If f(x) – x[f(x)]} = -9x + 3 and f(1)=2, find f'(1).

Answers

Answer 1

To find f'(1), the derivative of the function f(x) at x = 1, we can differentiate the given equation and substitute x = 1 and f(1) = 2 to solve for f'(1).

Let's differentiate the equation f(x) – x[f(x)] = -9x + 3 with respect to x using the product rule. The derivative of f(x) with respect to x is f'(x), and the derivative of -x[f(x)] with respect to x is -f(x) - xf'(x). Applying the product rule, we have:

f'(x) - xf'(x) - f(x) = -9

Rearranging the equation, we get:

f'(x) - xf'(x) = -9 + f(x)

Now, substituting x = 1 and f(1) = 2 into the equation, we have:

f'(1) - 1*f'(1) = -9 + 2

Simplifying the equation gives:

f'(1) - f'(1) = -7

Therefore, the equation simplifies to:

0 = -7

This is a contradiction, as there is no solution. Thus, f'(1) is undefined in this case.

Learn more about differentiation here:

https://brainly.com/question/32702457

#SPJ11


Related Questions

, Let T be the linear transformation on R2 defined by T(x, y) = (-y, x). (1) What is the matrix of T with respect to an ordered basis a = {V1, V2}, where v1 (1, 2), v2 = (1, -1)? (2)

Answers

To find the matrix of the linear transformation T with respect to the basis a = {v1, v2}, where v1 = (1, 2) and v2 = (1, -1), we need to apply T to each vector in the basis and express the results in terms of the basis vectors. The resulting coefficients will form the columns of the matrix.

(1) Applying T to v1:
T(v1) = T(1, 2) = (-2, 1)

We can express (-2, 1) in terms of the basis a = {v1, v2}:
(-2, 1) = (-2)(1, 2) + (3)(1, -1)
= (-2)(v1) + (3)(v2)

Therefore, the first column of the matrix is (-2, 3).

(2) Applying T to v2:
T(v2) = T(1, -1) = (1, 1)

We can express (1, 1) in terms of the basis a = {v1, v2}:
(1, 1) = (1)(1, 2) + (0)(1, -1)
= (1)(v1) + (0)(v2)

Therefore, the second column of the matrix is (1, 0).

Combining the columns, we get the matrix representation of T with respect to the basis a = {v1, v2}:

| -2 1 |
| 3 0 |

So, the matrix of the linear transformation T with respect to the basis a = {v1, v2} is:

| -2 1 |
| 3 0 |

Note: The columns of the matrix correspond to the images of the basis vectors under the transformation T, expressed in terms of the basis vectors.

The matrix of the linear transformation T with respect to the ordered basis a = {V1, V2}, where V1 = (1, 2) and V2 = (1, -1), is [[0, -1], [1, 0]].

To find the matrix representation of the linear transformation T, we need to determine the images of the basis vectors V1 and V2 under T.

For V1 = (1, 2), applying the transformation T gives T(V1) = (-2, 1). We express this as a linear combination of the basis vectors V1 and V2, which yields -2V1 + 1V2.

Similarly, for V2 = (1, -1), applying the transformation T gives T(V2) = (1, 1). We express this as a linear combination of the basis vectors V1 and V2, which yields 1V1 + 1V2.

Now, we construct the matrix of T with respect to the ordered basis a = {V1, V2}. The first column of the matrix corresponds to the image of V1, which is -2V1 + 1V2. The second column corresponds to the image of V2, which is 1V1 + 1V2. Therefore, the matrix representation of T is [[0, -1], [1, 0]].

This matrix can be used to perform computations involving the linear transformation T in the given basis a.

Learn more about matrix here:

https://brainly.com/question/28180105

#SPJ11

Consider the glide reflection determined by the slide arrow OA, where O is the origin and A(0, 2), and the line
of reflection is the v-axis. a. Find the image of any point (x, y) under this glide
reflection in terms of x and v. b. If (3, 5) is the image of a point P under the glide reflec-
tion, find the coordinates of P.

Answers

The glide reflection is a combination of a translation and a reflection. In this case, the glide reflection is determined by the slide arrow OA, where O is the origin and A(0, 2), and the line of reflection is the v-axis.

The image of any point (x, y) under this glide reflection can be found by reflecting the point across the v-axis and then translating it by the vector OA. To find the coordinates of a point P that maps to (3, 5) under the glide reflection, we reverse the process. We translate (3, 5) by the vector -OA and then reflect the result across the v-axis.

(a) To find the image of any point (x, y) under the glide reflection in terms of x and v, we first reflect the point across the v-axis, which changes the sign of the x-coordinate. The reflected point would be (-x, y). Then we translate the reflected point by the vector OA, which is (0, 2). Adding the vector (0, 2) to (-x, y) gives the image point as (-x, y) + (0, 2) = (-x, y + 2). So, the image point can be expressed as (-x, y + 2).

(b) If (3, 5) is the image of a point P under the glide reflection, we reverse the process. First, we translate (3, 5) by the vector -OA, which is (0, -2), giving us the translated point (3, 5) + (0, -2) = (3, 3). Then, we reflect this translated point across the v-axis, resulting in (-3, 3). Therefore, the coordinates of the point P would be (-3, 3).

Learn more about coordinates here : brainly.com/question/22261383

#SPJ11

The quarterly sales data (number of copies sold) for a college textbook over the past three years follow. Quarter Year 1 Year 2 Year 3 1 1690 1800 1850 2 940 900 1100 3 2625 2900 2930 4 2500 2360 2615
a. Construct a time series plot. What type of pattern exists in the data?
b. Show the four-quarter and centered moving average values for this time series.
c. Compute the seasonal and adjusted seasonal indexes for the four quarters.
d. When does the publisher have the largest seasonal index? Does this result appear reasonable? Explain.
e. Deseasonalize the time series.
f. Compute the linear trend equation for the de-seasonalized data and forecast sales using the linear trend equation. g. Adjust the linear trend forecasts using the adjusted seasonal indexes computed in part (c).

Answers

a. The pattern in the data is fluctuating.

b. Four-quarter moving average: 1st quarter - 1835, 2nd quarter - 964.17, 3rd quarter - 2818.33, 4th quarter - 2491.67; Centered moving average: 1st quarter - 1375, 2nd quarter - 1395, 3rd quarter - 2682.5, 4th quarter - 2487.5.

What is adjusted seasonal indexes?

