Methyl methacrylate has a mola mass of 100 g/mole. When a sample of methyl methacrylate weighing 3. 14 g was completely combusted ,the only products formed were 6. 91 g of CO2and 2. 26 of water. What is methyl methacrylate's molecular formula ?

Answers

Answer 1

The molecular formula of methyl methacrylate if its weighing 3.14 g was completely combusted and the only products formed were 6. 91 g of CO₂ and 2. 26 of water is C₅H₈O₂.

We have to determine the empirical formula of methyl methacrylate first and then multiply it by the integer n to determine the molecular formula. Empirical formula calculation:

CO₂ and H₂O are the combustion products of methyl methacrylate.

C₅H₈O₂ + (9n / 2)

O₂ → 5CO₂ + (n)H₂O

There are 5 C atoms and (8 + 2n), H atoms in the left and 5 C atoms, and n H atoms in the right.

5C = 5C, and 8 + 2n = nH.

n = 6

Molecular formula calculation is dividing the molecular weight by the empirical formula weight to determine the multiplication factor.

C₅HₙO₂ (empirical formula) has a weight of

(5 x 12.011) + (8 x 1.008) + (2 x 15.999) = 100.12 g/mol

The actual molecular weight of methyl methacrylate is 100 g/mol.

Therefore, the molecular formula is (C₅H₈O₂) x 1, which is C₅H₈O₂.

Learn more about molecular formula: https://brainly.com/question/29435366

#SPJ11


Related Questions

Write a balanced Al(s), Ba(s), Ag(s), and Na(s) for the synthesis reaction of Br2(g).

Answers

The synthesis reaction of Br2(g) with Al(s), Ba(s), Ag(s), and Na(s) are as follows:Br2(g) + 2 Al(s) → 2 AlBr3(s)3 Br2(g) + Ba(s) → BaBr6(s)2 Ag(s) + Br2(g) → 2 AgBr(s)2 Na(s) + Br2(g) → 2 NaBr(s)

Balanced equation for the synthesis reaction of Br2(g) with Al(s), Ba(s), Ag(s), and Na(s)Br2(g) + 2 Al(s) → 2 AlBr3(s) 3 Br2(g) + Ba(s) → BaBr6(s) 2 Ag(s) + Br2(g) → 2 AgBr(s) 2 Na(s) + Br2(g) → 2 NaBr(s)The synthesis reaction of Br2(g) can be carried out using different metals such as Al(s), Ba(s), Ag(s), and Na(s). The balanced chemical equation for the reaction will be based on the type of metal used. However, all of the reactions will produce a metal bromide salt.The first equation represents the reaction of Br2(g) with aluminum. This reaction results in the formation of aluminum tribromide salt. The balanced chemical equation for the reaction is as follows:Br2(g) + 2 Al(s) → 2 AlBr3(s)The second equation represents the reaction of Br2(g) with barium. This reaction results in the formation of barium hexabromide salt. The balanced chemical equation for the reaction is as follows:3 Br2(g) + Ba(s) → BaBr6(s)The third equation represents the reaction of Br2(g) with silver. This reaction results in the formation of silver bromide salt. The balanced chemical equation for the reaction is as follows:2 Ag(s) + Br2(g) → 2 AgBr(s)The fourth equation represents the reaction of Br2(g) with sodium. This reaction results in the formation of sodium bromide salt. The balanced chemical equation for the reaction is as follows:2 Na(s) + Br2(g) → 2 NaBr(s)In conclusion, the balanced chemical equations for

For more such questions on chemical equation

https://brainly.com/question/11904811

#SPJ8

Show that the conditions for the vapor-liquid equilibrium at constant N, T, and V are Gv = GL and Pv=PL

Answers

The pressure of the vapor (Pv) and liquid (PL) phases are zero at equilibrium.

To show that the conditions for vapor-liquid equilibrium at constant N (number of moles), T (temperature), and V (volume) are given by Gv = GL and Pv = PL, we can use the Gibbs free energy (G) as the thermodynamic potential.

At equilibrium, the chemical potential (μ) of the vapor (v) and liquid (L) phases are equal. The chemical potential is related to the Gibbs free energy by the equation:

μ = G / N

Since the total number of moles (N) is constant, we can write:

Gv = Nμv

GL = NμL

Now, let's consider the pressure (P) and volume (V) of the vapor and liquid phases. The pressure is related to the chemical potential by:

Pv = - (∂Gv / ∂V)T,N

PL = - (∂GL / ∂V)T,N

Since the volume (V) is constant, the partial derivatives (∂Gv / ∂V)T,N and (∂GL / ∂V)T,N are both zero. Therefore, we have:

Pv = 0

PL = 0

Combining the equations Gv = Nμv and GL = NμL, and Pv = PL = 0, we can conclude that at vapor-liquid equilibrium, Gv = GL and Pv = PL.

