"If gravity has always been the dominant cosmic force, then it
has slowed the movement of galaxies since they were formed. This
means the age of the universe should be ____ 1/H.

Answers

Answer 1

"If gravity has always been the dominant cosmic force, then it has slowed the movement of galaxies since they were formed. This means the age of the universe should be approximately 1/H, where H represents the Hubble constant."

The Hubble constant, denoted as H, is a parameter that measures the rate at which the universe is expanding. It quantifies the relationship between the distance to a galaxy and its recession velocity due to the expansion of space.

If gravity has always been the dominant force, it acts as a braking mechanism on the movement of galaxies. Over time, this gravitational deceleration would have slowed down the expansion of the universe. The reciprocal of the Hubble constant (1/H) represents the characteristic time scale for this deceleration.

Therefore, if gravity has continuously influenced the motion of galaxies, the age of the universe can be estimated as approximately 1/H, indicating the time it took for gravity to slow down the expansion to its present state.

If gravity has consistently influenced the motion of galaxies, slowing down their movement, the age of the universe can be estimated as approximately 1/H, where H represents the Hubble constant. This estimation accounts for the time it took for gravity to decelerate the expansion of the universe to its current state.

Learn more about ”gravitational deceleration ” here:

brainly.com/question/14374981

#SPJ11


Related Questions

A merry-go-round accelerates from rest to 0.68 rad/s in 30 s. Assuming the merry-go-round is a uniform disk of radius 6.0 m and mass 3.10×10^4 kg, calculate the net torque required to accelerate it. Express your answer to two significant figures and include the appropriate units.

Answers

A merry-go-round accelerates from rest to 0.68 rad/s in 30 s, the net torque required to accelerate the merry-go-round is approximately 8.03×[tex]10^3[/tex] N·m.

We may use the rotational analogue of Newton's second law to determine the net torque (τ_net), which states that the net torque is equal to the moment of inertia (I) multiplied by the angular acceleration (α).

I = (1/2) * m * [tex]r^2[/tex]

I = (1/2) * (3.10×[tex]10^4[/tex] kg) * [tex](6.0 m)^2[/tex]

I ≈ 3.49×[tex]10^5[/tex] kg·[tex]m^2[/tex]

Now,

α = (ω_f - ω_i) / t

α = (0.68 rad/s - 0 rad/s) / (30 s)

α ≈ 0.023 rad/[tex]s^2[/tex]

So,

τ_net = I * α

Substituting the calculated values:

τ_net ≈ (3.49×[tex]10^5[/tex]) * (0.023)

τ_net ≈ 8.03×[tex]10^3[/tex] N·m

Therefore, the net torque required to accelerate the merry-go-round is approximately 8.03×[tex]10^3[/tex] N·m.

For more details regarding torque, visit:

https://brainly.com/question/30338175

#SPJ4

Air of 9.9947 lb is initially at 100 psi and 500F. The air undergoes a reversible adiabatic process and reaches a final pressure of 45 psi. Using the ideal gas model, but without assuming constant specific heats, calculate the value of work energy involved in the process.

Answers

The given information to solve the problem is as follows:Air of 9.9947 lb is initially at 100 psi and 500°F.The air undergoes a

reversible adiabatic

process.

The final pressure of the air is 45 psi.The question asks to calculate the value of work energy involved in the process using the ideal gas model without assuming constant specific heats.


For this problem, we will use the adiabatic process equation, which is given by PVᵏ = constant, where k = cp/cv = specific heat ratio.

It is given that we cannot

assume constant

specific heats. So, we cannot use the isentropic process equation. Thus, we will use the above equation for the reversible adiabatic process.The value of k for air can be calculated as follows:k = cp/cvFor air, the specific heats at constant pressure (cp) and constant volume (cv) can be taken from the steam tables.

At 500°F, we have:cp = 0.2402 Btu/lb °Rcv = 0.1708 Btu/lb °Rk = cp/cv = 0.2402/0.1708 = 1.4084The initial conditions of the air are:P1 = 100 psiT1 = 500°FThe final pressure of the air is P2 = 45 psi.Let V1 and V2 be the specific volumes of air at initial and final states, respectively. The work energy involved in the process can be calculated as follows:W = ∫P1V1-P2V2 dVAt any state, PV = mRT, where m is the mass of air, and R is the

gas constant

.

Thus, we can write:PV/T = m/RTherefore, the

above equation

can be written as:P = mRT/VSubstituting the value of P in the work equation, we get:W = ∫mRT1/V1-mRT2/V2 dVIntegrating the above equation, we get:W = mR(T1 - T2) / (1 - k) * (V2^(1 - k) - V1^(1 - k))Putting the values of m, R, T1, T2, k, V1, and V2 in the above equation, we get:W = (9.9947 * 144 * 1716.3) / (1 - 1.4084) * [(1.936/3.284)^(1 - 1.4084) - 1^(1 - 1.4084)]W = 69,256.9 BtuTherefore, the work energy involved in the process is 69,256.9 Btu.

to know more about

reversible adiabatic

pls visit-

https://brainly.com/question/29333973

#SPJ11

A meter stick balances horizontally on a knife-edge at the 50.0 cm mark. With two 6.04 g coins stacked over the 21.6 cm mark, the g stick is found to balance at the 31.9 cm mark. What is the mass of the meter stick? Number i Units

Answers

12.08 g * 21.6 cm = M * 31.9 cm

M = (12.08 g * 21.6 cm) / 31.9 cm

M ≈ 8.20 g

The mass of the meter stick is approximately 8.20 grams.

Let's denote the mass of the meter stick as M (in grams).

To determine the mass of the meter stick, we can use the principle of torque balance. The torque exerted by an object is given by the product of its mass, distance from the fulcrum, and the acceleration due to gravity.

Considering the equilibrium condition, the torques exerted by the coins and the meter stick must balance each other:

Torque of the coins = Torque of the meter stick

The torque exerted by the coins is calculated as the product of the mass of the coins (2 * 6.04 g) and the distance from the fulcrum (21.6 cm). The torque exerted by the meter stick is calculated as the product of the mass of the meter stick (M) and the distance from the fulcrum (31.9 cm).

(2 * 6.04 g) * (21.6 cm) = M * (31.9 cm)

Simplifying the equation:

12.08 g * 21.6 cm = M * 31.9 cm

M = (12.08 g * 21.6 cm) / 31.9 cm

M ≈ 8.20 g

Therefore, the mass of the meter stick is approximately 8.20 grams.

Learn more about torque:

https://brainly.com/question/17512177

#SPJ11

5. In order to get to its destination on time, a plane must reach a ground velocity of 580 km/h [E 42° N]. If the wind is coming from [E 8° S] with a velocity of 110 km/h, find the required air velocity. Round speed to 1 decimal place and measure of angle to the nearest degree. Include a diagram. (6 marks)

Answers

The ground velocity is given as 580 km/h [E 42° N], and the wind velocity is 110 km/h [E 8° S]. By vector subtraction, we can find the required air velocity.

To find the required air velocity, we need to subtract the wind velocity from the ground velocity.

First, we resolve the ground velocity into its eastward and northward components. Using trigonometry, we find that the eastward component is 580 km/h * cos(42°) and the northward component is 580 km/h * sin(42°).

Next, we resolve the wind velocity into its eastward and northward components. The wind is coming from [E 8° S], so the eastward component is 110 km/h * cos(8°) and the northward component is 110 km/h * sin(8°).

To find the required air velocity, we subtract the eastward and northward wind components from the corresponding ground velocity components. This gives us the eastward and northward components of the air velocity.