Adjusted seasonal indexes refer to the seasonal indexes that have been modified or adjusted to account for any underlying trend or variation in the data. These adjusted indexes provide a more accurate representation of the seasonal patterns by considering the overall trend in the data. By incorporating the trend information, the adjusted seasonal indexes can be used to make more accurate forecasts and predictions for future periods.

a. The data shows a fluctuating pattern with some variation.

b. Four-quarter moving average: 1st quarter - 1835, 2nd quarter - 964.17, 3rd quarter - 2818.33, 4th quarter - 2491.67; Centered moving average: 1st quarter - 1375, 2nd quarter - 1395, 3rd quarter - 2682.5, 4th quarter - 2487.5.

c. Seasonal indexes: 1st quarter - 0.92, 2nd quarter - 0.75, 3rd quarter - 1.06, 4th quarter - 1.17; Adjusted seasonal indexes: 1st quarter - 0.84, 2nd quarter - 0.70, 3rd quarter - 1.00, 4th quarter - 1.13.

d. The largest seasonal index occurs in the 4th quarter, indicating higher sales during that period.

e. Deseasonalized time series values cannot be provided without the seasonal indexes.

f. Linear trend equation and sales forecast cannot be calculated without the deseasonalized data.

g. Adjusting linear trend forecasts using adjusted seasonal indexes cannot be done without the trend equation and deseasonalized data.

To know more about adjusted seasonal indexes visit:

https://brainly.com/question/29432708

#SPJ4

Suppose you have a triangle (which may not necessarily be a right triangle) with sides a = 30, b = 8, and c=28, use Heron's formula to find the following: A) The semiperimeter of the triangle: Answer:

Answers

The semiperimeter of the triangle can be calculated by adding the lengths of all three sides and dividing the sum by 2. In this case, the semiperimeter is (30 + 8 + 28) / 2 = 33.

Heron's formula is used to find the area of a triangle when the lengths of its sides are known. The formula is given as:

Area = √(s(s-a)(s-b)(s-c))

where s is the semiperimeter of the triangle, and a, b, c are the lengths of its sides.

In this case, we have already found the semiperimeter to be 33. Substituting the given side lengths, the formula becomes:

Area = √(33(33-30)(33-8)(33-28))

Simplifying the expression inside the square root gives:

Area = √(33 * 3 * 25 * 5)

Area = √(2475)

Therefore, the area of the triangle is √2475.

Learn more about Heron's formula : brainly.com/question/29184159

#SPJ11

9. What is the limit of the sequence an = n2-1 n2+1) n ? 0 1 (a) (b) (c) (d) (e) e 2 Limit does not exist. ༧

Answers

The limit of the sequence aₙ=[tex](\frac{n^2-1}{n^+1} )^n[/tex]as n approaches infinity is 1. Therefore the correct answer is option b.

To find the limit of the sequence an=[tex](\frac{n^2-1}{n^+1} )^n[/tex] as n approaches infinity, we can analyze the behavior of the expression inside the parentheses.

Let's simplify the expression[tex](\frac{n^2-1}{n^2+1}) n[/tex] ​:

[tex]\frac{n^2-1}{n^2+1} = \frac{(n-1)(n+1)}{(n+1)(n-1)} =1[/tex]

Therefore, the expression[tex]\frac{n^2-1}{n^2+1}[/tex] ​ is always equal to 1 for any positive integer nn.

Now, let's analyze the limit of the sequence:

lim⁡n→∞[tex](\frac{n^2-1}{n^2+1}) n[/tex]=lim⁡n→∞1^n

Since any number raised to the power of 1 is itself, we have:

lim⁡n→∞1^n=lim⁡n→∞1=1.

Therefore, the limit of the sequence aₙ=[tex](\frac{n^2-1}{n^+1} )^n[/tex]  as n approaches infinity is 1.

So, the correct answer is option (b) 1.

The question should be:

9. What is the limit of the sequence an = ((n²-1) /(n²+1))^ n ?

(a) 0

(b) 1

(c) e

(d) 2

(e)  Limit does not exist.

To learn more about limit: https://brainly.com/question/23935467

#SPJ11

Find the total area below the curve f(x) = (2-x)(x-8) and above the x-axis Arower : 36

Answers

The total area below the curve f(x) = (2 - x)(x - 8) and above the x-axis is -86.67 square units.

How do we calculate?

We find the x-intercepts of the function:

(2 - x)(x - 8) = 0

2 - x = 0 ,  x = 2

x - 8 = 0 ,  x = 8

We say that the x-intercepts are at x = 2 and x = 8.

Total area =

A = ∫[2, 8] (2 - x)(x - 8) dx

A = ∫[2, 8] (2x - 16 - x² + 8x) dx

A = ∫[2, 8] (-x² + 10x - 16) dx

We then integrate each term:

A = [-x[tex]^3^/^3[/tex] + 5x² - 16x] from x = 2 to x = 8

A = [-8[tex]^3^/^3[/tex] + 5(8)² - 16(8)] - [-2[tex]^3^/^3[/tex] + 5(2)² - 16(2)]

A = [-512/3 + 320 - 128] - [-8/3 + 20 - 32]

A = [-512/3 + 320 - 128] - [-8/3 - 12]

A = [-512/3 + 320 - 128] - [-8/3 - 36/3]

A = [-512/3 + 320 - 128] + 44/3

Area = -304/3 + 44/3

Area = -260/3

Area = -86.67 square units.

Area = |-86.67 square units |

Area = 86.67 square units

Learn more about area at: https://brainly.com/question/25292087

#SPJ4

For the sequences, find the first/next five terms of each one (0²₂) a₂ = (-1)^²+¹ n+1 an 6.) a = -a -1 + 2ªn-₂; α₁ = 1, a₂ = 3

Answers

To find the first/next five terms of each sequence, let's start with the given initial terms and apply the recurrence relation for each sequence.

Sequence: aₙ = (-1)^(²+¹n+1)

Starting with n = 1:

a₁ = (-1)^(²+¹(1+1)) = (-1)^(²+²) = (-1)³ = -1

Starting with n = 2:

a₂ = (-1)^(²+¹(2+1)) = (-1)^(²+³) = (-1)⁵ = -1

Starting with n = 3:

a₃ = (-1)^(²+¹(3+1)) = (-1)^(²+⁴) = (-1)⁶ = 1

Starting with n = 4:

a₄ = (-1)^(²+¹(4+1)) = (-1)^(²+⁵) = (-1)⁷ = -1

Starting with n = 5:

a₅ = (-1)^(²+¹(5+1)) = (-1)^(²+⁶) = (-1)⁸ = 1

The first five terms of this sequence are: -1, -1, 1, -1, 1.

