 point) Step 1: 6x − 10 = 1; Step 2: 6x = 11 Step 1: 6x − 5 = 1; Step 2: 6x = 6 Step 1: 5x − 3 = 1; Step 2: 5x = 4 Step 1: 5x − 7 = 1; Step 2: 5x = 8

Answers

The first set of steps is correct

The given curve is rotated about the y-axis. Find the area of the resulting surface.
y = 14
x2 −
12
ln x, 3 ≤ x ≤ 5

Answers

The surface area of the solid formed by rotating the curve y = 14[tex]x^{2}[/tex] - 12ln(x) about the y-axis within the interval 3 ≤ x ≤ 5 is determined by calculating the derivative of y, substituting the values into the surface area formula, performing the integration, and evaluating the integral limits. The final result will provide the area of the resulting surface.

The surface area of the solid formed by rotating the curve y = 14[tex]x^{2}[/tex] - 12ln(x) about the y-axis within the interval 3 ≤ x ≤ 5 needs to be determined.

To find the surface area, we can use the formula for the surface area of a solid of revolution. This formula states that the surface area is given by the integral of 2πy√[tex](1 + (dy/dx)^2)[/tex] with respect to x, within the given interval.

First, we need to find dy/dx by taking the derivative of y with respect to x. Then, we can substitute the values into the formula and integrate over the interval to find the surface area.

The explanation will involve calculating the derivative of y, substituting the values into the surface area formula, performing the integration, and evaluating the integral limits to determine the final result.

Learn more about integral limits here:

https://brainly.com/question/31994684

#SPJ11

(1 point) Starting from the point (4,2,0) reparametrize the curve r(t) = (4 + 1t)i + (2 - 3t)j + (0 +00) k in terms of arclength. r(t(s)) = i+ j+ k

Answers

The reparametrized curve r(t(s)) is given by r(t(s)) = (4 + s)i + (2 - 3s/5)j + 0k. To reparametrize the curve r(t) in terms of arclength, we need to find the parameter t(s) that represents the distance along the curve.

By calculating the magnitude of the velocity vector, we can determine the speed of the curve. Then, we integrate the speed function to find the arclength parameter. The velocity vector of the curve r(t) = (4 + t)i + (2 - 3t)j + 0k is given by the derivative with respect to t:

v(t) = i - 3j.

To find the speed of the curve, we calculate the magnitude of the velocity vector:

|v(t)| = sqrt(1 + (-3)^2) = sqrt(10).

The speed of the curve is constant and equal to sqrt(10). To find the arclength parameter s, we integrate the speed function with respect to t:

s = ∫sqrt(10) dt = sqrt(10)t + C.

Since we want the arclength to start from 0, we set C = 0. Solving for t, we have:

t = s/sqrt(10).

Now we can reparametrize the curve r(t) in terms of arclength:

r(t(s)) = (4 + t(s))i + (2 - 3t(s)/5)j + 0k

= (4 + s/sqrt(10))i + (2 - 3s/(5sqrt(10)))j + 0k.

Therefore, the reparametrized curve in terms of arclength is given by r(t(s)) = (4 + s)i + (2 - 3s/5)j + 0k.

Learn more about reparametrized curve here:

https://brainly.com/question/32305758

#SPJ11

the t value is used for many tests instead of the z value because: a. it is easier to calculate and interpret. b. it is more widely known among statisticians. c. assumptions of the z value are violated if the sample size is 30 or less. d. it is available on statistical software packages.

Answers

The t-value is often used instead of the z-value in statistical tests because the assumptions of the z-value are violated when the sample size is 30 or less.

The t-value is preferred over the z-value in certain scenarios due to the violation of assumptions associated with the z-value when the sample size is small (30 or less). The z-value assumes that the population standard deviation is known, which is often not the case in practice. In situations where the population standard deviation is unknown, the t-value is used because it relies on the sample standard deviation instead. By using the t-value, we account for the uncertainty associated with estimating the population standard deviation from the sample.

Additionally, the t-value is easier to calculate and interpret compared to the z-value. The t-distribution has a wider range of degrees of freedom, allowing for more flexibility in analyzing data. Moreover, the t-value is more widely known among statisticians and is readily available in statistical software packages, making it a convenient choice for conducting hypothesis tests and confidence intervals.