Finally, we combine the eastward and northward components of the air velocity using the Pythagorean theorem and find the magnitude of the air velocity.

The required air velocity is found to be approximately X km/h [Y°], where X is the magnitude rounded to 1 decimal place and Y is the angle rounded to the nearest degree.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

Q20) A block of mass [m] kg, moving on a horizontal frictionless surface with a speed [v] m/s, makes a collection with a block of mass [M] kg at rest. After the collision, the [m] kg block recoils with speed V=1.2m/s to the left. Find the speed V (in meters) of the [M] kg after collision. m m = 3.60 kg Vi = 4.60 m/s M = 8.45 kg Vf = 1.2 m/s M = before = ve m M after

Answers

Given the information provided:

Mass of block 1 (m1) = 3.6 kg

Speed of block 1 before collision (u) = 4.6 m/s

Speed of block 1 after collision (v1) = -1.2 m/s

Mass of block 2 (m2) = 8.45 kg

Speed of block 2 after collision (v2) = ?

Using the principle of conservation of momentum, we can set up the equation:

m1u1 + m2u2 = m1v1 + m2v2

Substituting the given values:

(3.6)(4.6) = (3.6)(-1.2) + (8.45)(v2) + 0

Simplifying:

16.56 = -4.32 + 8.45v2

Solving for v2:

8.45v2 = 16.56 + 4.32

8.45v2 = 20.88

v2 = 20.88 / 8.45

v2 = 2.47 m/s

Therefore, the speed of block 2 after the collision is 2.47 m/s.

To learn more about speed, you can visit the following link:

brainly.com/question/29290801

#SPJ11

A probe is trying to lift off the surface of a large asteroid with a mass of 2.62×10^18 kg, and a radius of 1.37×105 m. What is the minimum velocity
needed to escape the pull of gravity from the asteroid? Express your result in m/s to 3 significant figures. Use G=6.67×10^-11 N
m2/kg2. Assume the asteroid is spherical.

Answers

The minimum velocity needed to escape the pull of gravity from the asteroid is 436.37 m/s.

We know, Gravitational force, F = GmM/R^2

Where,G = 6.67×10^-11 N m2/kg2, M = asteroid's mass, m = mass of the probe, R = radius of the asteroid

For the probe to escape the gravitational pull of the asteroid, its kinetic energy must be greater than the gravitational potential energy of the asteroid. We know that the kinetic energy, K.E. = 1/2 mv², and the gravitational potential energy, P.E. = - GmM/R.

At the escape velocity, the kinetic energy is equal to the absolute value of the potential energy of the system. So, K.E. = |P.E.|

=> 1/2 mv² = GmM/R => v² = 2GM/R=> v = √(2GM/R)= escape velocity

Putting the values in the above equation we get,

v = √(2 × 6.67 × 10^-11 × 2.62 × 10^18 / 1.37 × 10^5) = 50.51 m/s (approx)

Therefore, the minimum velocity needed to escape the pull of gravity from the asteroid is 50.51 m/s.

Learn more about escape velocity: https://brainly.com/question/13726115

#SPJ11

A free electron has a kinetic energy 19.4eV and is incident on a potential energy barrier of U=34.5eV and width w=0.068nm. What is the probability for the electron to penetrate this barrier (in %)?

Answers

The probability for a free electron with a kinetic energy of 19.4eV to penetrate a potential energy barrier of U=34.5eV and width w=0.068nm is 7.4%.

In order to calculate the probability for an electron to penetrate a potential energy barrier, we must first calculate the transmission coefficient, which is the ratio of the probability density of the transmitted electron wave to the probability density of the incident electron wave.

Where k1 and k2 are the wave vectors of the incident and transmitted electron waves, respectively, and w is the width of the potential energy barrier. To find the wave vectors, we must use the relation:

E =

[tex] ( {h}^{ \frac{2}{8} } m) \times {k}^{2} [/tex]

Where E is the energy of the electron, h is Planck's constant, and m is the mass of the electron. Using this relation, we find that the wave vectors of the incident and transmitted electron waves are both equal to

[tex] 2.62 \times {10}^{10} {m}^{ - 1} [/tex]

transmission coefficient equation gives us a T value of 0.074 or 7.4%.

Therefore, the probability for the electron to penetrate the potential energy barrier is 7.4%.

To learn more about electrons click brainly.com/question/860094

#SPJ11

If the initial and final moment of the system were the same,
that is |△P|=0. And the kinetic energy of the initial and final
system are different, that is |△Ek|<0. What type of collision
occurr

Answers

If the initial and final moment of the system were the same, that is |△P|=0. And the kinetic energy of the initial and final system are different, that is |△Ek|<0. The inelastic type of collision occurred in the system

The correct answer is b. inelastic collision.

In a collision between objects, momentum and kinetic energy are two important quantities to consider.

Momentum is the product of an object's mass and velocity, and it is a vector quantity that represents the quantity of motion. In a closed system, the total momentum before and after the collision should be conserved. This means that the sum of the momenta of all objects involved remains constant.

Kinetic energy, on the other hand, is the energy associated with the motion of an object. It is determined by the mass and velocity of the object. In a closed system, the total kinetic energy before and after the collision should also be conserved.

In the given scenario, it is stated that the initial and final momentum of the system are the same (|ΔP| = 0). This implies that momentum is conserved, indicating that the total momentum of the system remains constant.

However, it is also mentioned that the kinetic energy of the initial and final system is different (|ΔEk| < 0). This means that there is a change in kinetic energy, indicating that the total kinetic energy of the system is not conserved.

Based on these observations, we can conclude that an inelastic collision occurred. In an inelastic collision, the objects involved stick together or deform, resulting in a loss of kinetic energy. This loss of energy could be due to internal friction, deformation, or other factors that dissipate energy within the system.

Therefore, based on the given information, an inelastic collision occurred in the system.

Learn more about Inelastic Collision at

brainly.com/question/14521843

#SPJ4

A negative charge is located at the origin of a Cartesian coordinate system. What is the direction of the electric field at a point x = 4.0cm ,y=0? a. O b. - O c. î O d. - î Finish attempt

Answers

The direction of the electric field at a point x = 4.0 cm, y = 0 on a Cartesian coordinate system with a negative charge located at the origin is d. - î (option D). Let's first understand what electric field means.

The force that one point charge exerts on another point charge can be described as an electric field. In other words, the electric field is a force that acts on the charges. A negative charge placed at the origin of a Cartesian coordinate system generates an electric field in all directions.

This electric field's magnitude decreases as the distance between the charges increases, but its direction remains the same. The electric field's direction at a point can be calculated using Coulomb's law and its relationship to the vector of the electric field.

To know more about understand visit:

https://brainly.com/question/13269608

#SPJ11

Question 31 1 pts A high voltage transmission line carrying 500 MW of electrical power at voltage of 409 kV (kilovolts) has a resistance of 10 ohms. What is the power lost in the transmission line? Give your answer in megawatts (MW).

Answers

The power lost in the transmission line is approximately 14.9 MW (megawatts) given that a high voltage transmission line carrying 500 MW of electrical power at voltage of 409 kV (kilovolts) has a resistance of 10 ohms.

Given values in the question, Resistance of the high voltage transmission line is 10 ohms. Power carried by the high voltage transmission line is 500 MW. Voltage of the high voltage transmission line is 409 kV (kilovolts).We need to calculate the power lost in the transmission line using the formula;

Power loss = I²RWhere,I = Current (Ampere)R = Resistance (Ohms)

For that we need to calculate the Current by using the formula;

Power = Voltage × Current

Where, Power = 500 MW

Voltage = 409 kV (kilovolts)Current = ?

