let r = x i y j z k and r = |r|. find each of the following. (a) ∇r 0 r/r2 r/r r/r −r/r3

Answers

Answer 1

a). The gradient of r/r^2 is (∇r)/r^2 = (∇r)/(x^2 + y^2 + z^2)

b). The gradient of r/r is (∇r)/r = (∇r)/|r|.

c). ∇r = ∂x/∂x i + ∂y/∂y j + ∂z/∂z k = i + j + k

d). The gradients of the given expressions are as follows: (∇r)/r^2 = (∇r)/(x^2 + y^2 + z^2), (∇r)/r = (∇r)/|r|, ∇r = i + j + k, and -∇r/r^3 = -∇r/(x^2 + y^2 + z^2)^3.

The gradient of a vector r is denoted by ∇r and is found by taking the partial derivatives of its components with respect to each coordinate. In this problem, the vector r is given as r = xi + yj + zk.

Let's calculate the gradients of the given expressions one by one:

(a) ∇r/r^2:

To find the gradient of r divided by r squared, we need to take the partial derivatives of each component of r and divide them by r squared. Thus, the gradient of r/r^2 is (∇r)/r^2 = (∇r)/(x^2 + y^2 + z^2).

(b) ∇r/r:

Similarly, to find the gradient of r divided by r, we need to take the partial derivatives of each component of r and divide them by r. Therefore, the gradient of r/r is (∇r)/r = (∇r)/|r|.

(c) ∇r:

The gradient of r itself is found by taking the partial derivatives of each component of r. Therefore, ∇r = ∂x/∂x i + ∂y/∂y j + ∂z/∂z k = i + j + k.

(d) -∇r/r^3:

To find the gradient of -r divided by r cubed, we multiply the gradient of r by -1 and divide it by r cubed. Thus, -∇r/r^3 = -∇r/(x^2 + y^2 + z^2)^3.

In summary, the gradients of the given expressions are as follows: (∇r)/r^2 = (∇r)/(x^2 + y^2 + z^2), (∇r)/r = (∇r)/|r|, ∇r = i + j + k, and -∇r/r^3 = -∇r/(x^2 + y^2 + z^2)^3.

Learn more about partial derivatives here:

https://brainly.com/question/32554860

#SPJ11


Related Questions

Use integration by parts to express the definite integral I, = "x"e* dx in terms of In-1=x"-le dx. Apply this reduction formula to compute 13. 4. Classify the following series as absolutely convergent, conditionally convergent, or divergent: 80 11 Σ 11 Vigủ 1 (-1)" Σ n=1 √n²+1 (-2)" n! 5. (i) Use the Leibniz test to show that the series 1 (-1)"+1 √n 1 1 1 √2 √√3 √4 √5 converges. (ii) Use your calculator (the built-in sum command for a sequence) to find the partial sum $100 of the above series. How far is the estimate $100 from the actual sum s? 6. Find the interval of convergence of the power series 3" (x + 1)" 11 n=1 7. Use Taylor series to find lim 1+x³-e 26 8. Write the 2nd degree Taylor polynomial T₂(x) for the function f(x) = √√x at the point a = 8. Then find the approximate value of 10 by computing T₂(10). Estimate the error in your approximation using Taylor's formula for the remainder term R₂(x). IM² IM² Σ #=1

Answers

We can now see that [tex]I_3[/tex] is expressed in terms of In-1, which is ∫[tex]x^{(n-1)} * e^x dx[/tex].

What is integration by parts?

A unique method of integrating two functions when they are multiplied is called integration by parts. Partial integration is another name for this approach.

To express the definite integral I = ∫[tex]xe^x[/tex] dx in terms of the integral In-1 = ∫[tex]x^n * e^x dx[/tex], we can use integration by parts.

Let u = x and [tex]dv = e^x dx[/tex].

Then, du = dx and [tex]v = e^x[/tex].

Applying the integration by parts formula:

∫u dv = uv - ∫v du

∫[tex]xe^x dx = x * e^x -[/tex] ∫[tex]e^x dx[/tex]

         = [tex]x * e^x - e^x + C[/tex]

Now, let's apply this reduction formula to compute [tex]I_3[/tex]:

[tex]I_3[/tex] = ∫[tex]x^3 * e^x dx[/tex]

Using integration by parts:

Let [tex]u = x^3[/tex] and [tex]dv = e^x[/tex] dx.

Then, [tex]du = 3x^2 dx[/tex] and [tex]v = e^x[/tex].

Applying the integration by parts formula:

[tex]I_3 = x^3 * e^x[/tex] - ∫[tex]3x^2 * e^x dx[/tex]

We can now see that [tex]I_3[/tex] is expressed in terms of In-1, which is ∫[tex]x^{(n-1)} * e^x dx[/tex].

Learn more about integration by parts on:

https://brainly.com/question/30402060

#SPJ4

Triangle JKL is transformed by performing a 90degree clockwise rotation about the origin and then a reflection over the y-axis, creating triangle J’’K’’L’’. Which transformation will map J’’K’’L’’ back to JKL? a reflection over the y-axis and then a 90degree clockwise rotation about the origin a reflection over the x-axis and then a 90degree counterclockwise rotation about the origin a reflection over the x-axis and then a 90degree clockwise rotation about the origin a reflection over the x-axis and then a reflection over the y-axis

Answers

Given statement solution is :- The correct answer is: a reflection over the y-axis and then a 90-degree counterclockwise rotation about the origin.

To map triangle J''K''L'' back to JKL, we need to reverse the transformations that were applied to create J''K''L'' in the first place.

The given transformations are a 90-degree clockwise rotation about the origin and then a reflection over the y-axis. To reverse these transformations, we need to perform the opposite operations in reverse order.

The opposite of a reflection over the y-axis is another reflection over the y-axis.

The opposite of a 90-degree clockwise rotation about the origin is a 90-degree counterclockwise rotation about the origin.

Therefore, the transformation that will map J''K''L'' back to JKL is a reflection over the y-axis (first) followed by a 90-degree counterclockwise rotation about the origin (second).

So the correct answer is: a reflection over the y-axis and then a 90-degree counterclockwise rotation about the origin.

For such more questions on  Reverse transformations: reflection and rotation.

https://brainly.com/question/31436218

#SPJ8

Answer:

B: a reflection over the x-axis and then a 90degree counterclockwise rotation about the origin.

Verify the function satisfies the three hypotheses of Rolles
theorem.
Question 1 0.5 / 1 pts Verify the function satisfies the three hypotheses of Rolles' Theorem. Then state the conclusion of Rolles' Theorem. = 3x2 - 24x + 5, [1, 7] f(x)

Answers

The function f(x) = 7 - 24x + 3x² satisfies the three hypotheses of Rolle's Theorem on the interval [3, 5]. There exists a number c in (3, 5) such that f(c) = f(3) = f(5). The conclusion of Rolle's Theorem is satisfied for c = 4.