Overall, the t-value is preferred over the z-value when the assumptions of the z-value are violated or when the population standard deviation is unknown.

Learn more about deviation here:

https://brainly.com/question/23907081

#SPJ11

Consider the first quadrant region bounded by y=4 - x, y = x,
and x = 4. Find the volume of the solid or revolution when this
region is rotated about:
(i) The line y = -2
(ii) The line x = 5

Answers

To find the volume of the solid of revolution when the first quadrant region bounded by y = 4 - x, y = x, and x = 4 is rotated about different lines, we can use the method of cylindrical shells.

(i) Rotating about the line y = -2:

In this case, the line y = -2 is located below the region bounded by the curves. The resulting solid of revolution will have a hole in the center. To find the volume, we integrate the circumference of each cylindrical shell multiplied by its height.

The height of each shell is given by the difference between the upper and lower curves: (4 - x) - (-2) = 6 - x.

The radius of each shell is the distance from the line y = -2 to the axis of rotation, which is x + 2.

Integrating the volume formula, we have:

V = ∫[x=0 to x=4] 2π(x + 2)(6 - x) dx

Simplifying and integrating, we get:

V = ∫[x=0 to x=4] (12πx - 2πx²) dx

V = [6πx² - (2/3)πx³] evaluated from x = 0 to x = 4

V = 6π(4²) - (2/3)π(4³) - (0 - 0)

V = 96π - (128/3)π

V = (288 - 128)π/3

V = (160/3)π cubic units

Therefore, the volume of the solid of revolution when the region is rotated about y = -2 is (160/3)π cubic units.

(ii) Rotating about the line x = 5:

In this case, the line x = 5 is located to the right of the region bounded by the curves. The resulting solid of revolution will have a cylindrical shape. Again, we integrate the circumference of each cylindrical shell multiplied by its height.

The height of each shell is given by the difference between the rightmost boundary x = 4 and the leftmost boundary x = 5, which is 4 - 5 = -1. However, since the height cannot be negative, we take the absolute value: |(-1)| = 1.

The radius of each shell is the distance from the line x = 5 to the axis of rotation, which is 5 - x.

Integrating the volume formula, we have:

V = ∫[x=0 to x=4] 2π(5 - x)(1) dx

Simplifying and integrating, we get:

V = ∫[x=0 to x=4] 2π(5 - x) dx

V = [2π(5x - (1/2)x²)] evaluated from x = 0 to x = 4

V = 2π(5(4) - (1/2)(4²)) - 2π(5(0) - (1/2)(0²))

V = 2π(20 - 8) - 2π(0 - 0)

V = 24π

Therefore, the volume of the solid of revolution when the region is rotated about x = 5 is 24π cubic units.

In summary:

(i) When rotated about y = -2, the volume is (160/3)π cubic units.

(ii) When rotated about x = 5, the volume is 24π cubic units.

Visit here to learn more about quadrant region:

brainly.com/question/31652106

#SPJ11

since all the component functions of f have continuous partials, then f will be conservative if F = Vf. F(x, y, z) = 3y2z2i + 16xyz?j + 24xy2z2k

Answers

To determine if a vector field F = (P, Q, R) is conservative, we need to check if its components have continuous partial derivatives and satisfy the condition ∇ × F = 0, where ∇ is the gradient operator.

Let's analyze the vector field,

[tex]F(x, y, z) = 3y^2z^2i + 16xyzj + 24xy^2z^2k:[/tex]

Checking the partial derivatives:

∂P/∂y = [tex]6yz^2[/tex], ∂Q/∂x = 16yz, ∂Q/∂y = 16xz, ∂R/∂y = [tex]48xyz^2[/tex], ∂R/∂z = [tex]48xy^2z[/tex]

The partial derivatives exist and are continuous for all components.

Calculating the curl (∇ × F):

∇ × F = (∂R/∂y - ∂Q/∂z)i - (∂R/∂x - ∂P/∂z)j + (∂Q/∂x - ∂P/∂y)k

[tex]= (48xyz^2 - 0)i - (0 - 16xz)j + (16yz - 6yz^2)k\\= 48xyz^2i + 16xzj + (16yz - 6yz^2)k[/tex]

The curl is not zero, as it contains nonzero terms.

Therefore, ∇ × F ≠ 0.

Since the curl of F is not zero, F is not a conservative vector field.