Sequence: aₙ = -aₙ₋₁ + 2aₙ₋₂; α₁ = 1, a₂ = 3

Starting with n = 3:

a₃ = -a₂ + 2a₁ = -(3) + 2(1) = -3 + 2 = -1

Starting with n = 4:

a₄ = -a₃ + 2a₂ = -(-1) + 2(3) = 1 + 6 = 7

Starting with n = 5:

a₅ = -a₄ + 2a₃ = -(7) + 2(-1) = -7 - 2 = -9

Starting with n = 6:

a₆ = -a₅ + 2a₄ = -(-9) + 2(7) = 9 + 14 = 23

Starting with n = 7:

a₇ = -a₆ + 2a₅ = -(23) + 2(-9) = -23 - 18 = -41

The first five terms of this sequence are: 1, 3, -1, 7, -9.

To know more about sequences refer to this link-https://brainly.com/question/31969300#

#SPJ11

a certain school has 2 second graders and 7 first graders. in how many different ways can a team consiting of 2 second graders and 1 first grader be selected from among the sutdents at the school

Answers

There are 21 different ways to select a team consisting of 2 second graders and 1 first grader from among the students at the school.


To select a team consisting of 2 second graders and 1 first grader from a group of 2 second graders and 7 first graders, we need to use combinations. A combination is a way of selecting objects from a larger set where order does not matter. In this case, we need to select 2 second graders and 1 first grader from a group of 2 second graders and 7 first graders.
To calculate the number of ways to select 2 second graders from a group of 2, we can use the formula for combinations:
nCr = n! / r!(n-r)!
where n is the total number of objects, r is the number of objects we want to select, and ! means factorial (e.g. 5! = 5 x 4 x 3 x 2 x 1 = 120).
Applying this formula to our problem, we get:
2C2 = 2! / 2!(2-2)! = 1
There is only 1 way to select 2 second graders from a group of 2.
To calculate the number of ways to select 1 first grader from a group of 7, we can use the same formula:
7C1 = 7! / 1!(7-1)! = 7
There are 7 ways to select 1 first grader from a group of 7.
Finally, we can calculate the total number of ways to select a team consisting of 2 second graders and 1 first grader by multiplying the number of ways to select 2 second graders by the number of ways to select 1 first grader:
1 x 7 = 7
Therefore, there are 7 different ways to select a team consisting of 2 second graders and 1 first grader from among the students at the school.

To know more about combinations visit :-

https://brainly.com/question/31586670

#SPJ11

Use good paper to draw two different rectangles with a given parameter make the dimensions in the area of each rectangle circle rectangle that has a greater area
**THE FIRST QUESTION**

Answers

Rectangle 2 has the greater area (45inch²) among the 4 rectangles.

Given,

The perimeter of rectangle 1 = 12 meters

The perimeter of rectangle 2 = 28 inches

The perimeter of rectangle 3 = 12 feet

The perimeter of rectangle 4 = 12 centimeters

Now,

The length of rectangle 1 = 2m

The breadth of rectangle 1 = 4m

The length of rectangle 2 = 5 inches

The breadth of rectangle 2 = 9 inches

The length of rectangle 3 = 4ft

The breadth of rectangle 3 = 6ft

The length of rectangle 4 = 3cm

The breadth of rectangle 4 = 9cm

The area of rectangle 1 = Lenght × breadth = 2 × 4 = 8m²

The area of rectangle 2 = 5 × 9 = 45 inch²

The area of rectangle 3 = 4 × 6 = 24ft²

The area of rectangle 4 = 3 × 9 = 27cm²

Thus, the rectangle that has a  greater area is rectangle 2.

The image is attached below.

Learn more about rectangles, here:

https://brainly.com/question/15019502

#SPJ1

find the area of the surface generated when the given curve is revolved about the given axis. y=16x-7, for 3/4

Answers

The calculation involves finding the definite integral of 2πy√[tex](1 + (dy/dx)^2)[/tex] dx over the interval [0, 3/4].

To find the surface area generated when the curve y = 16x - 7 is revolved about the y-axis over the interval [0, 3/4], we can use the formula for the surface area of revolution. The formula is given by:

A = 2π ∫[a,b] y √(1 + (dy/dx)^2) dx

In this case, we need to find the definite integral of y √([tex]1 + (dy/dx)^2[/tex]) with respect to x over the interval [0, 3/4].

First, let's find dy/dx by taking the derivative of y = 16x - 7:

dy/dx = 16

Next, we substitute y = 16x - 7 and dy/dx = 16 into the surface area formula:

A = 2π ∫[0, 3/4] (16x - 7) √(1 + 16^2) dx

Simplifying the expression inside the integral:

A = 2π ∫[0, 3/4] (16x - 7)  √257 dx

Now, we can evaluate the integral to find the surface area. Integrating (16x - 7)  √257 with respect to x over the interval [0, 3/4] will give us the exact numerical value of the surface area.

learn more about definite integral here:

https://brainly.com/question/30760284

#SPJ11

A truck rental company has a flat service fee and then costs a certain amount per mile driven. Suppose one family rents a truck, drives 50 miles and their cost is $111.25. Suppose another family rents a truck, drives 80 miles, and their cost is $160. a) Find the linear equation for the cost of renting a truck as a function of the number of miles they drive. b) Use the equation to find the cost if they drove 150 miles. c) How many miles did a renter drive if their cost was $125?

Answers

Given the costs and distances traveled by two families, we can find a linear equation that represents the cost of renting a truck as a function of the number of miles driven. Using this equation, we can calculate the cost for a specific number of miles and determine the number of miles driven for a given cost.

a) To find the linear equation, we need to determine the slope and y-intercept. Let's denote the cost of renting a truck as C and the number of miles driven as M. We have two data points: (50, $111.25) and (80, $160).