To verify the hypotheses of Rolle's Theorem, we need to check the following conditions:

f(x) is continuous on the closed interval [3, 5]:

The function f(x) is a polynomial, and polynomials are continuous for all real numbers. Therefore, f(x) is continuous on the interval [3, 5].

f(x) is differentiable on the open interval (3, 5):

The derivative of f(x) is f'(x) = -24 + 6x, which is also a polynomial. Polynomials are differentiable for all real numbers. Thus, f(x) is differentiable on the open interval (3, 5).

f(3) = f(5):

Evaluating f(3) and f(5), we have f(3) = 7 - 24(3) + 3(3)² = 7 - 72 + 27 = -38 and f(5) = 7 - 24(5) + 3(5)² = 7 - 120 + 75 = -38. Hence, f(3) = f(5).

Since all three hypotheses are satisfied, we can apply Rolle's Theorem. Therefore, there exists at least one number c in the interval (3, 5) such that f'(c) = 0. To find the specific value(s) of c, we can solve the equation f'(c) = -24 + 6c = 0. Solving this equation gives c = 4.

To know more about Rolle's Theorem, refer here:

https://brainly.com/question/32056106#

#SPJ11

Complete question:

Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.)

f(x) = 7 − 24x + 3x2, [3, 5]

Find the function y=y(x) (for x>0 ) which satisfies the separable differential equation
dy/dx=(4+18x)/(xy^2); x>0
with the initial condition y(1)=2

Answers

The function y(x) that satisfies the separable differential equation dy/dx = (4 + 18x)/(xy²) with the initial condition y(1) = 2 is:

y = (12 ln|x| + 54x - 49[tex])^{(1/3)[/tex]

What is Equation?

In mathematics, an equation is a statement that asserts the equality of two expressions that are joined by the equal sign "=".

To solve the separable differential equation:

dy/dx = (4 + 18x)/(xy²)

We can rearrange the equation as follows:

y² dy = (4 + 18x)/x dx

Now, we integrate both sides of the equation.

∫y² dy = ∫(4 + 18x)/x dx

Integrating the left side gives us:

(1/3) y³ = ∫(4 + 18x)/x dx

To integrate the right side, we can split it into two separate integrals:

(1/3) y³ = ∫4/x dx + ∫18 dx

The first integral, ∫4/x dx, can be evaluated as:

∫4/x dx = 4 ln|x| + C₁

The second integral, ∫18 dx, simplifies to:

∫18 dx = 18x + C₂

Combining the results, we have:

(1/3) y₃ = 4 ln|x| + 18x + C

where C = C₁ + C₂ is the constant of integration.

Now, we can solve for y:

y³ = 12 ln|x| + 54x + 3C

Taking the cube root of both sides:

y = (12 ln|x| + 54x + 3C[tex])^{(1/3)[/tex]

Applying the initial condition y(1) = 2, we can substitute x = 1 and y = 2 into the equation to find the value of the constant C:

2 = (12 ln|1| + 54 + 3[tex]C)^{(1/3)[/tex]

2 = (0 + 54 + 3C[tex])^{(1/3)[/tex]

2³ = 57 + 3C

8 - 57 = 3C

-49 = 3C

C = -49/3

Therefore, the function y(x) that satisfies the separable differential equation dy/dx = (4 + 18x)/(xy²) with the initial condition y(1) = 2 is:

y = (12 ln|x| + 54x - 49[tex])^{(1/3)[/tex]

To learn more about Equation from the given link

https://brainly.com/question/13729904

#SPJ4

PLESEEEEE HELP!!!!!!

Answers

The statement that correctly describes the two functions include the following: A. the number of ribbon flowers that can be made by Martha and Jennie increases over time. Martha's function has a greater rate of change than Jennie's function, indicating that Martha can make more ribbon flowers per hour.

How to calculate the rate of change of a data set?

In Mathematics and Geometry, the rate of change (slope) of any straight line can be determined by using this mathematical equation;

Rate of change = (Change in y-axis, Δy)/(Change in x-axis, Δx)

Rate of change = rise/run

Rate of change = (y₂ - y₁)/(x₂ - x₁)

For Martha's function, the rate of change is equal to 10.

Next, we would determine rate of change for Jennie as follows;

Rate of change = (9 - 0)/(1 - 0)

Rate of change = 9/1

Rate of change = 9.

Therefore, Martha's function has a greater rate of change than Jennie's function because 10 is greater than 9.

Read more on rate of change here: brainly.com/question/25184007

#SPJ1

Erase Edit Kexin d= right - 4 = (9-y)/3+2 Notice that it is completely irrelevant of the quadrant in which the left and right curves appear; we can always find a horizontal quantity of interest in this case d), by taking Iright - Eleft and using the expressions that describe the relevant curves in terms of y. After a little algebra, we find that the the radius r of the semicircle is T' r = d= (9-y)/6+1 = and the area of the semicircle is found using: A= ਨੂੰ : 1/2pi*((9-y)/6+1 Thus, an integral that gives the volume of the solid is 15 ✓ V= =/ pi((9-y)/6+1)^2 dy. y=-3 Evaluating this integral (which you should verify by working it out on your own.), we find that the volume of the solid is ? cubic units.

Answers

The volume of the solid can be found by evaluating the integral V = [tex]\[\int \pi \left(\frac{9-y}{6}+1\right)^2 dy\][/tex] over the given range of y. The value of this integral will yield the volume of the solid in cubic units.

To find the volume of the solid, we first need to determine the expression that represents the radius of the semicircle, denoted as r. From the given equation, we have r = d = (9-y)/6+1. This expression represents the distance from the vertical axis to the curve at any given value of y.

Next, we calculate the area of the semicircle using the formula A = [tex]1/2\pi r^2[/tex], where r is the radius of the semicircle. Substituting the expression for r, we get A = [tex]1/2\pi ((9-y)/6+1)^2[/tex].

The volume of the solid can then be obtained by integrating the area function A with respect to y over the given range. The integral becomes V = [tex]\int \pi \left(\frac{9-y}{6}+1\right)^2 , dy[/tex].

To evaluate this integral, the specific range of y should be provided. However, in the given information, no range is specified. Therefore, to determine the volume, the integral needs to be solved by substituting the limits of integration or obtaining further information regarding the range of y.

By evaluating the integral within the given range, the resulting value will provide the volume of the solid in cubic units.