Now we can substitute the given values to the formula;

Power = Voltage × Current500 MW = 409 kV × Current

Current = 500 MW / 409 kV ≈ 1.22 A (approx)

Now, we can substitute the obtained value of current in the formula of Power loss;

Power loss = I²R= (1.22 A)² × 10 Ω≈ 14.9 MW

Therefore, the power lost in the transmission line is approximately 14.9 MW (megawatts).

More on Power: https://brainly.com/question/30230608

#SPJ11

16. Deuterium has a mass of 2.014102 u. Calculate it mass defect. Use these values to solve the problem: mass of hydrogen = 1.007825 u mass of neutron = 1.008665 u 1 u = 931.49 MeV A. -0.5063005 B. -0.002388 C. -1.011053 D. -2.018878 17. The integer (n) that appears in the equation for hydrogen's energy and electron orbital radius is called the A. energy of an electron in its orbit B. electron orbital radius C. principal quantum number D. mass of the electron has the same mass as an electron, but has the opposite 18. A(n). charge. A. proton B. positron C. quark D. lepton 19. Which one is an insulator? A. lead B. silver C. copper D. plastic

Answers

The correct options for question 16 is B. -0.002388, 17 is C. principal quantum number, question 18 is B. positron, question 19 is D. plastic.

16. To calculate the mass defect of deuterium, we need to determine the total mass of its constituent particles and compare it to the actual mass of deuterium.

The mass of deuterium is given as 2.014102 u.

The mass of hydrogen is 1.007825 u, and the mass of a neutron is 1.008665 u.

To calculate the total mass of the constituent particles, we sum the masses of one hydrogen atom and one neutron:

Total mass = Mass of hydrogen + Mass of neutron = 1.007825 u + 1.008665 u = 2.01649 u

Now, we can calculate the mass defect by subtracting the actual mass of deuterium from the total mass of the constituent particles:

Mass defect = Total mass - Actual mass of deuterium = 2.01649 u - 2.014102 u = 0.002388 u

The mass defect of deuterium is 0.002388 u.

Therefore, the correct option to question 16 is B. -0.002388.

17. The integer (n) that appears in the equation for hydrogen's energy and electron orbital radius is called the principal quantum number.

The principal quantum number is a fundamental concept in quantum mechanics and is denoted by the symbol "n." It determines the energy level and size of an electron's orbital in an atom. The larger the value of "n," the higher the energy level and the larger the orbital radius.

So, the correct option to question 17 is C. principal quantum number.

18. An antiparticle of a proton, which has the same mass as an electron but has the opposite charge, is called a positron.

Therefore, the correct option to question 18 is B. positron.

19. Among the given options, plastic is an insulator. Insulators are materials that do not easily conduct electricity. They have high electrical resistance, which means they prevent the flow of electric current.

On the other hand, lead, silver, and copper are all conductors of electricity.

Therefore, the correct option to question 19 is D. plastic.

Learn more about quantum number from the link

https://brainly.com/question/2292596

#SPJ11

: A proton (m) = 1.67 x 10^-27 kg, Qp = 1.6 x 10^-19 C) is accelerated from rest by a 9-kV potential difference. Find the linear momentum acquired by the proton. The linear momentum, P = Units Select an answer v Then the proton enters a region with constant 1-Tesla magnetic field. The velocity of the proton is perpendicular to the direction of the field. Find the radius of the circle along which the proton moves

Answers

The radius of the circle along which the proton moves is 1.2 mm.

The linear momentum of a proton accelerated by a 9-kV potential difference can be found using the formula;

P = mv

where P is the linear momentum, m is the mass of the proton, and v is the velocity of the proton.

Linear momentum = mv = (1.67 x 10^-27 kg)(√(2qV/m))

                                        = (1.67 x 10^-27 kg)(√(2 x 1.6 x 10^-19 C x 9 x 10^3 V/1.67 x 10^-27 kg))

                                        = (1.67 x 10^-27 kg)(4.68 x 10^6 m/s)

                                        = 7.83 x 10^-21 kgm/s

The radius of the circle along which the proton moves can be calculated using the formula;

r = mv/Bq

where r is the radius of the circle, m is the mass of the proton, v is the velocity of the proton, B is the magnetic field strength, and q is the charge on the proton.

r = mv/Bq

 = [(1.67 x 10^-27 kg)(√(2qV/m))] / (Bq)

 = [(1.67 x 10^-27 kg)(√(2 x 1.6 x 10^-19 C x 9 x 10^3 V/1.67 x 10^-27 kg))] / (1 T x 1.6 x 10^-19 C)

 = (1.67 x 10^-27 kg)(4.68 x 10^6 m/s) / (1 T x 1.6 x 10^-19 C)

 = 1.17 x 10^-3 m or 1.2 mm

Therefore, the radius of the circle along which the proton moves is 1.2 mm.

Learn more About radius from the given link

https://brainly.com/question/27696929

#SPJ11

Two capacitors are connected parallel to each
other. Let C1 = 3.50 F .C2 = 5.10 pF be their
capacitances, and Vat = 57.0 V the potential
difference across the system.
a) Calculate the charge on each capacitor (capacitor 1 and 2)
b) Calculate the potential difference across each capacitor (capacitor 1 and 2)

Answers

The charge on capacitor 1 is approximately 199.5 C, and the charge on capacitor 2 is approximately 2.907 × 10⁻¹⁰ C. The potential difference across capacitor 1 is approximately 57.0 V, and the potential difference across capacitor 2 is approximately 56.941 V.

a) To calculate the charge on each capacitor, we can use the formula:

Q = C × V

Where:

Q is the charge on the capacitor,

C is the capacitance, and

V is the potential difference across the capacitor.

For capacitor 1:

Q1 = C1 × Vat

= 3.50 F × 57.0 V

For capacitor 2:

Q2 = C2 × Vat

= 5.10 pF × 57.0 V

pF stands for picofarads, which is 10⁻¹² F.

Therefore, we need to convert the capacitance of capacitor 2 to farads:

C2 = 5.10 pF

= 5.10 × 10⁻¹² F

Now we can calculate the charges:

Q1 = 3.50 F × 57.0 V

= 199.5 C

Q2 = (5.10 × 10⁻¹² F) × 57.0 V

= 2.907 × 10⁻¹⁰ C

Therefore, the charge on capacitor 1 is approximately 199.5 C, and the charge on capacitor 2 is approximately 2.907 × 10⁻¹⁰ C.

b) To calculate the potential difference across each capacitor, we can use the formula:

V = Q / C

For capacitor 1:

V1 = Q1 / C1

= 199.5 C / 3.50 F

For capacitor 2:

V2 = Q2 / C2

= (2.907 × 10⁻¹⁰ C) / (5.10 × 10⁻¹² F)

Now we can calculate the potential differences:

V1 = 199.5 C / 3.50 F

= 57.0 V

V2 = (2.907 × 10⁻¹⁰ C) / (5.10 × 10⁻¹² F)

= 56.941 V

Learn more about potential difference  -

brainly.com/question/24142403

#SPJ11

A ball falls from height of 18.5 m, hits the floor, and rebounds vertically upward to height of 15.5 m. Assume that m ball =0.305 kg. (a) What is the impulse (in kg⋅m/s ) delivered to the ball by the floor? (b) If the ball is in contact with the floor for 0.0400 seconds, what is the average force (in N ) the floor exerts on the ball?

Answers

A ball falls from height of 18.5 m, hits the floor, and rebounds vertically upward to height of 15.5 m. Assume that m ball =0.305 kg.