To learn more about Gibbs free energy click here https://brainly.com/question/29753420

#SPJ11

210
Pb decays by emitting a β −
particle. What nuclide is produced?

Answers

The decay of Pb by emitting a β− particle results in the production of Bi. β− decay is a process in which an atomic nucleus emits an electron (β− particle) and transforms into a different nucleus.

In the case of Pb, it undergoes β− decay to become Bi. The equation representing this decay process is:

[tex]\[^{210}\textrm{Pb} \rightarrow \,^{210}\textrm{Bi} + e^{-}\][/tex]

In this equation, the superscripts represent the mass numbers of the nuclides, while the subscripts represent their atomic numbers. Pb has a mass number of 210, and during the decay process, it emits a β− particle and transforms into Bi, which also has a mass number of 210. The emitted β− particle carries away excess energy and atomic charge to maintain the balance in the decay process.

Overall, when Pb undergoes β− decay, it transforms into Bi by emitting an electron (β− particle). This process helps stabilize the nucleus and leads to the formation of a new nuclide.

To learn more about atomic nucleus refer:

https://brainly.com/question/20159110

#SPJ11

what are the spectator ions in the acid-base neutralization reaction involving hcl(aq) and naoh(aq) reactants?

Answers

The option A is correct answer which is Na⁺ and Cl⁻ are the spectator ions in the acid-base neutralization reaction involving HCl(aq) and NaOH(aq) reactants.

What are spectator ions?

A spectator ion is an ion that can be found in a chemical equation as both a reactant and a product. Therefore, a spectator ion can be seen in the reaction between aqueous solutions of sodium carbonate and copper(II) sulphate without changing the equilibrium.

Suppose that,

HCl(aq) + NaOH(aq) ⇒ NaCl + H₂O

Na⁺ ion, Cl⁻ ion act as spectator ions because they are present on both sides of the chemical equation as ions as

H⁺ + OH⁻ ⇒ H₂O

H⁺, OH⁻ not remain same on both sides.

Hence, the option A is correct answer which is Na⁺ and Cl⁻ are the spectator ions in the acid-base neutralization reaction involving HCl(aq) and NaOH(aq) reactants.

To learn more about Acid-base neutralization from the given link.

https://brainly.com/question/29441732

#SPJ4

Complete question is,

What are the spectator ions in the acid-base neutralization reaction involving HCl(aq) and NaOH(aq) reactants?

(a). Na⁺ and Cl⁻

(b). Na⁺

(c). Na⁺ and OH⁻

(d). H⁺ and OH⁻

what happens when an electron is released in an electric field

Answers

When an electron is released in an electric field, it will experience a force due to the electric field. The direction of the force will depend on the direction of the electric field and the charge of the electron. If the electron is negatively charged, it will be attracted towards the positively charged end of the electric field and repelled by the negatively charged end.

The force experienced by the electron will cause it to move in the direction of the electric field. The speed and acceleration of the electron will also be affected by the strength of the electric field. If the electric field is strong enough, the electron may gain enough energy to ionize atoms or molecules in its path, leading to the creation of additional charged particles.

Learn more about electron here ;

https://brainly.com/question/12001116

#SPJ11

which of the following represents and incorrect pairing of the receptor with its ligand

Answers

An incorrect pairing of a receptor with its ligand can result in an altered or abnormal response within the cell, which can lead to various disorders and diseases.


A receptor is a specialized protein molecule that recognizes and binds to specific molecules called ligands. The binding of the ligand to the receptor initiates a signaling cascade within the cell, leading to a specific response. However, sometimes, due to errors in transcription or translation, the incorrect pairing of the receptor with its ligand can occur. This can result in an altered or abnormal response within the cell.

The correct pairing of a receptor with its ligand is crucial for the proper functioning of the cell and maintaining homeostasis in the body. Any incorrect pairing can lead to a variety of disorders and diseases.

Therefore, it is important to identify and rectify any incorrect pairings of receptors with their ligands. This can be done by using techniques such as genetic engineering, receptor binding assays, and other molecular biology techniques. These techniques can help to identify the correct pairing of receptors with their ligands and ensure that the proper response is initiated within the cell.

It is important to identify and rectify any incorrect pairings to ensure the proper functioning of the cell.

To know more about Receptor visit:

https://brainly.com/question/29343237

#SPJ11

Given that the following reaction occurs and goes to completion, which of the following statements is FALSE? Zn(s) + Cu(NO3)2(aq) Cu(s) + Zn(NO3)2(aq) A. Copper is oxidized. B. Each copper ion gains 2 electrons. C. Zinc is more active than copper. D. Zinc transfers electrons to copper.