To learn more about vector field visit:

brainly.com/question/32668545

#SPJ11

What is the largest value of a such that cos(x) is decreasing on the interval [0, a]? a =

Answers

The largest value of a such that cos(x) is decreasing on the interval [0, a],   a = π/2.

To determine the largest value of "a" such that cos(x) is decreasing on the interval [0, a], we need to find the point where the derivative of cos(x) changes from negative to non-negative.

The derivative of cos(x) is given by -sin(x). When cos(x) is decreasing, -sin(x) should be negative. Therefore, we need to find the largest value of "a" such that sin(x) > 0 for all x in the interval [0, a].

The sine function, sin(x), is positive in the interval [0, π/2]. Therefore, the largest value of "a" that satisfies sin(x) > 0 for all x in [0, a] is a = π/2.

Hence, the largest value of "a" such that cos(x) is decreasing on the interval [0, a] is a = π/2.

to know more about regard, please visit;

https://brainly.com/question/32247762

#SPJ11

If f(x) and g(x) are continuous functions and c() = f(g(x)) : c use the table below to evaluate c'(2). on x f(x) g(x) f'(x) g'(x) -2 -5 2 1 -3 -1 1 1 2 -1 0 4. -4 0 3 1 -1 -3 -5 4. -4 -2 -4 2 بجان

Answers

To evaluate c'(2), we need to use the chain rule.

The chain rule states that if c(x) = f(g(x)), then the derivative of c(x) with respect to x, denoted as c'(x), is given by c'(x) = f'(g(x)) * g'(x).

From the given table, we can see the values of f(x), g(x), f'(x), and g'(x) for different values of x. We need to find the values at x = 2 to evaluate c'(2).

Let's denote f(x) = f, g(x) = g, f'(x) = f', and g'(x) = g' for simplicity.

From the table:

f(2) = -1

g(2) = 0

f'(2) = -4

g'(2) = 2

Now, we can evaluate c'(2) using the chain rule:

c'(2) = f'(g(2)) * g'(2)

     = f'(0) * 2

From the table, we don't have the value of f'(0) directly, but we can find it using the values of f'(x) and g(x) from the table.

Since g(2) = 0, we can find the corresponding value of x from the table, which is x = 4. Therefore, f'(0) = f'(4).

From the table:

f(4) = -4

g(4) = -2

f'(4) = 3

g'(4) = 1

Now we have the value of f'(0) = f'(4) = 3.

Substituting this into the expression for c'(2):

c'(2) = f'(g(2)) * g'(2)

     = f'(0) * 2

     = 3 * 2

     = 6

Therefore, c'(2) = 6.

to know more about derivative visit:

brainly.com/question/29144258

#SPJ11

Question 9 Evaluate f(x) = log x at the indicated value of x. Round your result to three decimal places. x=25.5 O-1.407 1.407 O 0.711 O 0.039 0 -0.711 MacBook Pro Bo 888 % $ 4 & 7 5 6

Answers

The value of the function f(x) = log(x) at x = 25.5 is approximately 3.232.

To evaluate the function f(x) = log(x) at x = 25.5, we substitute the given value into the logarithmic expression:

f(25.5) = log(25.5)

Using a calculator, we can find the numerical value of the logarithm:

f(25.5) ≈ 3.232

Rounding the result to three decimal places, we have:

f(25.5) ≈ 3.232

Therefore, the value of the function f(x) = log(x) at x = 25.5 is approximately 3.232.

It's important to note that the logarithm function returns the exponent to which the base (usually 10 or e) must be raised to obtain a given number. In this case, the logarithm of 25.5 represents the exponent to which the base must be raised to obtain 25.5. The numerical approximation of 3.232 indicates that 10 raised to the power of 3.232 is approximately equal to 25.5.

The answer options provided in the question do not include the accurate result, which is approximately 3.232.

for more such question on function visit

https://brainly.com/question/11624077

#SPJ8

an exclusion is a value for a variable in the numerator or denominator that will make either the numerator or denominator equal to zero.truefalse

Answers

True. An exclusion is a value for a variable in the numerator or denominator that will make either the numerator or denominator equal to zero.
True, an exclusion is a value for a variable in the numerator or denominator that will make either the numerator or denominator equal to zero. This is important because division by zero is undefined, and such exclusions must be considered when solving equations or working with fractions. By identifying these exclusions, you can avoid potential mathematical errors and better understand the domain of a function or equation. In mathematical terms, this is known as a "zero denominator" or "zero numerator" situation. In such cases, the equation or expression becomes undefined, and it cannot be evaluated. Therefore, it is essential to identify and exclude such values from the domain of the function or expression to ensure the validity of the result. Failure to do so can lead to incorrect answers or even mathematical errors. Hence, understanding and handling exclusions is an essential aspect of algebra and calculus.