Learn more about volume integral here:

https://brainly.com/question/30460574

#SPJ11

Tutorial Exercise Evaluate the integral by making the given substitution. [x²√x³ +10 dx, + 10 dx, u = x³ + 10 Step 1 We know that if u = f(x), then du = f '(x) dx. Therefore, if u = x³ + 10, the

Answers

To evaluate the integral ∫(x²√x³ + 10) dx using the given substitution u = x³ + 10, we can use the method of substitution. By applying the substitution, we can rewrite the integral in terms of u and then solve it.

To evaluate the integral using the substitution u = x³ + 10, we need to find the corresponding differential du. Taking the derivative of u with respect to x, we have du = (3x²)dx.

Substituting u = x³ + 10 and du = (3x²)dx into the integral, we get:

∫(x²√x³ + 10) dx = ∫(x² * x^(3/2)) dx = ∫(x^(7/2)) dx

Now, using the substitution, we rewrite the integral in terms of u:

∫(x^(7/2)) dx = ∫((u - 10)^(7/2)) * (1/3) du

Simplifying further, we have:

(1/3) * ∫((u - 10)^(7/2)) du

Now, we can integrate the expression with respect to u, using the power rule for integration:

(1/3) * (2/9) * (u - 10)^(9/2) + C

Finally, substituting back u = x³ + 10, we obtain the solution to the integral:

(2/27) * (x³ + 10 - 10)^(9/2) + C = (2/27) * x^(9/2) + C

Therefore, the value of the integral ∫(x²√x³ + 10) dx, with the given substitution, is (2/27) * x^(9/2) + C, where C is the constant of integration.

Learn more about integral here:

https://brainly.com/question/31059545

#SPJ11

The complete question is:

Tutorial Exercise Evaluate the integral by making the given substitution. [x²√x³ +10 dx, + 10 dx, u = x³ + 10 Step 1 We know that if u = f(x), then du = f '(x) dx. Therefore, if u = x³ + 10, then du = _____ dx.








(1 point) Rework problem 1 from section 2.4 of your text. Assume that you select 2 coins at random from 7 coins: 3 dimes and 4 quarters What is the probability that all of the coins selected are dimes

Answers

The probability of selecting all dimes when randomly choosing 2 coins from a set of 7 coins (3 dimes and 4 quarters) is 3/21, or approximately 0.1429.

To calculate the probability, we need to determine the number of favorable outcomes (selecting all dimes) and the total number of possible outcomes (selecting any 2 coins).

The number of favorable outcomes can be found by selecting 2 dimes from the 3 available dimes, which can be done in C(3,2) = 3 ways.

The total number of possible outcomes can be calculated by selecting any 2 coins from the 7 available coins, which can be done in C(7,2) = 21 ways.

Therefore, the probability of selecting all dimes is given by the ratio of favorable outcomes to total outcomes, which is 3/21.

Simplifying, we find that the probability is approximately 0.1429, or 14.29%.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

Find the area bounded by the function f(x) = 0.273 -0.82? + 17, the z-axis, and the lines = 2 and 2 = 8. Round to 2 decimal places, if necessary А TIP Enter your answer as an integer or decimal number. Examples: 3, 4, 5.5172 Enter DNE for Does Not Exist, oo for Infinity Get Help: Video eBook Points possible: 1 This is attempt 1 of 3. Lk

Answers

The given function is f(x) = -0.82x² + 17x + 0.273. The area bounded by the function f(x) = -0.82x² + 17x + 0.273, the z-axis, and the lines x = 2 and x = 8 is given by:∫[2, 8] [-0.82x² + 17x + 0.273] dx= [-0.82 * (x³/3)] + [17 * (x²/2)] + [0.273 * x] |[2, 8]= -0.82 * (8³/3) + 17 * (8²/2) + 0.273 * 8- [-0.82 * (2³/3) + 17 * (2²/2) + 0.273 * 2]= -175.4132 + 507.728 + 2.184 - [-3.4717 + 34 + 0.546]= 357.4712.

Thus, the area bounded by the function f(x) = -0.82x² + 17x + 0.273, the z-axis, and the lines x = 2 and x = 8 is 357.4712 square units (rounded to 2 decimal places).

Therefore, the area is 357.47 square units (rounded to 2 decimal places).

Answer: 357.47 square units.

Learn more about area here ;

https://brainly.com/question/1631786

#SPJ11

3. [10pts] Compute the following with the specified technique of differentiation. a. Compute the derivative of y = xcos(x) using logarithmic differentiation. [5pts] b. Find y' for the function x sin(y

Answers

The first problem asks for the derivative of y = xcos(x) using logarithmic differentiation. The second problem involves finding y' for the function x sin(y) using implicit differentiation.

a. To find the derivative of y = xcos(x) using logarithmic differentiation, we take the natural logarithm of both sides:

ln(y) = ln(xcos(x))

Next, we apply the logarithmic differentiation technique by differentiating implicitly with respect to x:

1/y * dy/dx = (1/x) + (d/dx)(cos(x))

To find dy/dx, we multiply both sides by y:

dy/dx = y * [(1/x) + (d/dx)(cos(x))]

Substituting y = xcos(x) into the equation, we have:

dy/dx = xcos(x) * [(1/x) + (d/dx)(cos(x))]

Simplifying further, we obtain:

dy/dx = cos(x) + x * (-sin(x)) = cos(x) - xsin(x)

Therefore, the derivative of y = xcos(x) using logarithmic differentiation is dy/dx = cos(x) - xsin(x).

b. To find y' for the function x sin(y) using implicit differentiation, we differentiate both sides of the equation with respect to x:

d/dx (x sin(y)) = d/dx (0)

Applying the product rule on the left-hand side, we get:

sin(y) + x * (d/dx)(sin(y)) = 0

Next, we need to find (d/dx)(sin(y)). Since y is a function of x, we differentiate sin(y) using the chain rule:

(d/dx)(sin(y)) = cos(y) * (d/dx)(y)

Simplifying the equation, we have:

sin(y) + xcos(y) * (d/dx)(y) = 0

To isolate (d/dx)(y), we divide both sides by xcos(y):

(d/dx)(y) = -sin(y) / (xcos(y))

Therefore, y' for the function x sin(y) is given by y' = -sin(y) / (xcos(y)).

Learn more about differentiation here:

https://brainly.com/question/24062595

#SPJ11

The complete question is:

3. [10pts] Compute the following with the specified technique of differentiation. a. Compute the derivative of y = xcos(x) using logarithmic differentiation. [5pts] b. Find y' for the function xsin(y) + [tex]e^x[/tex] = ycos(x) + [tex]e^y[/tex]

i am thinking of a number my number is a multiple of 6 what three numbers must my number be a multiple of

Answers

Answer:

Your number must be a multiple of 1, 2, and 3.

Step-by-step explanation:

To determine three numbers that your number must be a multiple of, given that it is a multiple of 6, we need to identify factors that are common to 6.