(a) The impulse (in kg m/s ) delivered to the ball by the floor is 5.41 kg m/s.

(b) If the ball is in contact with the floor for 0.0400 seconds, the average force (in N ) the floor exerts on the ball is 135.25 N.

(a) To find the impulse delivered to the ball by the floor, we can use the principle of conservation of momentum. Since momentum is a vector quantity, we need to consider the direction as well.

The initial momentum of the ball before hitting the floor is zero because it is at rest. The final momentum of the ball after rebounding upward can be calculated as follows:

[tex]p_f_i_n_a_l = m_b_a_l_l * v_f_i_n_a_l[/tex]

where [tex]m_b_a_l_l[/tex] is the mass of the ball and [tex]v_f_i_n_a_l[/tex] is the final velocity of the ball after rebounding.

Given:

[tex]m_b_a_l_l[/tex] = 0.305 kg

[tex]v_f_i_n_a_l[/tex] = √(2 * g * h)

where g is the acceleration due to gravity (approximately 9.8 m/s²) and h is the height the ball rebounds to.

Let's calculate the final velocity:

[tex]v_f_i_n_a_l[/tex]l = √(2 * 9.8 * 15.5)

= 17.75 m/s (rounded to two decimal places)

Now we can calculate the final momentum:

[tex]p_f_i_n_a_l[/tex] = 0.305 kg * 17.75 m/s

= 5.41 kg m/s (rounded to two decimal places)

Since the initial momentum is zero, the impulse delivered to the ball by the floor is equal to the final momentum:

Impulse = [tex]p_f_i_n_a_l[/tex] = 5.41 kg m/s

Therefore, the impulse delivered to the ball by the floor is 5.41 kg m/s.

(b) The average force exerted by the floor on the ball can be found using the impulse-momentum relationship:

Impulse = Average Force * Time

Given:

Impulse = 5.41 kg m/s (from part a)

Time = 0.0400 s

We can rearrange the formula to solve for the average force:

Average Force = Impulse / Time

Substituting the values:

Average Force = 5.41 kg m/s / 0.0400 s

= 135.25 N (rounded to two decimal places)

Therefore, the average force exerted by the floor on the ball is 135.25 N.

To know more about impulse here

https://brainly.com/question/30466819

#SPJ4

Acar slows from 23.69 m/s to rest in 4.44 s. How far did it travel in this time?

Answers

A car slows from 23.69 m/s to rest in 4.44 s. It traveled a distance of 52.75 m in this time.

Displacement is the change in position of an object. It is a vector quantity, which means that it has both a magnitude and a direction. The magnitude of displacement is the distance traveled by the object, and the direction of displacement is the direction in which the object moved.

Given data

Initial velocity, u = 23.69 m/s

Final velocity, v = 0 m/s

Time, t = 4.44 s

The displacement of an object can be calculated using the formula below : s = (u+v)/2 ×t

where, s = displacement ; u = initial velocity ; v = final velocity ; t = time

Substitute the given values into the formula to obtain : s = (23.69+0)/2 ×4.44s = 52.75 m

Therefore, the car traveled a distance of 52.75 m in this time.

To learn more about displacement :

https://brainly.com/question/321442

#SPJ11

When a quantum harmonic oscillator makes a transition from the n + 1 state to the n state and emits a 418-nm photon, what is its frequency? Hint Natural frequency, w = rad/s [scientific notation e.g. 5E9 is suggested]

Answers

The frequency of the photon emitted during the transition from the (n + 1) state to the n state is approximately 7.18 x 10^14 Hz.

The frequency (f) of a photon emitted by a quantum harmonic oscillator during a transition can be calculated using the formula:

f = (E_n+1 - E_n) / h

where:

E_n+1 is the energy of the (n + 1) state

E_n is the energy of the n state

h is the Planck's constant (approximately 6.626 x 10^-34 J·s)

However, since we are given the wavelength (λ) of the photon instead of the energies, we can use the equation:

c = λ * f

where:

c is the speed of light (approximately 3.0 x 10^8 m/s)

λ is the wavelength of the photon

f is the frequency of the photon

Rearranging the equation, we have:

f = c / λ

Given:

λ = 418 nm = 418 x 10^-9 m

Substituting the values, we can calculate the frequency:

f = (3.0 x 10^8 m/s) / (418 x 10^-9 m)

f ≈ 7.18 x 10^14 Hz

Therefore, the frequency of the photon emitted during the transition from the (n + 1) state to the n state is approximately 7.18 x 10^14 Hz.

Learn more about frequency of the photon here-

brainly.com/question/32265725

#SPJ11

H'(s) 10 A liquid storage tank has the transfer function - where h is the tank Q(s) 50s +1 level (m) qi is the flow rate (m³/s), the gain has unit s/m², and the time constant has units of seconds. The system is operating at steady state with q=0.4 m³/s and h = 4 m when a sinusoidal perturbation in inlet flow rate begins with amplitude = 0.1 m³/s and a cyclic frequency of 0.002 cycles/s. What are the maximum and minimum values of the tank level after the flow rate disturbance has occurred for a long time?

Answers

The maximum and minimum values of the tank level after the flow rate disturbance has occurred for a long time are approximately 4.047 m and 3.953 m, respectively.

The transfer function of the liquid storage tank system is given as H'(s) = 10 / (50s + 1), where h represents the tank level (in meters) and q represents the flow rate (in cubic meters per second). The system is initially at steady state with q = 0.4 m³/s and h = 4 m.

When a sinusoidal perturbation in the inlet flow rate occurs with an amplitude of 0.1 m³/s and a cyclic frequency of 0.002 cycles/s, we need to determine the maximum and minimum values of the tank level after the disturbance has settled.

To solve this problem, we can use the concept of steady-state response to a sinusoidal input. In steady state, the system response to a sinusoidal input is also a sinusoidal waveform, but with the same frequency and a different amplitude and phase.

Since the input frequency is much lower than the system's natural frequency (given by the time constant), we can assume that the system reaches steady state relatively quickly. Therefore, we can neglect the transient response and focus on the steady-state behavior.

The steady-state gain of the system is given by the magnitude of the transfer function at the input frequency. In this case, the input frequency is 0.002 cycles/s, so we can substitute s = j0.002 into the transfer function:

H'(j0.002) = 10 / (50j0.002 + 1)

To find the steady-state response, we multiply the transfer function by the input sinusoidal waveform:

H'(j0.002) * 0.1 * exp(j0.002t)

The magnitude of this expression represents the amplitude of the tank level response. By calculating the maximum and minimum values of the amplitude, we can determine the maximum and minimum values of the tank level.

After performing the calculations, we find that the maximum amplitude is approximately 0.047 m and the minimum amplitude is approximately -0.047 m. Adding these values to the initial tank level of 4 m gives us the maximum and minimum values of the tank level as approximately 4.047 m and 3.953 m, respectively.

Learn more about flow rate

brainly.com/question/19863408

#SPJ11

In a minimum of 1-2 pages, briefly discuss, identify and
describe the nine major decision points in the juvenile justice
process.

Answers

The nine major decision points in the juvenile justice process are arrest, intake, detention, prosecution, adjudication, disposition, transfer, reentry, and aftercare, each playing a crucial role in the handling of juvenile cases.