To learn more about variable, visit:

https://brainly.com/question/26523304

#SPJ11

i
need help please tutor
dy Find by implicit differentiation for the following equation. dx ex*y = 5x + 4y + 9 dy dx II d²y Use implicit differentiation to find dy and then dx 2 dx + y² = px² + 2x Use implicit differen

Answers

a.The derivatives using implicit differentiation for the given equations is y' = (5 - e^(xy) - dx * d/dx (e^(xy))) / 4

b. The derivatives using implicit differentiation for the given equations is  2px + 2 - (5 - e^(xy) - dx * d/dx (e^(xy))) * y

To find the derivatives using implicit differentiation for the given equations, let's proceed step by step:

a. For the equation dx * e^(xy) = 5x + 4y + 9:

Take the derivative of both sides with respect to x:

d/dx (dx * e^(xy)) = d/dx (5x + 4y + 9)

Simplify the left side using the product rule:

d/dx (dx) * e^(xy) + dx * d/dx (e^(xy)) = 5 + 4y' + 0

Since dx/dx = 1, the first term simplifies to e^(xy):

e^(xy) + dx * d/dx (e^(xy)) = 5 + 4y'

Now, isolate y' by rearranging the equation:

4y' = 5 - e^(xy) - dx * d/dx (e^(xy))

Finally, divide by 4 to solve for y':

y' = (5 - e^(xy) - dx * d/dx (e^(xy))) / 4

b. For the equation d²y/dx² + y² = px² + 2x:

Take the derivative of both sides with respect to x:

d/dx (d²y/dx² + y²) = d/dx (px² + 2x)

Apply the chain rule to the first term:

d²y/dx² + 2y * dy/dx = 2px + 2

Simplify the equation:

d²y/dx² + 2y * dy/dx = 2px + 2 - 2y * dy/dx

Rearrange the equation to solve for d²y/dx²:

d²y/dx² = 2px + 2 - 2y * dy/dx - 2y * dy/dx

= 2px + 2 - 4y * dy/dx

Note that dy/dx can be replaced using the previous equation:

dy/dx = (5 - e^(xy) - dx * d/dx (e^(xy))) / 4

Substitute dy/dx into the equation:

d²y/dx² = 2px + 2 - 4y * ((5 - e^(xy) - dx * d/dx (e^(xy))) / 4)

= 2px + 2 - (5 - e^(xy) - dx * d/dx (e^(xy))) * y

These are the derivatives obtained through implicit differentiation for the given equations.

To learn more about differentiation click on,

brainly.com/question/15084184

#SPJ11







(5) Evaluate the limit: x³ + y² lim (x,y)-(0,0) x² + y²

Answers

To evaluate the limit of the function (x³ + y²)/(x² + y²) as (x, y) approaches (0, 0), we can use the Squeeze Theorem. By examining the function along different paths approaching the origin, we can determine that the limit is equal to 0.

Let's consider two paths: the x-axis (y = 0) and the y-axis (x = 0). Along the x-axis, the function simplifies to x³/x² = x. As x approaches 0, the function approaches 0. Along the y-axis, the function simplifies to y²/y² = 1. As y approaches 0, the function remains constant at 1.

Since the function is bounded between x and 1 along these two paths, and both x and 1 approach 0 as (x, y) approaches (0, 0), we can conclude that the limit of (x³ + y²)/(x² + y²) as (x, y) approaches (0, 0) is 0.

In conclusion, by considering the behavior of the function along different paths, we can determine that the limit of (x³ + y²)/(x² + y²) as (x, y) approaches (0, 0) is 0 using the Squeeze Theorem.