The factors of 6 are 1, 2, 3, and 6.

Therefore, your number must be a multiple of at least three of these factors.

For example, your number could be a multiple of 6, 2, and 3, or it could be a multiple of 6, 3, and 1.

There are several combinations of three numbers that your number could be a multiple of, as long as they include 6 as a factor.

Suppose f contains a local extremum at c, but is NOT differentiable at c. Which of the following is true? A f'(c) = 0 B. f'(c) < 0 c. f' (c) > 0 D. f'(c) does not exist.

Answers

If a function f contains a local extremum at point c but is not differentiable at c, the correct statement is that the derivative [tex]f'(c)[/tex] does not exist.

When a function has a local extremum at point c, it means that the function reaches a maximum or minimum value at that point within a certain interval. Typically, at these local extremum points, the derivative of the function is zero. However, this assumption is based on the function being differentiable at that point.

If a function is not differentiable at point c, it implies that the function does not have a well-defined derivative at that specific point. This can occur due to various reasons, such as sharp corners, vertical tangents, or discontinuities in the function. In such cases, the derivative cannot be determined.

Therefore, if f contains a local extremum at c but is not differentiable at c, the correct statement is that the derivative [tex]f'(c)[/tex] does not exist. This aligns with option D in the given choices. It is important to note that while [tex]f'(c)[/tex] is typically zero at a local extremum for differentiable functions, this does not hold true when the function is not differentiable at that point.

Learn more about local extremum here:

https://brainly.com/question/31343270

#SPJ11


I WILL GIVE GOOD RATE FOR GOOD ANSWER
Question 1 Linear Equations. . Solve the following DE using separable variable method. (1) (x – 4) y4dx – 23 (y - 3) dy = 0. (ii) e-y (1+ dy dx = 1, y(0) = 1. =

Answers

The solution to the given differential equation with the initial condition y(0) = 1.

Let's solve each differential equation using the separable variable method:

(i) (x – 4) y⁴ dx – 23 (y - 3) dy = 0

To solve this equation, we'll separate the variables by moving all the terms involving x to one side and all the terms involving y to the other side:

(x – 4) y⁴ dx = 23 (y - 3) dy

Divide both sides by (y - 3) y⁴ to separate the variables:

(x – 4) dx = 23 dy / (y - 3) y⁴

Now, we can integrate both sides:

∫(x – 4) dx = ∫23 dy / (y - 3) y⁴

Integrating the left side gives:

(x²/2 - 4x) = ∫23 dy / (y - 3) y⁴

To integrate the right side, we can use the substitution u = y - 3. Then, du = dy.

(x²/2 - 4x) = ∫23 du / u⁴

Now, integrating the right side gives:

(x²/2 - 4x) = -23 / 3u³ + C

Substituting back u = y - 3:

(x²/2 - 4x) = -23 / (3(y - 3)³) + C

This is the general solution to the given differential equation.

(ii) e^(-y) (1+ dy/dx) = 1, y(0) = 1

To solve this equation, we'll separate the variables:

e^(-y) (1+ dy/dx) = 1

Divide both sides by (1 + dy/dx) to separate the variables:

e^(-y) dy/dx = 1 / (1 + dy/dx)

Now, let's multiply both sides by dx and e^y:

e^y dy = dx / (1 + dy/dx)

Integrating both sides:

∫e^y dy = ∫dx / (1 + dy/dx)

Integrating the left side of equation gives:

e^y = x + C

To find the constant C, we'll use the initial condition y(0) = 1:

e¹ = 0 + C

C = e

Therefore, the particular solution is:

e^y = x + e

Solving for y:

y = ln(x + e)

Therefore, the solution to the given differential equation with the initial condition y(0) = 1.

To know more about equation check the below link:

https://brainly.com/question/28099315

#SPJ4

Find the equation of the sphere with center (4,−6,2)and radius
5. Describe it's intersection with the xy-plane.

Answers

The equation of the sphere with center (4, -6, 2) and radius 5 is[tex](x - 4)^2 + (y + 6)^2 + (z - 2)^2 = 25.[/tex]

To derive this equation, we use the formula for a sphere centered at (h, k, l) with radius r, which is given by

[tex](x - h)^2 + (y - k)^2 + (z - l)^2 = r^2.[/tex]

Substituting the given values, we have[tex](x - 4)^2 + (y + 6)^2 + (z - 2)^2 = 5^2,[/tex]

which simplifies to [tex](x - 4)^2 + (y + 6)^2 + (z - 2)^2 = 25.[/tex]

To describe the intersection of the sphere with the xy-plane, we can set z = 0 in the equation of the sphere and solve for x and y.

Substituting z = 0, we have[tex](x - 4)^2 + (y + 6)^2 + (0 - 2)^2 = 25[/tex], which simplifies to [tex](x - 4)^2 + (y + 6)^2 + 4 = 25[/tex].

Rearranging the equation, we get [tex](x - 4)^2 + (y + 6)^2 = 21[/tex].

This equation represents a circle in the xy-plane with center (4, -6) and radius √21. Therefore, the intersection of the sphere with the xy-plane is a circle centered at (4, -6) with a radius of √21.

Learn more about xy-plane here:

https://brainly.com/question/14408207

#SPJ11

Sketch the function (x) - 1 I+2 indicating any extrema, points of inflection, and vertical asymptotes. 8 7 5 5 3 6 3

Answers

To sketch the function f(x) = (x^2 - 1)/(x + 2), we need to determine the extrema, points of inflection, and vertical asymptotes.

First, let's find the vertical asymptote(s) by identifying any values of x that make the denominator of the function equal to zero. In this case, the denominator is x + 2, so we set it equal to zero and solve for x:

x + 2 = 0

x = -2

Therefore, there is a vertical asymptote at x = -2.

Next, let's find any extrema by locating the critical points. To do this, we find the derivative of the function and set it equal to zero:

f(x) = (x^2 - 1)/(x + 2)

f'(x) = [(2x)(x + 2) - (x^2 - 1)]/(x + 2)^2

     = (2x^2 + 4x - x^2 + 1)/(x + 2)^2

     = (x^2 + 4x + 1)/(x + 2)^2

Setting f'(x) = 0 and solving for x:

x^2 + 4x + 1 = 0

Using the quadratic formula, we find:

x = (-4 ± √(4^2 - 4(1)(1)))/(2(1))

x = (-4 ± √(16 - 4))/(2)

x = (-4 ± √12)/(2)

x = (-4 ± 2√3)/(2)

x = -2 ± √3

Therefore, we have two critical points: x = -2 + √3 and x = -2 - √3.