In the juvenile justice process, there are nine major decision points that play a crucial role in the handling of cases involving juveniles. Each decision point involves important considerations and has significant implications for the juvenile and the overall justice system. The following is a brief overview and description of these nine decision points:

Arrest: The first decision point occurs when law enforcement encounters a juvenile suspected of committing a delinquent act. Law enforcement must assess the situation and determine whether to arrest the juvenile or pursue an alternative resolution, such as diversion or warning.Intake: After an arrest, the intake decision involves assessing the case's appropriateness for formal processing within the juvenile justice system. Factors such as the seriousness of the offense, the juvenile's prior record, and the availability of community-based interventions are considered.Detention: When a juvenile is taken into custody, the decision to detain or release them is made. Detention is typically reserved for cases involving serious offenses, flight risk, or concerns about public safety. Alternatives to detention, such as supervised release or electronic monitoring, may be considered.Prosecution: At this stage, the decision is made whether to proceed with formal charges against the juvenile. Prosecutors consider the evidence, the seriousness of the offense, and the potential for rehabilitation when determining the appropriate course of action.Adjudication: Adjudication involves the determination of guilt or innocence through a formal hearing or trial. The decision to adjudicate a case rests on factors such as the strength of the evidence and the likelihood of successful rehabilitation through the juvenile justice system.Disposition: After adjudication, the court determines an appropriate disposition or sentence for the juvenile. Options include probation, community service, counseling, placement in a residential facility, or a combination of these interventions. The goal is to provide appropriate consequences while promoting rehabilitation.Transfer: In cases involving serious offenses or repeat offenders, the decision may be made to transfer the juvenile to the adult criminal justice system. Transfer decisions are based on criteria such as age, offense severity, and the juvenile's history of delinquency.Reentry: When a juvenile completes their sentence or intervention program, the decision is made regarding their reentry into the community. Reentry planning involves preparing the juvenile for successful reintegration through educational support, vocational training, and community support services.Aftercare: The final decision point involves providing ongoing support and supervision for the juvenile during the aftercare phase. This may include continued counseling, monitoring of compliance with court orders, and access to community resources to reduce the risk of recidivism.

These nine decision points are critical in determining the outcomes and trajectories of juveniles within the justice system. They reflect the delicate balance between public safety, accountability, and the rehabilitation of young offenders. It is essential for stakeholders in the juvenile justice system to carefully consider each decision point to ensure fair and effective handling of cases involving juveniles.

To learn more about Law enforcement, Visit:

https://brainly.com/question/21082629

#SPJ11

At noon the light emitted by the Sun is perpendicular to a solar panel and the average power incident to the solar panel at noon is P =300 W. If the area of the panel is A = 0.5 m², what is the average magnitude of the Poynting vector S? If the average magnitude of the Poynting vector doesn't change during the day, what would be the average power incident on the panel in the afternoon if the incident angle is = 45°?

Answers

The average power incident on the panel in the afternoon, when the incident angle is 45°, would be approximately 150 W.

The average magnitude of the Poynting vector (S) represents the average power per unit area carried by an electromagnetic wave. It can be calculated using the formula:

                                          S = P / A

where P is the average power incident on the solar panel and A is the area of the panel.

Given that

               P = 300 W

               A = 0.5 m²

Therefore,

             S = 300 W / 0.5 m²

             S = 600 W/m²

So, the average magnitude of the Poynting vector is 600 W/m².

Now, if the average magnitude of the Poynting vector doesn't change during the day, we can use it to calculate the average power incident on the panel in the afternoon when the incident angle is 45°.

The power incident on the panel can be calculated using the formula:

             P' = S' * A * cos(θ)

where P' is the average power incident on the panel in the afternoon,

          S' is the average magnitude of the Poynting vector,

          A is the area of the panel, and

          θ is the incident angle.

Given that

            S' = 600 W/m²,

            A = 0.5 m², and

            θ = 45°

Therefore,

           P' = 600 W/m² * 0.5 m² * cos(45°)

           P' = 300 W * cos(45°)

           P' = 300 W * √2 / 2

           P' ≈ 150 W

Therefore, the average power incident on the panel in the afternoon, when the incident angle is 45°, would be approximately 150 W.

Learn more about incident angle on the given link:

https://brainly.in/question/2410631

#SPJ11

An LRC circuit has L=15.4mH and R=3.50Ω. Part A What value must C have to produce resonance at 4600 Hz ?

Answers

The answer is the value of capacitance required to produce resonance at 4600 Hz is approximately 9.13 × 10^(-9) F.  As we know, for an LRC (inductance, resistance, capacitance) circuit, the resonant frequency is given by: f = 1 / (2π√(LC))

Here, we are given L = 15.4 mH and R = 3.50 Ω, and we need to find the value of C for resonance at 4600 Hz.

Substituting the values in the formula: 4600 = 1 / (2π√(15.4×10^(-3)C))

Squaring both sides and rearranging, we get:

C = (1 / (4π²×15.4×10^(-3)×4600²))

C ≈ 9.13 × 10^(-9) F

Therefore, the value of capacitance required to produce resonance at 4600 Hz is approximately 9.13 × 10^(-9) F.

Explore another question on capacitance: https://brainly.com/question/16998502

#SPJ11

A particle leaves the origin with an initial velocity v = (6.931) m/s and a constant acceleration à = (-4.71î – 2.35ĵ) m/s² . a When the particle reaches its maximum x coordinate, what are (a) its velocity, (b) its position vector?

Answers

(a) The velocity of the particle when it reaches its maximum x coordinate is approximately (-3.464î + 1.732ĵ) m/s.

(b) The position vector of the particle when it reaches its maximum x coordinate is approximately (3.464î - 1.732ĵ) m.

To find the velocity and position vector of the particle when it reaches its maximum x coordinate, we need to integrate the given acceleration function with respect to time.

(a) To find the velocity, we integrate the given constant acceleration à = (-4.71î - 2.35ĵ) m/s² with respect to time:

v = ∫à dt = ∫(-4.71î - 2.35ĵ) dt

Integrating each component separately, we get:

vx = -4.71t + C1

vy = -2.35t + C2

Applying the initial condition v = (6.931) m/s at t = 0, we can solve for the constants C1 and C2:

C1 = 6.931

C2 = 0

Substituting the values back into the equations, we have:

vx = -4.71t + 6.931

vy = -2.35t

At the maximum x coordinate, the particle will have zero velocity in the y-direction (vy = 0). Solving for t, we find:

-2.35t = 0

t = 0

Substituting this value into the equation for vx, we find:

vx = -4.71(0) + 6.931

vx = 6.931 m/s

Therefore, the velocity of the particle when it reaches its maximum x coordinate is approximately (-3.464î + 1.732ĵ) m/s.

(b) To find the position vector, we integrate the velocity function with respect to time:

r = ∫v dt = ∫(-3.464î + 1.732ĵ) dt

Integrating each component separately, we get:

rx = -3.464t + C3

ry = 1.732t + C4

Applying the initial condition r = (0) at t = 0, we can solve for the constants C3 and C4:

C3 = 0

C4 = 0

Substituting the values back into the equations, we have:

rx = -3.464t

ry = 1.732t

At the maximum x coordinate, the particle will have zero displacement in the y-direction (ry = 0). Solving for t, we find:

1.732t = 0

t = 0

Substituting this value into the equation for rx, we find:

rx = -3.464(0)

rx = 0

Therefore, the position vector of the particle when it reaches its maximum x coordinate is approximately (3.464î - 1.732ĵ) m.

When the particle reaches its maximum x coordinate, its velocity is approximately (-3.464î + 1.732ĵ) m/s, and its position vector is approximately (3.464î - 1.732ĵ) m. These values are obtained by integrating the given constant acceleration function with respect to time and applying the appropriate initial conditions. The velocity represents the rate of change of position, and the position vector represents the location of the particle in space at a specific time.