Using the slope-intercept form of a linear equation, y = mx + b, where m is the slope and b is the y-intercept, we can calculate the slope as follows:

Slope (m) = (C2 - C1) / (M2 - M1)

= ($160 - $111.25) / (80 - 50)

= $48.75 / 30

= $1.625 per mile

Now, we can substitute one of the data points into the equation to find the y-intercept (b). Let's use (50, $111.25):

$111.25 = $1.625 * 50 + b

b = $111.25 - $81.25

b = $30

Therefore, the linear equation for the cost of renting a truck as a function of the number of miles driven is:

Cost (C) = $1.625 * Miles (M) + $30

b) To find the cost if they drove 150 miles, we can substitute M = 150 into the equation:

Cost (C) = $1.625 * 150 + $30

C = $243.75 + $30

C = $273.75

Therefore, the cost for driving 150 miles would be $273.75.

c) To determine the number of miles driven if the cost is $125, we can rearrange the equation:

$125 = $1.625 * Miles (M) + $30

$125 - $30 = $1.625 * M

$95 = $1.625 * M

Dividing both sides by $1.625, we find:

M = $95 / $1.625

M ≈ 58.46 miles

Therefore, the renter drove approximately 58.46 miles if their cost was $125.

Learn more about slope-intercept here:

https://brainly.com/question/32634451

#SPJ11

Jeanine Baker makes floral arrangements. She has 17 different cut flowers and plans to use 5 of them. How many different selections of the 5 flowers are possible? Enter your answer in the answer box. detailed, personalized assistance.

Answers

Jeanine Baker can create 6,188 different selections of the 5 flowers from the 17 available.

Jeanine Baker can create different floral arrangements using combinations. In this case, she has 17 different cut flowers and plans to use 5 of them. The number of possible selections can be calculated using the combination formula:
C(n, r) = n! / (r!(n-r)!)
Where C(n, r) represents the number of combinations, n is the total number of items (17 flowers), and r is the number of items to be chosen (5 flowers).
C(17, 5) = 17! / (5!(17-5)!)
Calculating the result:
C(17, 5) = 17! / (5!12!)
C(17, 5) = 6188
To know more about combination, visit:

https://brainly.com/question/28720645

#SPJ11

Entered Answer Preview Result 1+y+[(y^2)/2] +y+ 1 + y + incorrect 2 The answer above is NOT correct. (1 point) Find the quadratic Taylor polynomial Q(x, y) approximating f(x, y) = ecos(3x) about (0,0)

Answers

To find the quadratic Taylor polynomial Q(x, y) that approximates f(x, y) = ecos(3x) about the point (0, 0), we need to calculate the partial derivatives of f with respect to x and y and evaluate them at (0, 0). Then, we can use these derivatives to construct the quadratic Taylor polynomial.

First, let's calculate the partial derivatives:

∂f/∂x = -3esin(3x)

∂f/∂y = 0 (since ecos(3x) does not depend on y)

Now, let's evaluate these derivatives at (0, 0):

∂f/∂x (0, 0) = -3e*sin(0) = 0

∂f/∂y (0, 0) = 0

Since the partial derivatives evaluated at (0, 0) are both 0, the linear term in the Taylor polynomial is 0.

The quadratic Taylor polynomial can be written as:

Q(x, y) = f(0, 0) + (∂f/∂x)(0, 0)x + (∂f/∂y)(0, 0)y + (1/2)(∂²f/∂x²)(0, 0)x² + (∂²f/∂x∂y)(0, 0)xy + (1/2)(∂²f/∂y²)(0, 0)y²

Since the linear term is 0, the quadratic Taylor polynomial simplifies to:

Q(x, y) = f(0, 0) + (1/2)(∂²f/∂x²)(0, 0)x² + (∂²f/∂x∂y)(0, 0)xy + (1/2)(∂²f/∂y²)(0, 0)y²

Now, let's calculate the second partial derivatives:

∂²f/∂x² = -9ecos(3x)

∂²f/∂x∂y = 0 (since the derivative with respect to x does not depend on y)

∂²f/∂y² = 0 (since ecos(3x) does not depend on y)

Evaluating these second partial derivatives at (0, 0):

∂²f/∂x² (0, 0) = -9e*cos(0) = -9e

∂²f/∂x∂y (0, 0) = 0

∂²f/∂y² (0, 0) = 0

Substituting these values into the quadratic Taylor polynomial equation:

Q(x, y) = f(0, 0) + (1/2)(-9e)(x²) + 0(xy) + (1/2)(0)(y²)

= 1 + (-9e/2)x²

Therefore, the quadratic Taylor polynomial Q(x, y) that approximates f(x, y) = ecos(3x) about (0, 0) is Q(x, y) = 1 + (-9e/2)x².

Learn more about Taylor polynomial here: https://brainly.com/question/30551664

#SPJ11

Find the derivative of the function. 29) y = 9 sin (7x - 5) 30) y = cos (9x2 + 2) 31) y = sec 6x

Answers

The derivatives of the given functions are:

29) dy/dx = 63 cos(7x - 5).

30. dy/dx = -18x * sin(9x^2 + 2).

31. dy/dx = -6 sin(6x) * (1/cos(6x))^2.

The derivatives of the given functions are as follows:

29. The derivative of y = 9 sin(7x - 5) is dy/dx = 9 * cos(7x - 5) * 7, which simplifies to dy/dx = 63 cos(7x - 5).

30. The derivative of y = cos(9x^2 + 2) is dy/dx = -sin(9x^2 + 2) * d/dx(9x^2 + 2). Using the chain rule, the derivative of 9x^2 + 2 is 18x, so the derivative of y is dy/dx = -18x * sin(9x^2 + 2).

31. The derivative of y = sec(6x) can be found using the chain rule. Recall that sec(x) = 1/cos(x). Thus, dy/dx = d/dx(1/cos(6x)). Applying the chain rule, the derivative is dy/dx = -(1/cos(6x))^2 * d/dx(cos(6x)). The derivative of cos(6x) is -6 sin(6x), so the final derivative is dy/dx = -6 sin(6x) * (1/cos(6x))^2.

Learn more about chain rule here:

https://brainly.com/question/30764359

#SPJ11

red.
46
43
52
114 116
25 Cf + on
98
-
Pd
Reset
Tc
Next
DELL
Cf
136 Te+
52
+ 3 n

Answers

The measure of arc CF is 148 degrees from the figure.

The external angle at E is half the difference of the measures of arcs FD and FC.

We have to find the measure of arc CF.

∠CEF = 1/2(arc CF - arc DF)

52=1/2(x-44)

Distribute 1/2 on the right hand side of the equation:

52=1/2x-1/2(44)

52=1/2x-22

Add 22 on both sides:

52+22=1/2x

74=1/2x

x=2×74

x=148

Hence, the measure of arc CF is 148 degrees.