To determine the nature of these critical points, we can examine the second derivative of the function:

f''(x) = [2(x + 2)^2 - (x^2 + 4x + 1)(2)]/(x + 2)^4

      = [2(x^2 + 4x + 4) - 2x^2 - 8x - 2]/(x + 2)^4

      = [2x^2 + 8x + 8 - 2x^2 - 8x - 2]/(x + 2)^4

      = (6)/(x + 2)^4

Since the second derivative is always positive (6 is positive), we can conclude that the critical points are local minima.

Therefore, the function has a local minimum at x = -2 + √3 and another local minimum at x = -2 - √3.

Now, we can summarize the information and sketch the function:

- Vertical asymptote: x = -2

- Local minima: x = -2 + √3 and x = -2 - √3

to know more about function visit:

brainly.com/question/30721594

#SPJ11

Find the extremum of f(x,y) subject to the given constraint, and state whether it is a maximum or a minimum. f(x,y)= 3x² + 4y? - 4xy; x+y=11 ++ There is a value of located at (x, y) = (Simplify your answer)

Answers

The extremum of the function f(x, y) = 3x² + 4y - 4xy, subject to the constraint x + y = 11, can be found using the method of Lagrange multipliers. The extremum located at (22/3, 17/3) is a minimum.

By setting up the Lagrangian equation L = f(x, y) + λ(x + y - 11), where λ is the Lagrange multiplier, we can solve for the critical points. Taking partial derivatives with respect to x, y, and λ and setting them equal to zero, we can solve the resulting system of equations to find the extremum.

The solution yields a critical point located at (x, y) = (22/3, 17/3). To determine whether it is a maximum or a minimum, we can use the second partial derivative test. By calculating the second partial derivatives of f(x, y) with respect to x and y and evaluating them at the critical point, we can examine the sign of the determinant of the Hessian matrix. If the determinant is positive, the critical point is a minimum. If it is negative, the critical point is a maximum.

In this case, the second partial derivatives of f(x, y) are positive, and the determinant of the Hessian matrix is also positive at the critical point. Therefore, we can conclude that the extremum located at (22/3, 17/3) is a minimum.

Learn more about matrix here:

https://brainly.com/question/28180105

#SPJ11

Convert the polar coordinate (5,11π6)(5,11π6) to Cartesian
coordinates.
Enter exact values.
Convert the polar coordinate 5, (5, 1967) to Cartesian coordinates. Enter exact values. X = y = =

Answers

The  polar coordinate 5, (5, 1967) to gets converted Cartesian coordinates:

x = 5 cos(11π/6) = 5(-√3/2) = -5√3/2

y = 5 sin(11π/6) = 5(-1/2) = -5/2

To convert a polar coordinate to Cartesian coordinates, we use the formulas:

x = r cos(theta)

y = r sin(theta)

where r is the radius and theta is the angle in radians.

For the polar coordinate (5, 11π/6), we have:

r = 5

theta = 11π/6

Plugging these values into the formulas, we get:

x = 5 cos(11π/6) = 5(-√3/2) = -5√3/2

y = 5 sin(11π/6) = 5(-1/2) = -5/2

Therefore, the Cartesian coordinates are (-5√3/2, -5/2).

For the polar coordinate (5, 1967), we have:

r = 5

theta = 1967

Note that the angle is not in radians, so we need to convert it first. To do this, we multiply by π/180, since 1 degree = π/180 radians:

theta = 1967(π/180) = 34.3π

Plugging these values into the formulas, we get:

x = 5 cos(34.3π) ≈ 5(0.987) ≈ 4.935

y = 5 sin(34.3π) ≈ 5(-0.160) ≈ -0.802

Therefore, the Cartesian coordinates are (4.935, -0.802).

to know more about polar coordinate, please visit;

https://brainly.com/question/31904915

#SPJ11








Read the section 2.4 "The Derivative" and answer the following questions. 1. What is the limit-definition of the derivative of a function? 2. How is the derivative related to the slope of the tangent

Answers

The limit-definition of the derivative of a function is the mathematical expression that defines the derivative as the limit of the average rate of change of the function as the interval over which the rate of change is measured approaches zero.

Mathematically, the derivative of a function f(x) at a point x is given by the limit:

f'(x) = lim┬(h→0)⁡〖(f(x+h) - f(x))/h〗

Here, h represents the change in the x-coordinate, and as it approaches zero, the expression (f(x+h) - f(x))/h represents the average rate of change over a small interval. Taking the limit as h tends to zero gives us the instantaneous rate of change or the slope of the tangent line to the graph of the function at the point x.

The derivative of a function is intimately related to the slope of the tangent line to the graph of the function at a particular point. The derivative provides us with the slope of the tangent line at any given point on the function's graph. The value of the derivative at a specific point represents the rate at which the function is changing at that point. If the derivative is positive, it indicates that the function is increasing at that point, and the tangent line has a positive slope. Conversely, if the derivative is negative, it signifies that the function is decreasing, and the tangent line has a negative slope.

Moreover, the derivative also helps in determining whether a function has a maximum or minimum value at a certain point. If the derivative changes sign from positive to negative, it suggests that the function has a local maximum at that point. On the other hand, if the derivative changes sign from negative to positive, it implies that the function has a local minimum at that point. The derivative plays a fundamental role in calculus as it allows us to analyze the behavior of functions, find critical points, optimize functions, and understand the rate of change of quantities in various scientific and mathematical contexts.

Learn more about slope of the tangent here: brainly.com/question/32393818

#SPJ11




Find the general solution to the differential equation modeling how a person learns: dy 100-y. dt Then find the particular solutions with the following initial conditions: y(0) = 5:y=1 y(0) = 135: y=

Answers

For differential equations the particular solutions with the initial conditions,

For y(0) = 5: y = 100 - [tex]e^{(-C1)}[/tex]

For y(0) = 135: y = 100 + [tex]e^{(-C1)}[/tex]

The differential equation dy/dt = 100 - y represents the person's learning process. To solve it, we can separate variables and integrate:

∫ dy / (100 - y) = ∫ dt

Applying the integral, we get:

-ln|100 - y| = t + C1

Simplifying further, we have:

ln|100 - y| = -t - C1

Taking the exponential of both sides:

|100 - y| = [tex]e^{(-t - C1)}[/tex]

Considering the absolute value, we get two cases:

100 - y = [tex]e^{(-t - C1)}[/tex]

-(100 - y) = [tex]e^{(-t - C1)}[/tex]

Solving each case separately:

y = 100 - [tex]e^{(-t - C1)}[/tex]

y = 100 + [tex]e^{(-t - C1)}[/tex]

Now, we can find the particular solutions using the given initial conditions:

For y(0) = 5, substituting t = 0:

y = 100 - [tex]e^{(-0 - C1)}[/tex]

y = 100 - [tex]e^{(-C1)}[/tex]

For y(0) = 135, substituting t = 0:

y = 100 + [tex]e^{(-0 - C1)}[/tex]

y = 100 + [tex]e^{(-C1)}[/tex]

Thus, the particular solutions are:

For y(0) = 5: y = 100 - [tex]e^{(-C1)}[/tex]

For y(0) = 135: y = 100 + [tex]e^{(-C1)}[/tex]

Learn more about the differential equation at

https://brainly.com/question/25731911

#SPJ4

The question is -

Find the general solution to the differential equation modeling how a person learns: dy/dt = 100 - y

Then find the particular solutions with the following initial conditions:

y(0) = 5:y = ______

y(0) = 135:y = ______

Show that the mutation of a knot is always another knot, rather than a link.