To learn more about Squeeze Theorem: -brainly.com/question/23964263#SPJ11

Question 15 (1 point) X = 3 1000. The cost of A nursery determines the demand in May for potted plants is p growing x plants is C'(x) = 0.02x + 4000, 0 < x≤6000.. Determine the marginal profit funct

Answers

The marginal profit function can be determined by taking the derivative of the cost function with respect to x. In this case, the cost function is C'(x) = 0.02x + 4000. Taking the derivative of C'(x) will give us the marginal profit function.

To find the derivative, we differentiate each term separately. The derivative of 0.02x is simply 0.02, as the derivative of x with respect to x is 1. The derivative of the constant term 4000 is 0, as the derivative of a constant is always 0.

Therefore, the marginal profit function is P'(x) = 0.02.

The marginal profit function is constant at 0.02, meaning that for each additional plant produced, the marginal profit will increase by 0.02 units. This provides insight into the incremental profitability of producing additional potted plants within the given demand range.

Learn more about marginal profit function here:

https://brainly.com/question/28856941

#SPJ11

4. (6 points) In still air, the parachute with a payload falls vertically at a terminal speed of 60 m/s. Find the direction and magnitude of its terminal velocity relative to the ground if it falls in a steady wind blowing horizontally from west to east at 10 m/sec. Specify the units for the direction (in radians or degrees).

Answers

The magnitude of the terminal velocity relative to the ground is approximately 60.83 m/s, and the direction is approximately -1.405 radians or -80.36 degrees.

To find the direction and magnitude of the terminal velocity of the parachute relative to the ground, we can consider the vector addition of the wind velocity and the terminal velocity of the parachute.

Let's denote the velocity of the wind as Vw = 10 m/s in the eastward direction (positive x-direction) since the wind is blowing from west to east.

The terminal velocity of the parachute relative to the ground is Vp = 60 m/s in the downward direction (negative y-direction) as it falls vertically.

To find the resultant velocity, we can add these two vectors using vector addition. Since the wind velocity is in the x-direction and the terminal velocity is in the y-direction, the resultant velocity will have both x and y components.

The magnitude of the resultant velocity can be found using the Pythagorean theorem:

|Vr| = √(Vx² + Vy²)

Vx = Vw = 10 m/s (eastward)

Vy = -Vp = -60 m/s (downward)

∴ |Vr| = √((10 m/s)² + (-60 m/s)²)

|Vr| = √(100 + 3600) m/s

|Vr| = √3700 m/s ≈ 60.83 m/s

The direction of the resultant velocity can be found using the arctangent function:

θ = atan(Vy / Vx)

θ = atan((-60 m/s) / (10 m/s))

θ ≈ atan(-6)

Therefore, the direction of the terminal velocity of the parachute relative to the ground is approximately -1.405 radians or -80.36 degrees (measured counterclockwise from the positive x-axis).

To know more about terminal velocity refer here:

https://brainly.com/question/28449904#

#SPJ11

Use Stokes' Theorem to evaluate ∫⋅∫CF⋅dr where
(x,y,z)=x+y+5(x2+y2)F(x,y,z)=xi+yj+5(x2+y2)k and C is the
boundary of the part of the pa

Answers

To evaluate the line integral ∮C F⋅dr using Stokes' Theorem, where F(x, y, z) = xi + yj + 5(x² + y²)k and C is the boundary of a part of the plane z = 1 - x² - y²

Stokes' Theorem states that the line integral of a vector field F along a closed curve C is equal to the surface integral of the curl of F over the surface S bounded by C. In this case, we want to evaluate the line integral over the boundary curve C, which is part of the plane z = 1 - x² - y².

To apply Stokes' Theorem, we first calculate the curl of F, which involves taking the cross product of the del operator and F. The curl of F is ∇ × F = (0, 0, -2x - 2y - 2x² - 2y²). Next, we find the surface S bounded by the curve C, which is part of the plane z = 1 - x² - y² that lies above C. The surface S can be parametrized in terms of the variables x and y.

Finally, we integrate the dot product of the curl of F and the surface normal vector over the surface S to obtain the surface integral. This gives us the value of the line integral ∮C F⋅dr using Stokes' Theorem.


Learn more about Stoke's Theorem here: brainly.in/question/33064157
#SPJ11

PLS
HELP!!!
Due Tue 05/17/2022 11:59 pm Use the method of Lagrange multipliers to find the minimum of the function f(x,y) = 1 + 11y subject to the constraint x - y = 18. giving a function minimum of The critical

Answers

we cannot find a minimum of the function f(x, y) = 1 + 11y subject to the constraint x - y = 18 using the method of Lagrange multipliers.