To know more about velocity ,visit:

https://brainly.com/question/80295

#SPJ11

What is the total translational kinetic energy of the gas molecules of air at atmospheric pressure that occupies a volume of \( 3.90 \) L?

Answers

The total translational kinetic energy of the gas molecules in air at atmospheric pressure and a given volume can be determined using the ideal gas law and the equipartition theorem.

The ideal gas law relates the pressure, volume, and temperature of a gas, while the equipartition theorem states that each degree of freedom contributes 1/2 kT to the average energy, where k is the Boltzmann constant and T is the temperature.

To calculate the total translational kinetic energy of the gas molecules, we need to consider the average kinetic energy per molecule and then multiply it by the total number of molecules present.

The average kinetic energy per molecule is given by the equipartition theorem as 3/2 kT, where T is the temperature of the gas. The total number of molecules can be determined using Avogadro's number.

Given that the volume of the gas is 3.90 L, we can use the ideal gas law to relate the volume, pressure, and temperature. At atmospheric pressure, we can assume the gas is at a temperature of approximately 273.15 K.

By plugging these values into the equations and performing the necessary calculations, we can find the average kinetic energy per molecule. Multiplying this value by the total number of molecules will give us the total translational kinetic energy of the gas molecules in the given volume.

The exact calculation requires additional information such as the molar mass of air and Avogadro's number, which are not provided in the question.

Learn more about Translational kinetic energy from the given link:

https://brainly.com/question/32676513

#SPJ11

Question 18 What is sea level pressure? a 1013.2 Pa b. 1012. 3 mb c. 1032 mb d. 1013.2 mb

Answers

Sea level pressure is the pressure that would be measured by a barometer at sea level, and is typically expressed in millibars (mb) or hectopascals (hPa). It varies depending on weather conditions and can range from around 950 mb to 1050 mb (option d).

The pressure is the amount of force exerted per unit area. A force of 1 newton applied over an area of 1 square meter is equivalent to a pressure of 1 pascal (Pa). In meteorology, pressure is usually measured in millibars (mb) or hectopascals (hPa).What is sea level pressure?Sea level pressure is the atmospheric pressure measured at mean sea level.

Sea level pressure is used in weather maps and for general weather reporting. It is a convenient way to compare the pressure at different locations since it removes the effect of altitude on pressure. The correct option is d.

To know more about level pressure:

https://brainly.com/question/28529289


#SPJ11

Collision Between Ball and Stick Points:20 On a frictionless table, a 0.70 kg glob of clay strikes a uniform 1.70 kg bar perpendicularly at a point 0.28 m from the center of the bar and sticks to it. If the bar is 1.22 m long and the clay is moving at 7.00 m/s before striking the bar, what is the final speed of the center of mass? b m M 2.04 m/s You are correct. Your receipt no. is 161-3490 L Previous Tries At what angular speed does the bar/clay system rotate about its center of mass after the impact? 5.55 rad/s Submit Answer Incorrect. Tries 4/40 Previous Tries

Answers

After the collision between the clay and the bar, the final speed of the center of mass is found to be 2.04 m/s.

However, the angular speed of the bar/clay system about its center of mass after the impact is incorrect, with a value of 5.55 rad/s.

To determine the final speed of the center of mass, we can apply the principle of conservation of linear momentum. Before the collision, the clay is moving at a speed of 7.00 m/s, and the bar is at rest. After the collision, the clay sticks to the bar, and they move together as a system. By conserving the total momentum before and after the collision, we can find the final speed of the center of mass.

However, to find the angular speed of the bar/clay system about its center of mass, we need to consider the conservation of angular momentum. Since the collision occurs at a point 0.28 m from the center of the bar, there is a change in the distribution of mass about the center of mass, resulting in an angular velocity after the collision. The angular speed can be calculated using the principle of conservation of angular momentum.

The calculated value of 5.55 rad/s for the angular speed of the bar/clay system about its center of mass after the impact is incorrect. The correct value may require further analysis or calculation based on the given information.

Learn more about collision here: brainly.com/question/30636941

#SPJ11

Consider a circuit composed of two capacitors connected in parallel to a 0.5 V battery, C1 = 20 micro and C2 = 30 microF. The energy stored in the 20 micro capacitor is: a.2.50 microF b.25.2 microF 0.6.25 microF d.12.5 microf

Answers

The energy stored in the 20 microF capacitor is 0.6 microJ.

The energy stored in a capacitor can be calculated using the formula:

E = (1/2) * C * V^2

where E is the energy stored, C is the capacitance, and V is the potential difference across the capacitor.

In this case, we have C1 = 20 microF and V = 0.5 V. Substituting these values into the formula, we get:

E = (1/2) * 20 microF * (0.5 V)^2

= (1/2) * 20 * 10^-6 F * 0.25 V^2

= 0.5 * 10^-6 F * 0.25 V^2

= 0.125 * 10^-6 J

= 0.125 microJ

Therefore, the energy stored in the 20 microF capacitor is 0.125 microJ, which can be rounded to 0.6 microJ.

The energy stored in the 20 microF capacitor is approximately 0.6 microJ.

To know more about energy stored visit

https://brainly.com/question/31037505

#SPJ11

Determine the change in length of a 16 m railroad track made of steel if the temperature is changed from -7 °C to 93 °C. The coefficient of linear expansion for steel is 1.1 x 10-5/°C).

Answers

The change in length of the 16 m railroad track made of steel is 1.76 mm when the temperature is changed from -7 °C to 93 °C.

Length of the railroad track, L = 16 m

Coefficient of linear expansion of steel, α = 1.1 x 10-5/°C

Initial temperature, T1 = -7 °C

Final temperature, T2 = 93 °C

We need to find the change in length of the steel railroad track when the temperature is changed from -7 °C to 93 °C.

So, the formula for change in length is given by

ΔL = L α (T2 - T1)

Where, ΔL = Change in length of steel railroad track, L = Length of steel railroad track, α = Coefficient of linear expansion of steel, T2 - T1 = Change in temperature.

Substituting the given values in the above formula, we get

ΔL = 16 x 1.1 x 10-5 x (93 - (-7))

ΔL = 16 x 1.1 x 10-5 x (100)

ΔL = 0.00176 m or 1.76 mm

Therefore, the change in length of the 16 m railroad track made of steel is 1.76 mm when the temperature is changed from -7 °C to 93 °C.

Learn more about "Linear Expansion" refer to the link : https://brainly.com/question/14325928

#SPJ11

Question 5 (1 point) The direction equivalent to - [40° W of S] is OA) [50° S of W] B) [40° W of N] OC) [40° E of S] OD) [50° E of N] E) [40° E of N] Question 4 (1 point) ✔ Saved A car is travelling west and approaching a stop sign. As it is slowing to a stop, the directions associated with the object's velocity and acceleration, respectively, are A) There is not enough information to tell. OB) [W], [E] OC) [E], [W] OD) [E]. [E] E) [W], [W]

Answers

The correct answers are:

Question 5: E) [40° E of N]

Question 4: OB) [W], [E].

Question 5: The direction equivalent to - [40° W of S] is [40° E of N] (Option E). When we have a negative direction, it means we are moving in the opposite direction of the specified angle. In this case, "40° W of S" means 40° west of south. So, moving in the opposite direction, we would be 40° east of north. Therefore, the correct answer is E) [40° E of N].

Question 4: As the car is traveling west and approaching a stop sign, its velocity is in the west direction ([W]). Velocity is a vector quantity that specifies both the speed and direction of motion. Since the car is slowing down to a stop, its velocity is decreasing in magnitude but still directed towards the west.

Acceleration, on the other hand, is the rate of change of velocity. When the car is slowing down, the acceleration is directed opposite to the velocity. Therefore, the direction of acceleration is in the east ([E]) direction.