Answers

A knot is defined as a closed curve in three dimensions that does not intersect itself. Knots can be characterized by their crossing number and other algebraic invariants.

Mutations of knots are changes to a knot that alter its topology but preserve its essential properties. Mutations of knots always produce another knot, rather than a link. Mutations of knots are simple operations that can be performed on a knot. This operation changes the way the knot crosses itself, but it does not alter its essential properties. Mutations are related to algebraic invariants of the knot, such as the Jones polynomial and the Alexander polynomial.

To learn more about dimensions click here https://brainly.com/question/31209488

#SPJ11

(This hint gives away part of the problem, but that's OK, we're all friends here in WebWork. If for some reason you happen to need to enter an inverse trigonometric function, it's best to use the "arc" format: such as, the inverse sine of x² can be entered as "arcsin(x^3)".) 2x 2x Find / dx and evaluate 1.⁰ dx 7+7x¹ 7+7x¹ The ideal substitution in either case is u (Hint: Can you factor out any constants before deciding on a substitution?) The substitution changes the integrand in both integrals to some function of u, say G(u); factor out all constants possible, and give the updated version of the indefinite integral: с c/Gu du G(u) du = Having found the indefinite integral and returned to the original variable, the final result is: 2x dx = 7+7x4 For the definite integral, the substitution provides new limits of integration as follows: The lower limit x = 0 becomes u The upper limit x = 3 becomes u The final value of the definite integral is: $3 2x 7+7x¹ dx = (Data Entry: Be sure to use capital +C as your arbitrary constant where needed.)

Answers

The final result fοr the definite integral is 6.

What is definite integral?

The definite integral οf any functiοn can be expressed either as the limit οf a sum οr if there exists an antiderivative F fοr the interval [a, b], then the definite integral οf the functiοn is the difference οf the values at pοints a and b. Let us discuss definite integrals as a limit οf a sum. Cοnsider a cοntinuοus functiοn f in x defined in the clοsed interval [a, b].

Tο evaluate the given integrals, let's fοllοw the steps suggested:

Find d(u)/dx and evaluate ∫(2x)/(7+7x) dx.

Given:

The ideal substitutiοn is u.

The ideal substitutiοn is u = 7 + 7x.

Tο find du/dx, we differentiate u with respect tο x:

du/dx = d(7 + 7x)/dx = 7

Tο find dx, we can sοlve fοr x in terms οf u:

u = 7 + 7x

7x = u - 7

x = (u - 7)/7

Nοw we can express the integral in terms οf u:

∫(2x)/(7+7x) dx = ∫(2((u-7)/7))/(7+7((u-7)/7)) du

= ∫((2(u-7))/(7(u-7))) du

= ∫(2/7) du

= (2/7)u + C

= 2u/7 + C

Fοr the definite integral, the substitutiοn prοvides new limits οf integratiοn.

Given:

The lοwer limit x = 0 becοmes u = 7 + 7(0) = 7.

The upper limit x = 3 becοmes u = 7 + 7(3) = 28.

Nοw we can evaluate the definite integral using the new limits:

∫[0, 3] (2x)/(7+7x) dx = [(2u/7)] [0, 3]

= (2(28)/7) - (2(7)/7)

= 8 - 2

= 6

Therefοre, the final result fοr the definite integral is 6.

Learn more about definite integral

https://brainly.com/question/32465992

#SPJ4

Given s 2x2-x+3 -/P(x) dx +5 2x2 – 2x +10x Determine P(x) - . X+3 +1 X + 1 A 1 B.3 f CO D. 2

Answers

To determine the value of P(x) based on the given expression, we need to equate the integrand the expression and solve for P(x). By comparing the coefficients of the terms on both sides of the equation, we find that P(x) = x + 3.

Let's rewrite the given expression as an integral:

∫(2x^2 - x + 3) / P(x) dx + 5(2x^2 - 2x + 10x).

To find P(x), we compare the terms on both sides of the equation.

On the left side, we have ∫(2x^2 - x + 3) / P(x) dx + 5(2x^2 - 2x + 10x).

On the right side, we have x + 3.

By comparing the coefficients of the corresponding terms, we can equate them and solve for P(x).

For the x^2 term, we have 2x^2 = 5(2x^2), which implies 2x^2 = 10x^2. This equation is true for all x, so it does not provide any information about P(x).

For the x term, we have -x = -2x + 10x, which implies -x = 8x. Solving this equation gives x = 0, but this is not sufficient to determine P(x).

Finally, for the constant term, we have 3 = 5(-2) + 5(10), which simplifies to 3 = 50. Since this equation is not true, there is no solution for the constant term, and it does not provide any information about P(x).

Combining the information we obtained, we can conclude that the only term that provides meaningful information is the x term. From this, we determine that P(x) = x + 3.

Therefore, the value of P(x) is x + 3, which corresponds to option A.

To learn more about coefficients  click here :

brainly.com/question/1594145

#SPJ11

For a population with proportion p=0.512 of an given outcome, the sampling distribution of the statistic p_hat is a. narrower for sample sizes of 400 than for sample sizes of 40 b. skewed for sample sizes of 400 but not for sample sizes of 40 c. narrower for sample sizes of 40 than for sample sizes of 400 d. skewed for sample sizes of 40 but not for sample sizes of 400

Answers

Sampling distribution of the statistic p_hat is expected to be narrower for larger sample sizes, which means that option (c) is incorrect.

This is because larger sample sizes tend to provide more precise estimates of the population parameter, and therefore the distribution of p_hat should have less variability.
Regarding the skewness of the sampling distribution, it is important to note that the shape of the distribution depends on the sample size relative to the population size and the proportion of the outcome in the population.

When the sample size is small (e.g. n=40), the sampling distribution of p_hat tends to be skewed, especially if p is far from 0.5.

This is because the distribution is binomial and has a finite number of possible outcomes, which can result in a non-normal distribution.