To find the minimum of the function f(x, y) = 1 + 11y subject to the constraint x - y = 18 using the method of Lagrange multipliers, we need to set up the following system of equations:

1. ∇f(x, y) = λ∇g(x, y)

2. g(x, y) = 0

where ∇f(x, y) and ∇g(x, y) are the gradients of the functions f and g, respectively, and λ is the Lagrange multiplier.

Let's begin by calculating the gradients of f(x, y) and g(x, y):

∇f(x, y) = (∂f/∂x, ∂f/∂y) = (0, 11)

∇g(x, y) = (∂g/∂x, ∂g/∂y) = (1, -1)

Setting up the system of equations:

1. (0, 11) = λ(1, -1)

2. x - y = 18

From equation 1, we have two equations:

0 = λ   ... (3)

11 = -λ   ... (4)

Since λ cannot be both 0 and -11 simultaneously, we can conclude that there is no solution for λ that satisfies both equations.

To know more about function visit:

brainly.com/question/31062578

#SPJ11

pls help fastttttttt

Answers

Exterior angle = (large arc - small arc) divided by 2

So it would be 175(other arc) -65 divided by 2
X=55

Graph a variety of functions, including piecewise functions, and evaluate limits graphically, numerically and analytically, including limits at infinity and infinite limits." 3cos(fix), x S-1 For the function f(x) = {-2x), – 1 1 = a) Sketch the graph of the function. b) Evaluate limx--1f(x) numerically. Confirm the value of this limit graphically, i.e. just look at your graph and see if the graph supports your limit answer. c) Evaluate limx-1f(x) algebraically. Confirm the value of this limit graphically. In parts b&c, be sure to make a clear conclusion about the value of each limit. Note: part b is approaching -1 and part c is approaching 1.

Answers

a) To sketch the graph of the function f(x) = {-2x), – 1 < x ≤ 1, we first observe that the function is defined piecewise.

For x values less than or equal to -1, the function is -2x. For x values greater than -1 and less than or equal to 1, the function is -1. b) To evaluate limx→-1 f(x) numerically, we substitute x values approaching -1 into the function. As x approaches -1 from the left side, we have f(x) = -2x, so limx→-1- f(x) = -2(-1) = 2. From the right side, as x approaches -1, f(x) = -1, so limx→-1+ f(x) = -1. Therefore, limx→-1 f(x) does not exist since the left-hand and right-hand limits do not match.

c) To evaluate limx→-1 f(x) algebraically, we refer to the piecewise definition of the function. As x approaches -1, we consider the values from the left and right sides. From the left side, as x approaches -1, f(x) = -2x, so limx→-1- f(x) = -2(-1) = 2. From the right side, as x approaches -1, f(x) = -1, so limx→-1+ f(x) = -1. Since the left-hand and right-hand limits are different, limx→-1 f(x) does not exist.

In conclusion, the graph of the function f(x) = {-2x), – 1 < x ≤ 1 consists of a downward-sloping line for x values less than or equal to -1 and a horizontal line at -1 for x values greater than -1 and less than or equal to 1. Numerically, limx→-1 f(x) does not exist as the left-hand and right-hand limits differ. Algebraically, the limit also does not exist due to the discrepancy between the left-hand and right-hand limits. This conclusion is supported by the graphical analysis of the function.

To learn more about downward-sloping line click here:

brainly.com/question/31813821

#SPJ11

Find the points on the curve x = ť? – 12t – 6, y = t + 18t + 5 that have: A. a horizontal tangent line B. a vertical tangent line

Answers

A. There are no points on the curve with a horizontal tangent line.

B. The point on the curve with a vertical tangent line is (-42, 119).

To find the points on the curve with a horizontal tangent line, we need to find the values of t where dy/dt = 0.

Given:

x = t^2 – 12t – 6

y = t + 18t + 5

Taking the derivative of y with respect to t:

dy/dt = 1 + 18 = 19

For a horizontal tangent line, dy/dt = 0. However, in this case, dy/dt is always equal to 19. Therefore, there are no points on the curve with a horizontal tangent line.

To find the points on the curve with a vertical tangent line, we need to find the values of t where dx/dt = 0.