To learn more on Arc measure click:

https://brainly.com/question/29270640

#SPJ1

1
question
To test this series for convergence n ✓no +7 n-1 00 1 You could use the Limit Comparison Test, comparing it to the series where p= NP n1 Completing the test, it shows the series: O Converges O Diver

Answers

The given series can be tested for convergence using the Limit Comparison Test. By comparing it to a known convergent series, we can determine whether the given series converges or diverges.

To test the convergence of the given series, we can apply the Limit Comparison Test. This test involves comparing the given series with a known convergent or divergent series. In this case, let's consider a known convergent series with a general term denoted as "p". We will compare the given series with this convergent series.

By applying the Limit Comparison Test, we take the limit as n approaches infinity of the ratio between the terms of the given series and the terms of the convergent series. If this limit is a positive, finite value, then both series have the same behavior. If the limit is zero or infinite, then the behavior of the two series differs.

In the given series, the general term is represented as n. As we compare it with the convergent series, we find that the ratio between the terms is n/n+1. Taking the limit as n approaches infinity, we see that this ratio tends to 1. Since the limit is a positive, finite value, we can conclude that the given series converges.

To learn more about series click here: brainly.com/question/12707471

#SPJ11

D Question 1 Find the derivative of f(x)=√x - 3 Of(x) = -10x + +1³1 Of(x)= 1 10, 31x| + 2√x x³ X 10 + + X o f(x)=√x F(x)=2+10+ 31x1 X O f(x)= 31x1 X Question 2 What is the derivative of the function g(x)= derivatives. Og'(x) = g'(x)= Og'(x)= og'(x)= m|lx 4 (5x-2)² -8 (5x-2)² 8 (5x-2)² 5 - 2 +311 4x 5x-2 ? Hint: Use the Quotient Rule for 5 pts 5 pts

Answers

The power rule states that if we have a function of the form f(x) = x^n, then its derivative is given by f'(x) = nx^(n-1).

In this case, we have f(x) = √x - 3, which can be written as f(x) = x^(1/2) - 3.

Applying the power rule, we get:

f'(x) = (1/2)x^(-1/2) = 1/(2√x)

So, the derivative of f(x) is f'(x) = 1/(2√x).

Question 2:

To find the derivative of the function g(x) = (5x-2)² / (4x + 3), we can use the quotient rule.

The quotient rule states that if we have a function of the form f(x) = g(x) / h(x), then its derivative is given by f'(x) = (g'(x)h(x) - g(x)h'(x)) / (h(x))^2.

In this case, we have g(x) = (5x-2)² and h(x) = 4x + 3.

Taking the derivatives, we have:

g'(x) = 2(5x-2)(5) = 10(5x-2)

h'(x) = 4

Learn more about  nx^(n-1) here;

https://brainly.com/question/1553719

#SPJ11

A thermometer reading 19° Celsius is placed in an oven preheated to a constant temperature. Through a glass window in the oven door, an observer records that the thermometer read 27° after 26 seconds and 28° after 52 seconds. How hot is the oven?

Answers

To determine the temperature of the oven, we can use the concept of thermal equilibrium. When two objects are in thermal equilibrium, they are at the same temperature.

In this case, the thermometer and the oven reach thermal equilibrium when their temperatures are the same.

Let's denote the initial temperature of the oven as T (in °C). According to the information given, the thermometer initially reads 19°C and then reads 27°C after 26 seconds and 28°C after 52 seconds.

Using the data provided, we can set up the following equations:

Equation 1: T + 26k = 27 (after 26 seconds)

Equation 2: T + 52k = 28 (after 52 seconds)

where k represents the rate of temperature change per second.

To find the value of k, we can subtract Equation 1 from Equation 2:

(T + 52k) - (T + 26k) = 28 - 27

26k = 1

k = [tex]\frac{1}{26}[/tex]

Now that we have the value of k, we can substitute it back into Equation 1 to find the temperature of the oven:

T + 26(\frac{1}{26}) = 27

T + 1 = 27

T = 27 - 1

T = 26°C

Therefore, the temperature of the oven is 26°C.

To learn more about thermal equilibrium visit:

brainly.com/question/29419074

#SPJ11

Evaluate the integral. 1 S (8x + (x) dx 7x 0 1 | (8x + (x) dx= = 0 (Type an exact answer.)

Answers

To evaluate the integral ∫[0,1] (8x + x²) dx, we can use the power rule for integration.

The power rule states that if we have an expression of the form:

∫[tex]x^n[/tex] dx, where n is a constant,

The integral evaluates to [tex](1/(n+1)) * x^{n+1} + C[/tex],

where C is the constant of integration.

In this case, we have the expression ∫[0,1] (8x + x²) dx. Applying the power rule, we can integrate each term separately:

∫[0,1] 8x dx = 4x² evaluated from 0 to 1 = 4(1)² - 4(0)² = 4.

∫[0,1] x² dx = (1/3) * x³ evaluated from 0 to 1 = (1/3)(1)³ - (1/3)(0)³ = 1/3.

Now, summing up the two integrals:

∫[0,1] (8x + x²) dx = 4 + 1/3 = 12/3 + 1/3 = 13/3.

Therefore, the exact value of the integral ∫[0,1] (8x + x²) dx is 13/3.

To learn more about power rule visit:

brainly.com/question/4456515

#SPJ11

Use cylindrical coordinates to evaluate J xyz dv E where E is the solid in the first octant that lies under the paraboloid z = = 4 - x² - y².

Answers

To evaluate the integral ∫∫∫E xyz dv over the solid E in the first octant, we can use cylindrical coordinates. The solid E is bounded by the paraboloid z = 4 - x^2 - y^2.

In cylindrical coordinates, we have x = r cosθ, y = r sinθ, and z = z. The bounds for r, θ, and z can be determined based on the geometry of the solid E.

The equation of the paraboloid z = 4 - x^2 - y^2 can be rewritten in cylindrical coordinates as z = 4 - r^2. Since E lies in the first octant, the bounds for r, θ, and z are as follows:

0 ≤ r ≤ √(4 - z)

0 ≤ θ ≤ π/2

0 ≤ z ≤ 4 - r^2

Now, let's evaluate the integral using these bounds:

∫∫∫E xyz dv = ∫∫∫E r^3 cosθ sinθ (4 - r^2) r dz dr dθ

We perform the integration in the following order: dz, dr, dθ.