On the other hand, when the sample size is large (e.g. n=400), the sampling distribution of p_hat tends to be approximately normal, even if p is far from 0.5.

This is due to the central limit theorem, which states that the distribution of sample means (or proportions) approaches normality as the sample size increases, regardless of the shape of the population distribution.

Therefore, option (b) is incorrect, and the correct answer is (d) - the sampling distribution of p_hat is skewed for sample sizes of 40 but not for sample sizes of 400.

Know more about Sampling distribution here:

https://brainly.com/question/29368683

#SPJ11

Suppose that lim p(x) = 2, lim f(x)=0, and lim s(x) = -9. Find the limits in parts (a) through (C) below. X-+-4 x-+-4 X-+-4 + a. lim (p(x) +r(x) + s(x)) = X-4 (Simplify your answer.)

Answers

The limit of the sum of three functions, p(x), r(x), and s(x), as x approaches -4 is -13.

The limit of the sum of three functions, p(x), r(x), and s(x), can be found by taking the sum of their individual limits. Given that lim p(x) = 2, lim r(x) = 0, and lim s(x) = -9, we can substitute these values into the expression and simplify to find the limit.

The limit of (p(x) + r(x) + s(x)) as x approaches -4 is equal to (-4 + 0 - 9) = -13. This means that as x approaches -4, the sum of the three functions approaches -13.

To explain further, we use the properties of limits. The limit of a sum is equal to the sum of the limits of the individual functions.

Thus, we can write the limit as lim p(x) + lim r(x) + lim s(x).

By substituting the given limits, we get 2 + 0 + (-9) = -7.

However, this is not the final answer because we need to evaluate the limit as x approaches -4.

Plugging in -4 for x, we obtain (-4 + 0 - 9) = -13. Therefore, the limit of (p(x) + r(x) + s(x)) as x approaches -4 is -13.

Learn more about limit of sum of functions:

https://brainly.com/question/30353089

#SPJ11

Find the intervals on which the function is continuous. Is the function given by f(x) = x + 2 x2-9x+18 Yes, f(x) is continuous at each point on [-3, 3] O No, since f(x) is not continuous at x = 3 cont

Answers

To determine the intervals on which the function f(x) = x + 2x^2 - 9x + 18 is continuous, we need to examine its properties.

The given function f(x) is a polynomial function, and polynomial functions are continuous for all real numbers. Therefore, f(x) is continuous for every value of x in the domain of the function, which is the set of all real numbers (-∞, +∞).

Hence, the function f(x) = x + 2x^2 - 9x + 18 is continuous for all real numbers, including x = 3.

Therefore, the correct statement is:

Yes, f(x) is continuous at each point on the interval [-3, 3].

Learn more about polynomial function here:

https://brainly.com/question/29780212

#SPJ11

please answer
The depth of water in a tank oscillates sinusoidally once every 6 hours. If the smallest depth is 7.1 feet and the largest depth is 10.9 feet, find a possible formula for the depth in terms of time t

Answers

A possible formula for the depth of water in terms of time (t) can be expressed as: d(t) = A * sin(ωt + φ) + h where: d(t) represents the depth of water at time t.

A is the amplitude of the oscillation, given by half the difference between the largest and smallest depths, A = (10.9 - 7.1) / 2 = 1.9 feet.

ω is the angular frequency, calculated as ω = 2π / T, where T is the period of oscillation. In this case, the period is 6 hours, so ω = 2π / 6 = π / 3.

φ is the phase shift, which determines the starting point of the oscillation. Since the problem does not provide any specific information about the initial conditions, we assume φ = 0.

h represents the average depth of the water. It is calculated as the average of the smallest and largest depths, h = (7.1 + 10.9) / 2 = 9 feet.

Therefore, a possible formula for the depth of water in the tank is d(t) = 1.9 * sin(π/3 * t) + 9.

Learn more about depth of water tank here: brainly.in/question/5437894
#SPJ11

in phoneme-grapheme mapping, students first segment and mark boxes for the phonemes. then, they map the graphemes. if students were mapping the graphemes in the word flight, how many boxes (phonemes) would they need?

Answers

When mapping the graphemes in the word "flight," students would need five boxes to represent the individual sounds or phonemes: /f/, /l/, /ai/ (represented by "igh"), /t/, and a shared box for the final sound /t/.

In the word "flight," students would need five boxes (phonemes) to map the graphemes.

Phoneme-grapheme mapping is a process used in phonics instruction, where students break down words into individual sounds (phonemes) and then identify the corresponding letters or letter combinations (graphemes) that represent those sounds. It helps students develop phonemic awareness and letter-sound correspondence.

Let's analyze the word "flight" in terms of its individual sounds or phonemes:

/f/ - This is the initial sound in the word and can be represented by the grapheme "f."

/l/ - This is the second sound in the word and can be represented by the grapheme "l."

/ai/ - This is a dipht sound made up of the vowel sounds /a/ and /i/. It can be represented by the grapheme "igh."

/t/ - This is the fourth sound in the word and can be represented by the grapheme "t."

The final sound in the word is /t/. However, in terms of mapping graphemes, the final sound does not require a separate box because the "t" grapheme used to represent it is already accounted for in the previous box.

Therefore, when mapping the graphemes in the word "flight," students would need five boxes to represent the individual sounds or phonemes: /f/, /l/, /ai/ (represented by "igh"), /t/, and a shared box for the final sound /t/.

By segmenting words into phonemes and mapping graphemes, students can strengthen their understanding of the sound-symbol correspondence in written language and develop decoding skills essential for reading and spelling.

for more such question on graphemes visit

https://brainly.com/question/28855515

#SPJ8

A gardner is mowing a 20 x 40

Answers

The length of the path is 20√5 yd.

Given that,

A path is made in 20 yd × 40 yd rectangular pasture using the diagonal pattern,

So, the length of the path = Diagonal of the rectangle having dimension  20 yd × 40 yd,

Since, the diagonal of a rectangle is,

d = √l² + w²

Where, l is the length of the rectangle and w is the width of the rectangle,

Here, l = 20 yd and w = 40 yd,

Thus, the diagonal of the rectangular pasture,

⇒ d = √l² + w²

⇒ d = √20² + 40²

⇒ d = √400 + 1600

⇒ d = √2000

⇒ d = 20√5 yd.

Hence, the length of the path is 20√5 yd.

Learn more about the rectangle visit:

https://brainly.com/question/2607596

#SPJ1

Complete question is.,

A gardener is mowing a 20 yd-by-40 yd rectangular pasture using a diagonal pattern. He mows from one of the pasture to the corner diagonally opposite. What is the length of this path with the mower ? Give your answer in simplified form .