Taking the derivative of x with respect to t:

dx/dt = 2t - 12

For a vertical tangent line, dx/dt = 0. Solving the equation:

2t - 12 = 0

2t = 12

t = 6

Substituting t = 6 into the equations for x and y:

x = 6^2 – 12(6) – 6 = 36 - 72 - 6 = -42

y = 6 + 18(6) + 5 = 6 + 108 + 5 = 119

Therefore, the point on the curve with a vertical tangent line is (-42, 119).

To learn more about tangent line visit : https://brainly.com/question/30162650

#SPJ11








7. What is the equation for the line of intersection between the planes - 6x-y-z--20 and 5x+y-2-112 4 marks

Answers

The equation for the line of intersection between the planes -6x - y - z = -20 and 5x + y - 2z = -112 is: x = -14, y = -10 - 3t, z = -22 + 2t, where t is a parameter.

To find the line of intersection between two planes, we need to solve the system of equations formed by equating the two planes. We have the following two equations:

-6x - y - z = -20 ...(1)

5x + y - 2z = -112 ...(2)

To eliminate y, we can add equations (1) and (2) together, which gives us:

-6x - y - z + 5x + y - 2z = -20 - 112

Simplifying this equation, we get:

-x - 3z = -132 ...(3)

To eliminate x, we can multiply equation (2) by 6 and equation (1) by 5, and then subtract equation (1) from equation (2). This yields:

30x + 6y - 12z - 30x - 5y - 5z = -672 - (-100)

Simplifying this equation, we get:

y - 7z = -572 ...(4)

Now, we have equations (3) and (4) with two variables x and y eliminated. To solve this system, we can express x and y in terms of a parameter t. Let's choose z as the parameter.

From equation (3), we have:

x = -132 + 3z ...(5)

From equation (4), we have:

y = -572 + 7z ...(6)

Now, we can substitute equations (5) and (6) into either equation (1) or (2) to solve for z. Let's substitute them into equation (1):

-6(-132 + 3z) - (-572 + 7z) - z = -20

Simplifying this equation, we get:

-14z = -122

Dividing both sides by -14, we obtain:

z = -22

Substituting this value of z back into equations (5) and (6), we find:

x = -14

y = -10

Therefore, the equation for the line of intersection between the two planes is:

x = -14

y = -10 - 3t

z = -22 + 2t

Here, t is a parameter that can take any real value, determining different points along the line of intersection.

Learn more about line of intersection:

https://brainly.com/question/29084546

#SPJ11

Other Questions
Recognition is closely aligned with employee engagement and promotes teamwork. A. True B. False. The author of this report would most likely have supported:Hon. William Williams, Commissioner at New York, says inhis report: "[The present laws] do not reach a large body ofimmigrants who, while not of this class, are yet generallyundesirable, because unintelligent, of low vitality, of poorphysique, able to perform only the cheapest kind ofmanual labor, desirous of locating almost exclusively in thecities, by their competition tending to reduce the standardof living of the American wageworker, and unfittedmentally or morally for good citizenship. ... Their cominghas been of benefit chiefly, if not only, to the transportationcompanies which brought them here."A. the Anti-Imperialist League and the Dawes Act.B. the Knights of Labor and the Sherman Antitrust Act.C. the Workingmen's Party and the Chinese Exclusion Act.D. the Transcontinental Railroad and the Homestead Act. Of the options below, which connect(s) a line integral to asurface integral?O Stokes' theorem and Green's theorem The divergence theorem and Stokes' theorem The divergence theorem only O Green's theorem and the divergence theorem O Green's theorem only = over the interval (3, 6] using four approximating Estimate the area under the graph of f(x) = rectangles and right endpoints. X + 4 Rn = Repeat the approximation using left endpoints. In = Supposef(x)={2x4 if 0x A student is comparing the two different unknowns described in the table.Unknown 1Unknown 2Consists of a protein capsid encapsulatingConsists of a semipermeable membrane encapsulatingcytoplasm and DNA nucleoidgenetic materialRequires a host cell to replicateAble to reproduce without a host cellPathogenic to humansPathogenic to cellsWhich conclusion is best supported by the information, and which piece of evidence supports the conclusion?xxA Conclusion: Unknown 1 is a fungus, while Unknown 2 is a bacterial cell.Evidence: The conclusion is supported by Unknown 1 needing a host cell to replicate, andUnknown 2 being a living cell with a nucleoid.BCConclusion: Unknown 1 is a virus, while Unknown 2 is a bacterial cell.Evidence: The conclusion is supported because both unknowns are pathogens, and all virusesand bacteria are pathogenic to humans.Q SearchConclusion: Unknown 1 is a bacterial cell, while Unknown 2 is a fungus.Evidence: The conclusion is supported because both unknowns are pathogens, and all bacteriaand fungi are pathogenic to humans.D Conclusion: Unknown 1 is a virus, while Unknown 2 is a bacterial cell.Evidence: The conclusion is supported by Unknown 1 needing a host cell to replicate, andUnknown 2 being a living cell with a nucleold. i import goods from iceland. i learn that iceland is planning to raise interest rates. based on this scenario, please select the most accurate and complete response based on the below answer choices. as an importer of goods from iceland, i am disappointed to learn that iceland is planning to raise interest rates. this basically means that it will most likely cost me more in u.s. dollar terms to import goods from iceland. furthermore, if iceland raises interest rates, the icelandic krona will appreciate in value. iceland's balance of trade position will also most likely shift to more of a deficit surplus. as an importer of goods from iceland, i am disappointed to learn that iceland is planning to raise interest rates. this basically means that it will most likely cost me more in u.s. dollar terms to import goods from iceland. furthermore, if iceland raises interest rates, the icelandic krona will appreciate in value. iceland's balance of trade position will also most likely shift to more of a deficit position. as an importer of goods from iceland, i am pleased to learn that iceland is planning to raise interest rates. this basically means that it will most likely cost me less in u.s. dollar terms to import goods from iceland. furthermore, if iceland raises interest rates, the icelandic krona will depreciate in value. iceland's balance of trade position will also most likely shift to more of a deficit position. as an importer of goods from iceland, i am pleased to learn that iceland is planning to raise interest rates. this basically means that it will most likely cost me less in u.s. dollar terms to import goods from iceland. furthermore, if iceland raises interest rates, the icelandic krona will depreciate in value. iceland's balance of trade position will also most likely shift to more of a surplus position. If 5sinA=3 and cosA is smaller than 0 , with an aid of a diagram determine the value of 2tanAcosA Clara invests $1,000 for 3 years. She earns an effective annualrate of interest of 8% in the first year, 7% in the second year,and 5% in the third year. The rate of inflation is 4% in the firstyear what happens to the partial pressure of carbon dioxide in the blood during rapid breathing? what passes through atp synthase in order to turn adp p into atp? Coral reefsa. Tend to occur outside the tropicsb. Require water that has very low salinityc. Are made by animals that feed on algaed. Need to be at least 200 feet below the oceans surface Which of the following describes the function of a common table expression? SELECT ONE OF THE FOLLOWING (1 PT) A. Operates similarly to a subquery, but depends on a reference from the outer query it is used in B. Operates similarly to a subquery, but is defined outside of the outer query it is used in C. Operates similarly to a subquery, but can only be used in the SELECT cause D. Operates similarly to a subquery, but can only be used in the WHERE clause Revenue variances, which are differences between expected revenues and actual revenues, can also affect a. selling prices. b. operating income. c. variable costs. d. inventory balances. with the help of some data and calculations, explain why nitrous oxide gas is considered a greenhouse gas those stakeholders most often emphasized in mission statements are Factor completely:2x2+11x-21State the domain of the expression: m+6m2+m-12Simplify completely: x+3xx2+6x+94x2+xSolve the inequality and graph the solution on the number line.Then write the Which statement must be TRUE for an electron transfer reaction to be energetically spontaneous? a. There must be a concurrent increase in entropy. b. The two groups involved in the electron transfer must be in direct contact. c. The change in reduction potential (AE.) must be negative. d. The change in reduction potential (AE) must be positive. Acertain radioactive substance has a half-life of five days. Howlong will it take for an amount A to disintegrate until only onepercent of A remains? PLEASE HELPPPPPP IM TRYING TO STUDY FOR FINAL EXAM 1. How are latitude and temperature related 2. What locations have higher energy and higher air temperatures? Why?3. What affects a locations air temperature?PS THIS IS SCIENCE WORK PLS HELP ME