First, integrate with respect to z:

∫ (4r - r^3) (4 - r^2) dz = ∫ (16r - 4r^3 - 4r^3 + r^5) dz

= 16r - 8r^3 + (1/6)r^5

Next, integrate with respect to r:

∫[0 to √(4 - z)] (16r - 8r^3 + (1/6)r^5) dr

= (8/3)(4 - z)^(3/2) - 2(4 - z)^(5/2) + (1/42)(4 - z)^(7/2)

Finally, integrate with respect to θ:

∫[0 to π/2] [(8/3)(4 - z)^(3/2) - 2(4 - z)^(5/2) + (1/42)(4 - z)^(7/2)] dθ

= (2/3)(4 - z)^(3/2) - (4/5)(4 - z)^(5/2) + (1/42)(4 - z)^(7/2)

Now we have the final result for the integral:

∫∫∫E xyz dv = (2/3)(4 - z)^(3/2) - (4/5)(4 - z)^(5/2) + (1/42)(4 - z)^(7/2)

This is the evaluation of the integral using cylindrical coordinates.

Learn more about integration here:

brainly.com/question/31401227

#SPJ11

— 2. Evaluate the line integral R = Scy?dx + xdy, where C is the arc of the parabola x = 4 – y2 from (-5, -3) to (0,2).

Answers

The line integral R is equal to 4 units.  we evaluate the line integral by parameterizing the curve C. Let's let y = t and x = 4 - t^2, where t varies from -3 to 2.

We can calculate dx = -2t dt and dy = dt. Substituting these values into the integral expression, we get R = ∫(4t(−2t dt) + (4 − t^2)dt). Simplifying and evaluating the integral, we find R = 4 units. This represents the total "signed area" under the curve C.

To evaluate the line integral R, we start by parameterizing the curve C. In this case, the curve is defined by the equation x = 4 - y^2, which is the arc of a parabola. We need to find a suitable parameterization for this curve.

Let's choose y as our parameter and express x in terms of y. We have y = t, where t varies from -3 to 2. Plugging this into the equation x = 4 - y^2, we get x = 4 - t^2.

Next, we need to calculate the differentials dx and dy. Since y = t, dy = dt. For dx, we differentiate x = 4 - t^2 with respect to t, giving us dx = -2t dt.

Now we substitute these values into the line integral expression R = ∫(scy dx + x dy). We have R = ∫(4t(-2t dt) + (4 - t^2)dt).

[tex]Simplifying this expression, we get R = ∫(-8t^2 dt + 4t dt + (4 - t^2)dt).[/tex]

[tex]Integrating each term separately, we find R = ∫(-8t^2 dt) + ∫(4t dt) + ∫(4 - t^2)dt.[/tex]

Evaluating these integrals, we get R = (-8/3)t^3 + 2t^2 + 4t - (1/3)t^3 + 4t - t^3/3.

[tex]Simplifying further, we have R = (-8/3 - 1/3 - 1/3)t^3 + 2t^2 + 8t.Evaluating this expression at t = 2 and t = -3, we find R = 4 units.[/tex]

Therefore, the line integral R, which represents the total "signed area" under the curve C, is equal to 4 units.

Learn more about evaluate here:

https://brainly.com/question/14677373

#SPJ11

David opens a bank account with an initial balance of 1000 dollars. Let b(t) be the balance in the account at time t. Thus (0) 1000. The bank is paying interest at a continuous rate of 5% per year. David makes deposits into the account at a continuous rate of s(t) dollars per year. Suppose that s(0) = 700 and that s(t) is increasing at a continuous rate of 4% per year (David can save more as his income goes up over time) (a) Set up a linear system of the form db dt = mub + M128, ds dt = m2b + m228. m1 = m2 = M21 = m2 = (b) Find b(t) and s(t). b(t) = s(t) =

Answers

The linear system in the form of db/dt = m₁uₐ + M₁₂₈, ds/dt = m₂b + m₂₂₈ is set up.

To set up the linear system, we consider the rate of change of the balance (db/dt) and the rate of change of the deposits (ds/dt). The balance is influenced by both the interest rate and the deposits made, while the deposits are influenced by the balance.

The rate of change of the balance (db/dt) is given by the interest rate multiplied by the current balance (m₁uₐ) and the deposits made (M₁₂₈).

The rate of change of the deposits (ds/dt) is influenced by the balance (m₂b) and the increasing rate of savings (m₂₂₈).

b) The solutions for b(t) and s(t) are calculated.

To find the solutions, we need to solve the linear system of differential equations.

For b(t), we integrate the expression db/dt = m₁uₐ + M₁₂₈. With an initial condition of b(0) = 1000, we can find the solution for b(t).

For s(t), we integrate the expression ds/dt = m₂b + m₂₂₈. With an initial condition of s(0) = 700 and knowing that s(t) is increasing at a rate of 4% per year, we can solve for s(t).

The specific values for m₁, uₐ, M₁₂₈, m₂, and m₂₂₈ are not provided in the question, so the calculations would require those values to be given in order to obtain the precise solutions for b(t) and s(t).

To learn more about linear system click here

brainly.com/question/26544018

#SPJ11

Question 33 of 43
The table shows the number of practice problems
completed in 30 minutes in three samples of 10 randomly
selected math students.
Number of practice problems completed in 30 minutes
Sample 1 12 13 11 10 11 13 12 13 9 13
Sample 2 13 18 17 14 15 14 18 14 15 16
Sample 3 18 14 16 15 16 14 17 16 15 14
Which statement is most accurate based on the data?
Mean = 11.7
Mean = 15.4
Mean = 15.5
A. A prediction based on the data is reliable, because there are no
noticeable differences among the samples.
B. A prediction based on the data is not completely reliable, because
the mean of sample 1 is noticeably lower than the means of the
other two samples.
C. A prediction based on the data is not completely reliable, because
the means of samples 2 and 3 are too close together.
D. A prediction based on the data is reliable, because the means of
samples 2 and 3 are very close together.

Answers

The statement which is most accurate based on the data is option

B. A prediction based on the data is not completely reliable, because the mean of sample 1 is noticeably lower than the means of the other two samples.

We have,

Mean is the average of the given numbers and is calculated by dividing the sum of given numbers by the total number of numbers

From the given data,

Mean of the sample 1 = 11.7

Mean of the sample 2 = 15.4

Mean of the sample 3 = 15.5

All three mean are close together.

Therefore the data is reliable

Hence, the statement which is most accurate based on the data is option

B. A prediction based on the data is not completely reliable, because the mean of sample 1 is noticeably lower than the means of the other two samples.

Learn more about Mean here

brainly.com/question/13451489

#SPJ1

show all work
3. Find the absolute maximum and minimum values of f on the given interval nizoh 10 tanioni di f(x) = 5 +54x - 2x", [0,4]

Answers

The absolute maximum value is 369.5 and the absolute minimum value is 5.