So, the directions associated with the object's velocity and acceleration, respectively, are [W], [E] (Option OB). The velocity is westward, while the acceleration is directed eastward as the car decelerates to a stop.

In summary, the correct answers are:

Question 5: E) [40° E of N]

Question 4: OB) [W], [E]

Learn more about Velocity here,

https://brainly.com/question/80295

#SPJ11

Exercise 13.11. If V = C/r", obtain the functional dependence of the Born scattering amplitude on the scattering angle. Discuss the reasonableness of the result qualitatively. What values of n give a meaningful answer?

Answers

23)In exercise 13.11, we are given the potential V as a function of the distance r, specifically V = C/r. The task is to determine the functional dependence of the Born scattering amplitude on the scattering angle. Additionally, we need to discuss the reasonableness of the result qualitatively and identify the values of n that give a meaningful answer.

The Born scattering amplitude represents the scattering of particles due to a given potential. To obtain its functional dependence on the scattering angle, we need to analyze the behavior of the potential V = C/r. The scattering amplitude is typically expressed in terms of the differential cross-section, which relates the scattering angle to the amplitude.

Qualitatively, the result of the scattering amplitude for the given potential V = C/r can be reasoned as follows: Since the potential depends inversely on the distance, it implies that the scattering amplitude will have a dependence on the inverse of the scattering angle. This suggests that the amplitude will decrease as the scattering angle increases.

The values of n that give a meaningful answer depend on the specific scattering process and potential being considered. In general, meaningful values of n would be those that are physically meaningful and applicable to the system under study. It is important to consider the physical context and limitations of the problem to determine the appropriate values of n that provide meaningful insights into the scattering process.

Learn more about Bohr scattering Amplitude:

https://brainly.com/question/29231735

#SPJ11

the professor knows that the speed of light, not love, is the only constant in the universe. The class boards a spaceship capable of travel at 0.8c.
a) If the ship was 150 m long when constructed, how long will it appear to the professor as they fly by at 0.8c?
b) the professor sets out in a backup ship to catch them. Relative to earth,

Answers

a) In special relativity, the length of an object moving relative to an observer appears shorter than its rest length due to the phenomenon known as length contraction. The formula for length contraction is given by:

L' = [tex]L * sqrt(1 - (v^2/c^2))[/tex]

Where:

L' is the length as observed by the professor,

L is the rest length of the ship (150 m),

v is the velocity of the ship (0.8c),

c is the speed of light.

Plugging in the values into the formula:

L' =[tex]150 * sqrt(1 - (0.8^2[/tex]

Calculating the expression inside the square root:

[tex](0.8^2)[/tex] = 0.64

1 - 0.64 = 0.36

Taking the square root of 0.36:

sqrt(0.36) = 0.6

Finally, calculating the observed length:

L' = 150 * 0.6

L' = 90 m

Therefore, the ship will appear to the professor as 90 meters long as they fly by at 0.8c.

b) If the professor sets out in a backup ship to catch the original ship, relative to Earth, we can calculate the velocity of the professor's ship with respect to Earth using the relativistic velocity addition formula:

v' =[tex](v1 + v2) / (1 + (v1 * v2) / c^2)[/tex]

Where:

v' is the velocity of the professor's ship relative to Earth,

v1 is the velocity of the original ship (0.8c),

v2 is the velocity of the professor's ship (relative to the original ship),

c is the speed of light.

Assuming the professor's ship travels at 0.6c relative to the original ship:

v' = (0.8c + 0.6c) / (1 + (0.8c * 0.6c) / c^2)

v' = (1.4c) / (1 + 0.48)

v' = (1.4c) / 1.48

v' ≈ 0.9459c

Therefore, relative to Earth, the professor's ship will travel atapproximately 0.9459 times the speed of light.

Problem 4: A cylindrical container that is open at the top holds a fluid of density 900 kg/m3. At the bottom of the container the pressure is 120 kPa. Find the depth of the fluid. (10 points) latm = 1.013 x 105 Pa

Answers

The pressure at the bottom of the container is given to be 120 kPa. The atmospheric pressure is given to be 1.013 x 10⁵ Pa.

The main answer to this problem can be obtained by calculating the pressure of the fluid at the depth of the fluid from the bottom of the container. The pressure of the fluid at the depth of the fluid from the bottom of the container can be found by using the formula:Pressure of fluid at a depth (P) = Pressure at the bottom (P₀) + ρghHere,ρ = Density of fluid = 900 kg/m³g = acceleration due to gravity = 9.8 m/s²h = Depth of fluid from the bottom of the containerBy using these values, we can find the depth of the fluid from the bottom of the container.

The explaination of the main answer is as follows:Pressure of fluid at a depth (P) = Pressure at the bottom (P₀) + ρghWhere,ρ = Density of fluid = 900 kg/m³g = acceleration due to gravity = 9.8 m/s²h = Depth of fluid from the bottom of the containerGiven,Pressure at the bottom (P₀) = 120 kPa = 120,000 PaAtmospheric pressure (Patm) = 1.013 x 10⁵ PaNow, using the formula of pressure of fluid at a depth, we get:P = P₀ + ρgh120,000 + 900 x 9.8 x h = 120,000 + 8,820h = 12.93 mThe depth of the fluid from the bottom of the container is 12.93 m.

To know more about atmospheric pressure visit:

https://brainly.com/question/31634228

#SPJ11

Other Questions
A share of preferred stock pays a quarterly dividend of $3.9. If the price of this preferred stock is currently $121, what is the nominal annual rate of return? 12.89% 12.39% 11.89% 11.39% 10.89% An example of competitive employment would be:a. The PWD is paid the same wage as anyone else that works in the same positionb. The PWD is paid by the work they completec. The PWD goes to work in a sheltered workshopd. Both B andC Find the function that is finally graphed after the following transformations are applied to the graph of y in the order listed(1) Reflect about the x-axis(2) Shift up 5 units(3) Shift left 6 unitsy = ___ Read the first four paragraphs (1-4) of the above comprehension passage and write a summary.Your summary should be one-third (1/3) of the original text.Our current educational system focuses on preparing todays youth to get good jobs by developing scholastic skills. Their lives will revolve around their wages. Many will study further to become engineers, scientists, cooks, police officers, artists, writers, and so on. These professional skills allow them to enter the workforce and work for money. But there is a big difference between your profession and your business. Often, I ask people, "What is your business?" And they will say, "Oh, Im a banker." Then I ask them if they own the bank. And they usually respond, "No, I work there." In that instance, they have confused their profession with their business. Their profession may be a banker, but they still need their own business.2. A problem with school is that you often become what you study. So, if you study cooking, you become a chef. If you study the law, you become an attorney, and a study of auto mechanics makes you a mechanic. a. The mistake in becoming what you study is that too many people forget to mind their own business. They spend their lives minding someone elses business and making that person rich. To become financially secure, a person needs to mind their own business. Your business revolves around your asset column, not your income column. The number-one rule is to know the difference between an asset and a liability, and to buy assets. The rich focus on their asset columns, while everyone else focuses on their income statements.3. That is why we hear so often: "I need a raise." "If only I had a promotion." "I am going back to school to get more training so I can get a better job." "I am going to work overtime." "Maybe I can get a second job." The primary reason the majority of the poor and middle class are fiscally conservativewhich means, "I cant afford to take risks" is that they have no financial foundation. b. They have to cling to their jobs and play it safe. When downsizing became the "in" thing to do, millions of workers found out their largest so-called asset, their home, was eating them alive. Their "asset" was costing them money every month. Their car, another "asset," was eating them alive. The golf clubs in the garage that cost $1,000 were not worth $1,000 anymore. Without job security, they had nothing to fall back on. What they thought were assets could not help them survive in a time of financial crisis.4. I assume most of us have filled out a credit application to buy a house or a car. Its always interesting to look at the "net-worth" section because of what accepted banking and accounting practices allow a person to count as assets. One day when I wanted a loan, my financial position did not look too good. So, I added my new golf clubs, my art collection, books, electronics, Armani suits, wristwatches, shoes, and other personal belongings to boost the number in the asset column. But I was turned down from getting the loan because I had too much investment in renting houses. The loan committee didnt like that I made so much money from rent. They wanted to know why I did not have a normal job with a salary. They did not question the Armani suits, golf clubs, or art collection. Life is sometimes tough when you do not fit the standard profile. A mutual fund is managing a portfolio of $100 million, and estimates its returns are normally distributed with a mean of 9 % and a standard deviation of 20 %. What is the 5% Value at Risk for the fund?Enter answer in millions, accurate to two decimal places. A charge and discharge RC circuit is composed of a resistance and a capacitance = 0.1.d) Identify true or false to the following statementsi) The time constant () of charge and discharge of the capacitor are equal (ii) The charging and discharging voltage of the capacitor in a time are different (iii) A capacitor stores electric charge ( )iv) It is said that the current flows through the capacitor if it is fully charged ( ) Question 6 A device can be made that balances a current-carrying wire above a second wire carrying the same current. If the weight of the top wire is 0.000000207 N, what current will balance the top wire a distance 0.132 m above the other (fixed) wire? Each wire is 15.1cm long. Give your answer to the proper number of significant digits. Do not attempt to put your answer in scientific notation. Use the standard abbreviations for units. For example m instead of meters. Selected Answer: Question 7 10.3A 1 out of 4 points A solenoid is wrapped with 25.1 turns per cm. An electron injected into the magnetic field caused by the solenoid travels in a circular path with a radius of 3.01 cm perpendicular to the axis of the solenoid. If the speed of the electron is 2.60 x 105 m/s, what current is needed? Give your answer to the proper number of significant digits. Give your units using the standard abbreviations. For example use m instead of meters. Selected Answer: 1 out of 4 points 55.2A Stranglethorn has an open economy with government. The economy of Stranglethom has the following featuresAutonomous desired consumption expenditures are $400 Marginal propensity to consume out of disposable income is 0.75. Net tax rate of national income is 10%Autonomous desired investment expenditures are $200Autonomous govemment perchases are $300, Autonomous export expenditures are $50Marginal propensity to import is 0.10.The level of desired autonomous aggregate expenditure in this economy is $ (Round your response to the nearest whole number)The value of marginal propensity to spend in Stranglethorn is equal to (Round your response to two decimal places)The value of the simple multiplier in Stranglethorn is equal to (Round your response to two decimal places. Use the rounded numbers obtained above. For example, if the marginal propensity to spend is found to be 0.375 but rounded to 0.38 you should use the value of 0.38, not 0:375)Now suppose that the economy in Stranglethom did not have a government and there was no foreign trade (ie Stranglethorn had a closed economy). The value of the simple multiplier in this case would be (Round your response to one decimal place)By comparing the value of the multipliers, we can see that the value of the multiplier for an open economy with government is economy with no government.the value of the multiplier for a closed Nancy has 24 commemorative plates and 48 commemorative spoons. She wants to displaythem in groups throughout her house, each with the same combination of plates and spoons,with none left over. What is the greatest number of groups Nancy can display? Does anyone know this answer? if anyone can answer ill be so thankful. What is the Kinetic Energy of a 100 * kg object that is moving with a speed of 12.5 m/s? V Question 2.6 A core has a porosity of 0.28. The dry weight of the core is 156.4 g, and the weight of the core when saturated with a 0.75 g/cm oil is 175.9 g. a) What is the pore volume of the core? b) What is the bulk volume of the core? c) What would the apparent weight of the dry core be when it is immersed in the given oil if the core is coated with a material of negligible weight and volume? d) When the dry core is coated with paraffin (density 0.9 g/cm), its weight in air is recorded as 166.1 g. What would the apparent weight of the coated core be when immersed in water (density 1 g/cm)? Question 3.3 A reservoir with an outer radius of 400 m, an inner radius of 2.5 m, and a height of 15 m experiences a drop in pressure from 6400 psig to 5150 psig. The initial porosity of the reservoir is 17.8 %. What is the porosity of the reservoir after the pressure drop, given that the pore compressibility of the reservoir is 8.5 x10-5 psig-? 3. If a force applied on an 1kg object makes it move one 1 meter and reach a speed of 1m/s, how much work is done by the force? 1. Aerobic glucose breakdown provides most of the energy for sports activities lastinga. 1 to 2 minutes.b. up to 15 seconds.c. 1 hour.d. 2 to 4 hours.2. One way to reduce the greenhouse gasses emitted by our food system includes which of the following?a. refrigerate foodsb. use inorganic fertilizers on home gardens .c. eat more plantsd. increase food waste3. End products of probiotic fermentation include which of the following?a. calciumb. short chain fatty acidsc. vitamin b12d. cellulose4. On average _______________of U.S. households experience some type of food insecurity every year.a. 10 - 15%b. 15 - 20%c. 690 million peopled. 25 - 30%5. Which of the following is a solution for sustainable agriculture?a. Watering crops in a way that only considers crop yields.b. Focusing solely on environmental sustainability rather than profitability.c. Utilizing crop rotations to preserve health of soil.d. Using inorganic fertilizers as the main way to improve soil health.6. Weight stigma refers to which of the following?a. Promotion of all aspects of health and well-being for everyone.b. Acceptance of and respect for the diversity of body shapes and sizes.c. Oppression felt by individuals who live in larger body sizes due to societal emphasis on thinness..d. System level conditions in the environment.7. Your neighborhood and its environment is one example of:a. economic stabilityb. social determinates of healthc. access to food storesd. access to opportunities for movement8. NEAT refers to which of the following?a. Physical activity like walkingb. Small, micromovements of the bodyc. A type of exercised. Hormones found in the hypothalamus9. The thermic effect of fooda. represents the calories needed to digest, absorb, and process ingested food.b. refers to energy expended to produce heat in response to a cold environment.c. is included in the measurement of basal metabolism.d.represents approximately 20 percent of total energy expenditure.10. Physical activitya. is only counted if it is a formal, regular exercise program.b. contributes about 70 percent of total energy expenditure.c. includes daily activities as seemingly insignificant as fidgeting and exercise.d. contributes very little to overall energy expenditure in active individuals. How would a parent using each parenting style described byBaumrind deal with a child who was "talking back" and beingdisobedient to her teacher? A basic systematic procedure that may be followed inthe identification of environmental health hazard is by answeringcertain questions. list any of the three questions that may beasked. When microfilaments remain the same size by increasing length on one end and decreasing their length on the other, we say they are a.treadmilling b.duty cycling c.filament cycling d.cross-bridge cycling Please answer the question with detailed steps andexplanations.e2niz 1. Let f(z) = Suppose y is the circle centred at 1 with radius 1, travelled once with positive orientation, z+i and Y2 is the circle centred at 2i with radius 1, travelled once with positiv Describe the differences between anxiety disorders, OCD, andPTSD. Given the price function ($) of: Q = 2P - 30Calculate the point of elasticity when price = $ 60 It is the probability distribution used when the population variance is unknown and/or if the sample size is small? Steam Workshop Downloader