The exponential function y(x) = Cea satisfies the conditions y(0) = 9 and y(1) = 1. (a) Find the constants C and a. NOTE: Enter the exact values, or round to three decimal places. C: = α= (b) Find y(

Answers

The constants for the exponential function y(x) = Cea are C = 9 and a ≈ -2.197. The expression for y(x) is y(x) = 9e(-2.197x).

To find the constants C and a for the exponential function y(x) = Cea, we can use the given conditions y(0) = 9 and y(1) = 1.

(a) Finding the constant C:

Given that y(0) = 9, we can substitute x = 0 into the exponential function:

y(0) = Cea = Ce^0 = C * 1 = C.

Since y(0) should equal 9, we have C = 9.

(b) Finding the constant a:

Given that y(1) = 1, we can substitute x = 1 into the exponential function:

y(1) = Cea = 9ea = 1.

To solve for a, we need to isolate it. Divide both sides of the equation by 9:

ea = 1/9.

Taking the natural logarithm (ln) of both sides:

ln(ea) = ln(1/9).

Using the property ln(e^x) = x, we can simplify the left side:

a = ln(1/9).

Now, we can find the value of a by evaluating ln(1/9). Rounding to three decimal places, we have:

a ≈ ln(1/9) ≈ -2.197.

Therefore, the constants for the exponential function are C = 9 and a ≈ -2.197.

(c) Finding y(x):

With the constants C and a determined, we can now express the exponential function y(x):

y(x) = Cea = 9e(-2.197x).

This is the exact expression for y(x) satisfying the conditions y(0) = 9 and y(1) = 1.

Learn more about exponential function at: brainly.com/question/29287497

#SPJ11

Use f(x)= In (1 + x) and the remainder term to estimate the absolute error in approximating the following quantity with the nth-order Taylor polynomial centered at 0. In (1.08), n = 3

Answers

The residual term of the third-order Taylor polynomial, centred at 0, can be used to calculate the absolute error in the approximation of In(1.08).

The following formula is the nth-order Taylor polynomial of a function f(x) centred at a:

Pn(x) is equal to f(a) + f'(a)(x - a) + (1/2!)f''(a)(x - a)2 +... + (1/n!)fn(a)(x - a)n.

The difference between the function's real value and the value generated from the nth-order Taylor polynomial is known as the remainder term, indicated by the symbol Rn(x):

Rn(x) equals f(x) - Pn(x).

In our example, a = 0, n = 3, and f(x) = In(1 + x). The third-order Taylor polynomial with a 0 central value is thus:

learn more about approximation here:

https://brainly.com/question/11276070

#SPJ11

Other Questions
comparative researchsurveyexperimentethnographya researcher asks individuals in rural villages in northern africa their opinions about (randomly) only one of the two following conditions: (1) whether a long-term drought would cause them to leave a rural area for an urban area, or (2) whether conflict among village leadership would cause them to leave a rural area for an urban space to opena researcher conducts a series of interviews with individuals about their motivation for moving to cities from rural areas in space to opena researcher examines the different reasons to move to urban areas in africa vs. in south space to opena researcher distributes paper questionnaires to individuals in rural areas in south america asking their reasons for staying in rural areas and their experiences with friends and neighbors who have moved to cities. a bod test was conducted using multiple bottles containing 30 ml of wastewater and 270 ml of dilution water and a nitrification inhibitor so only carbonaceous bod utilization would occur in the test. the average initial do of the mixture was 9.0 mg/l. on day 5 the average do in the bottles tested measured 4 mg/l. after 30 days the average do in the bottles tested measured 2 mg/l and after 50 days the average do in the bottles tested again measured 2 mg/l. a nitrification inhibitor was added to the initial mixture, so only carbonaceous bod utilization was occurring in the test. a) what is the bod 5 of the wastewater? b) what is the ultimate carbonaceous bod? c) how much bod remains after 5 days? d) based on the data above, estimate the reaction rate constant k (1/day) HELP ME PLSS 50 POINT IN THE NEXT 5 MIN HELP METhe average high temperatures in degrees for a city are listed.58, 61, 71, 77, 91, 100, 105, 102, 95, 82, 66, 57If a value of 60 is added to the data, how does the median change? The median stays at 80. The median stays at 79.5. The median decreases to 77. The median decreases to 82. Find the radius of convergence, R, of the series.SIGMA (n=1 , [infinity]) ((xn) / (2n 1)Find the interval, I, of convergence of the series Simplify. x3 - 8x2 + 16x x - 4x 3 2 --- x3 - 8x2 + 16x x3 4x = X Which of the following would be the most age-appropriate recreation and leisure activity for a teenage girl with severe or multiple disabilities? A. Playing with dolls B. Reading a book C. Playing a video game D. Going for a walk why did the british politician nigel farage fight so hard to get great britian out of the european union? In no less than 750 words, describe the four elements of transformational leadership (Idealized Influence of Leaders, Inspirational Motivation and Ability to Inspire Confidence, Intellectual Stimulation and Creativity, Individualized Consideration of Group Members) and explain why they are important for organizational change. (1 point) Logarithms as anti-derivatives. -6 5 a { ) dar Hint: Use the natural log function and substitution. (1 point) Evaluate the integral using an appropriate substitution. | < f='/7-3d- = +C t is difficult in humans to obtain for numbers of people. therefore, a statistical tool called the is used to determine whether or not the available data indicates with confidence that two loci are linked. Which statements best describe displacement? Check all that apply.Displacement is measured along the path an object travels.Displacement is a measurement that includes direction.Displacement is the difference between a starting point and an ending point.Displacement is how far an object travels from starting point to ending point.O Displacement is measured as a straight line between a starting point and an ending point. which sentences should be removed or revised to eliminate logical fallacies and improve clarity? select three options.sentence 2 Corporations and organizations may not contribute directly to political campaigns.Please select the best answer from the choices providedF Unic Research and Find out two ways each in whichProgramming language and used Form& Scientific ApplicationABuisness8Application Samples are often used for new products when __________ will influence the diffusion of the product.A. relative advantageB. compatibilityC. observabilityD. complexityE. trialability Assuming ideal solution behavior, what is the boiling point of a solution of 9. 04 g of I2 in 75. 5 g of benzene, assuming the I2is nonvolatile? Suppose 1.65 1020 electrons move through a pocket calculator during a full days operation. How many Coulombs of charge moved through it? The demand function for a certain commodity is given by p = -1.5x^2 - 6r + 110, wherep is, the unit price in dollars and a is the quantity demanded per month.If the unit price is set at $20, show that ~ = 6 by solving for a, the number of units sold,but not by plugging in i = 6. What is the difference between Eastern Cults and Religious Cults? A radar wave is bounced off an airplane and returns to the radar receiver in 2.50 x 10^-5 s. how far (in km)