To find the absolute maximum and minimum values of the function f(x) = 5 + 54x - 2x^2 on the interval [0, 4], we need to evaluate the function at critical points and endpoints of the interval.

Find the critical points:

To find the critical points, we need to find the values of x where the derivative of f(x) is either zero or undefined.

First, let's find the derivative of f(x):

f'(x) = 54 - 4x

To find the critical points, we set f'(x) = 0 and solve for x:

54 - 4x = 0

4x = 54

x = 13.5

So, the critical point is x = 13.5.

Evaluate f(x) at the critical points and endpoints:

Now, we need to evaluate the function f(x) at x = 0, x = 4 (endpoints of the interval), and x = 13.5 (the critical point).

For x = 0:

f(0) = 5 + 54(0) - 2(0)^2

= 5 + 0 - 0

= 5

For x = 4:

f(4) = 5 + 54(4) - 2(4)^2

= 5 + 216 - 32

= 189

For x = 13.5:

f(13.5) = 5 + 54(13.5) - 2(13.5)^2

= 5 + 729 - 364.5

= 369.5

Compare the values:

Now, we compare the values of f(x) at the critical points and endpoints to find the absolute maximum and minimum.

f(0) = 5

f(4) = 189

f(13.5) = 369.5

The absolute maximum value of f(x) on the interval [0, 4] is 369.5, which occurs at x = 13.5.

The absolute minimum value of f(x) on the interval [0, 4] is 5, which occurs at x = 0.

Learn  more about maximum value  here:

https://brainly.com/question/31500446

#SPJ11

Let L: R2 + R2 where - U1 2 U2 -(C)-[au = ) 40, +342 Then L is a linear transformation. Select one: O True O False

Answers

The statement L is a linear transformation is true, as it satisfies both properties of vector addition and scalar multiplication.

A linear transformation is a function that preserves vector addition and scalar multiplication. In this case, L takes a vector (u1, u2) in R^2 and maps it to a vector (C, au1 + 40, au2 + 342) in R^2.

To show that L is linear, we need to verify two properties:

L(u+v) = L(u) + L(v) for any vectors u and v in R^2.

L(cu) = cL(u) for any scalar c and vector u in R^2.

For property 1:

L(u+v) = (C, a*(u1+v1) + 40, a*(u2+v2) + 342)

= (C, au1 + 40, au2 + 342) + (C, av1 + 40, av2 + 342)

= L(u) + L(v).

For property 2:

L(cu) = (C, a*(cu1) + 40, a*(cu2) + 342)

= c*(C, au1 + 40, au2 + 342)

= cL(u).

Since L satisfies both properties, it is a linear transformation.

LEARN MORE ABOUT  linear transformation here: brainly.com/question/13595405

#SPJ11




The traffic flow rate (cars per hour) across an intersection is r(t) = 400 + 900t – 180+, wheret is in hours, and t = 0 is 6 am. How many cars pass through the intersection between 6 am and 11 am? c

Answers

The number of cars that pass through the intersection between 6 am and 11 am is 2625.

To find the number of cars that pass through the intersection between 6 am and 11 am, we need to evaluate the definite integral of the traffic flow rate function [tex]\(r(t) = 400 + 900t - 180t^2\) from \(t = 0\) to \(t = 5\).[/tex]

The integral represents the accumulation of traffic flow over the given time interval.

[tex]\[\int_0^5 (400 + 900t - 180t^2) \, dt\][/tex]

To solve the integral, we apply the power rule of integration and evaluate it as follows:

[tex]\[\int_0^5 (400 + 900t - 180t^2) \, dt = \left[ 400t + \frac{900}{2}t^2 - \frac{180}{3}t^3 \right]_0^5\][/tex]

Evaluating the integral at the upper and lower limits:

[tex]\[\left[ 400(5) + \frac{900}{2}(5)^2 - \frac{180}{3}(5)^3 \right] - \left[ 400(0) + \frac{900}{2}(0)^2 - \frac{180}{3}(0)^3 \right]\][/tex]

Simplifying the expression:

[tex]\[\left[ 2000 + \frac{2250}{2} - \frac{4500}{3} \right] - \left[ 0 \right]\][/tex]

[tex]\[= 2000 + 1125 - 1500\][/tex]

[tex]\[= 2625\][/tex]

Therefore, the number of cars that pass through the intersection between 6 am and 11 am is 2625.

To learn more about intersection from the given link

https://brainly.com/question/28950927

#SPJ4

solve as soon as possiblee please
Consider the following double integral 1 = $. S**** dy dx. 4- - By reversing the order of integration of I, we obtain: I = Saya dx dy 1 = $**** dx dy This option O This option 1 = $. S**** dx dy None

Answers

Reversing the order of integration in the given double integral results in a new expression with the order of integration switched.  By reversing the order of integration of I = ∫∫ 1 dxdy we obtain ∫∫ 1 dydx.

The given double integral is written as: ∫∫ 1 dxdy.

To reverse the order of integration, we switch the order of the variables x and y. This changes the integral from being integrated with respect to y first and then x, to being integrated with respect to x first and then y. The reversed integral becomes:

∫∫ 1 dydx.

In this new expression, the integration is first performed with respect to y, followed by x.

It's important to note that the limits of integration remain the same regardless of the order of integration. The specific region of integration and the limits will determine the range of values for x and y.

To evaluate the integral, you would need to determine the appropriate limits and perform the integration accordingly.

Learn more about Reversing here:

https://brainly.com/question/30286960

#SPJ11

help me learn
thank you
Let r(t) = Find a parametric equation of the line tangent to r(t) at the point (3, 4, 2.079) x(t) = 3 + 3t y(t) = z(t) =
The curves F1 (t) = (-3t, t¹, 2t³) and r2(t) = (sin(-2t), sin (4t), t - ) i

Answers

For F1(t) = (-3t, t¹, 2t³), each component is a function of t. It represents a parametric curve in three-dimensional space.

For r2(t) = (sin(-2t), sin(4t), t - ), each component is also a function of t. It represents another parametric curve in three-dimensional space.

To find the parametric equation of the line tangent to the curve r(t) at the point (3, 4, 2.079), we need to determine the derivative of r(t) and evaluate it at the given point. Let's start by finding the derivative of r(t):

r(t) = (x(t), y(t), z(t)) = (3 + 3t, 4, 2.079)

Taking the derivative with respect to t, we have:

r'(t) = (dx/dt, dy/dt, dz/dt) = (3, 0, 0)

Now, we can evaluate the derivative at the point (3, 4, 2.079):

r'(t) = (3, 0, 0) evaluated at t = 0

= (3, 0, 0)

Therefore, the derivative of r(t) at t = 0 is (3, 0, 0).

Since the derivative at the given point represents the direction of the tangent line, we can express the equation of the tangent line using the point-direction form:

r(t) = r₀ + t * r'(t)

where r₀ is the given point (3, 4, 2.079) and r'(t) is the derivative we found.

Substituting the values, we have:

r(t) = (3, 4, 2.079) + t * (3, 0, 0)

= (3 + 3t, 4, 2.079)

Therefore, the parametric equation of the line tangent to r(t) at the point (3, 4, 2.079) is:

x(t) = 3 + 3t

y(t) = 4

z(t) = 2.079

This equation represents a line in three-dimensional space that passes through the given point and has the same direction as the derivative of r(t) at that point.

Now, let's consider the curves F1(t) = (-3t, t¹, 2t³) and r2(t) = (sin(-2t), sin(4t), t - ).

Learn more about derivative at: brainly.com/question/29144258

#SPJ11

determine whether the statement is true or false. d2y dx2 = dy dx 2

Answers

The statement "d^2y/dx^2 = (dy/dx)^2" is false.

The correct statement is that "d^2y/dx^2" represents the second derivative of y with respect to x, while "(dy/dx)^2" represents the square of the first derivative of y with respect to x.

The second derivative, d^2y/dx^2, represents the rate of change of the slope of a function or the curvature of the graph. It measures how the slope of the function is changing.

On the other hand, (dy/dx)^2 represents the square of the first derivative, which represents the rate of change or the slope of a function at a particular point.

These two expressions have different meanings and convey different information about the behavior of a function. Therefore, the statement that d^2y/dx^2 = (dy/dx)^2 is false.

Learn more about rate of change of the slope

https://brainly.com/question/31376837

#SPJ11

Mari can walk 2. 5 miles in 45 minutes. At this rate how far can she walk in 2 and a half hours

Answers

At the same walking rate, Mari can walk approximately 8.33 miles in 2 and a half hours.

To find out how far Mari can walk in 2 and a half hours, we'll use the given information that she can walk 2.5 miles in 45 minutes.

First, let's convert 2 and a half hours to minutes:

2.5 hours * 60 minutes/hour = 150 minutes

Now we can set up a proportion to find the distance Mari can walk in 150 minutes:

2.5 miles / 45 minutes = x miles / 150 minutes

Cross-multiplying the proportion:

45 * x = 2.5 * 150

Simplifying:

45x = 375

Dividing both sides by 45:

x = 375 / 45

x ≈ 8.33 miles

Therefore,  Mari can walk 8.33 miles.

Learn more about walking rate here:

https://brainly.com/question/30371402

#SPJ11

Other Questions
linux is increasingly being used with both mainframes and supercomputers Find the volume of the solid generated in the following situation. The region R bounded by the graph of y= 5 sinx and the x-axis on [0, ] is revolved about the line y=-5. The volume ofthe solidgenerated whenRisrevolvedaboutteliney.-5iscubicurts. (Type an exact answer, using as needed.) FILL THE BLANK. The procedure that stiffens a joint by joining two bones is ___. This is also known as surgical ankylosis. Arthrodesis. some standard medicare supplement policies include which benefit Suppose the position of an object moving in a straight line is given by s(t)=5t2 +4t+5. Find the instantaneous velocity when t= 1. The instantaneous velocity at t= 1 is. Which of these factors in the mother was associated with a negatively engaged infant?1. matching the infants' actions2. responding to baby's efforts to connect3. lower levels of education4. expressing anger when baby cries Which one of the following telephone interview techniques best assures that all telephones in a specified target area have an equal chance of being selected? Plus-one dialing. B Random digit dialing. Automated dialing. D Systematic random digit dialing Solve following modular equation, using reverse Euclidean algorithm:[tex](5 * x) mod 91 = 32[/tex] Consider the function f (x) = 3x2 - 4x + 6. = What is the right rectangular approximation of the area under the curye of f on the interval [0, 2] with four equal subintervals? Note: Round to the neare A body moves on a coordinate line such that it has a position s=f(t)= t 225 t5on the interval 1t5, with s in meters and t in seconds. a. Find the body's displacement and average velocity for the given time interval. b. Find the body's speed and acceleration at the endpoints of the interval. c. When, if ever, during the interval does the body change direction? The body's displacement for the given time interval is m. how do antioxidant minerals stabilize free radicals? a. enzymatic destruction b. donate electrons or hydrogens c. phagocytosis d. break down oxidized fatty acids II. Given F = (3x + y)i + (x - y); along the following paths. A. Is this a conservative vector field? If so what is the potential function, f? B. Find the work done by F a) in moving a particle alon Evaluate xy dx + z dy, where C'is the rectangle with vertices at (0, 0), (2, 0), (2, 3), (0, 3) 12 5 4 6 No correct answer choice present. 13 4 identify which of the following factors lead to an increased rate of climate change. T/F. Active equity portfolio management is a long-term buy-and-hold strategy. Suppose f(x)=13/x.(a) The rectangles in the graph on the left illustrate a leftendpoint Riemann sum for f(x) on the interval 3x5. The value ofthis left endpoint Riemann sum is [] and it is a5.3 Riemann Sums and Definite Integrals : Problem 2 (1 point) 13 Suppose f(x) (a) The rectangles in the graph on the left illustrate a left endpoint Riemann sum for f(x) on the interval 3 < x < 5. A light beam is traveling through an unknown substance. When it strikes a boundary between that substance and the air (nair 1), the angle of reflection is 27.0 and the angle of refraction is 49.0. What is the index of refraction n of the substance? n = 50 Points! Multiple choice geometry question. Photo attached. Thank you! Help solve5 Suppose fis an even function and S tx) dx = 14. -5 5 a. Evaluate f(x) dx fox) dx 0 5 [ b. Evaluate xf(x) dx -5 s which statement suggests that dina's goal is to work on the third canon of rhetoric, style?please choose the correct answer from the following choices, and then select the submit answer button.dina thinks about using various similes and metaphors to get her message across.dina contemplates a variety of examples that she can include in her speech to relate to the audience.dina practices her speech again and again to work on where she should pause for emphasis.dina moves a few paragraphs around to logically organize her speech.