Answers

The correct statement is C. Zinc is more active than copper, which is evident from the reaction where zinc displaces copper from its compound..

In the given reaction, zinc (Zn) is more active than copper (Cu) in the activity series. As a result, zinc undergoes oxidation and loses electrons, while copper undergoes reduction and gains electrons.

The half-reactions in the reaction are:

Oxidation: Zn(s) → Zn2+(aq) + 2e-

Reduction: Cu2+(aq) + 2e- → Cu(s)

From the half-reactions, we can see that zinc is oxidized (loses electrons) and copper is reduced (gains electrons). Each zinc atom loses 2 electrons to form Zn2+, and each copper ion gains 2 electrons to form Cu. Therefore, statement B is false.

Know more about Zinc here:

https://brainly.com/question/14346092

#SPJ11

A group of students studied how water can weather rocks. They soaked a small sample of sandstone in water. Then, they froze
the sample overnight. They warmed and resoaked the sample the next day. They continued this process each day for three
months.
Water
26 °C/
80 °F
Rock sample
0 °C/
32 °F
Rock sample
Water
Repeat for 3 months
What change to the rock sample would students observe at the end of the experiment?
O A. The rock dissolved because it repeatedly melted and
evaporated.
O B. The rock gained mass because new rock formed around
the edge.
26 °C /
80 °F
Rock sample
OC. The rock broke into smaller pieces because cracks formed
in the rock.
O D. The rock became a different rock type because its
chemical structure changed.

Answers

Answer:

B. The rock gained mass because new rock formed around

the edge.

26 °C /

80 °F

Rock sample

Answer:

Explanation:

B. The rock gained mass because new rock formed around the edge

26 °C

80 °F

A galvanic cell is powered by the following redox reaction:
3Cl2 (g) + 2MnO2 (s) + 8OH^(−) (aq) = 6Cl^(−) (aq) + 2MnO4^(−) (aq) + 4H2O (l)
Answer the following questions about this cell. If you need any electrochemical data, be sure you get it from the ALEKS Data tab.
Write a balanced equation for the half-reaction that takes place at the cathode.
Write a balanced equation for the half-reaction that takes place at the anode.
Calculate the cell voltage under standard conditions.

Answers

In the galvanic cell powered by the given redox reaction, the balanced equation for the half-reaction at the cathode is 2MnO4^-(aq) + 4H2O(l) + 3e^-(aq) -> 2MnO2(s) + 8OH^-(aq).

The balanced equation for the half-reaction at the anode is 6Cl^-(aq) -> 3Cl2(g) + 6e^-(aq).

The cell voltage under standard conditions can be calculated by finding the reduction potentials of the half-reactions and subtracting the anode potential from the cathode potential.

The half-reaction at the cathode can be determined by identifying the species that gains electrons and is reduced. In this case, MnO4^- is reduced to MnO2. The balanced equation for this half-reaction is 2MnO4^-(aq) + 4H2O(l) + 3e^-(aq) -> 2MnO2(s) + 8OH^-(aq).

The half-reaction at the anode involves the species that loses electrons and is oxidized. In this case, Cl^- is oxidized to Cl2. The balanced equation for this half-reaction is 6Cl^-(aq) -> 3Cl2(g) + 6e^-(aq).

To calculate the cell voltage under standard conditions, we need to find the reduction potentials of the half-reactions. The reduction potential of the cathode half-reaction is positive, while the reduction potential of the anode half-reaction is negative. By subtracting the anode potential from the cathode potential, we obtain the cell voltage.

Unfortunately, without specific electrochemical data from the ALEKS Data tab, I am unable to provide the exact calculation for the cell voltage. Please refer to the given electrochemical data to obtain the reduction potentials for MnO4^-/MnO2 and Cl^-/Cl2, and use them to calculate the cell voltage using the Nernst equation or standard reduction potentials.

learn more about galvanic cell Refer: https://brainly.com/question/29784751

#SPJ11

an ax ceramic compound has the rock salt crystal structure. if the radii of the a and x ions are 0.137 and 0.241 nm, respectively, and the respective atomic weights are 22.7 and 91.4 g/mol, what is the density (in g/cm3) of this material? (a) 0.438 g/cm3 (c) 1.75 g/cm3 (b) 0.571 g/cm3 (d) 3.50 g/cm3

Answers

The density of the AX ceramic compound is approximately 0.438 g/cm³. Thus, option a) is correct.

How to calculate the density of the AX ceramic compound?

To calculate the density of the AX ceramic compound, we need to determine the mass and volume of the unit cell.

Given:

Radius of A ion (rA) = 0.137 nm = 0.137 × 10⁻⁷ cm

Radius of X ion (rX) = 0.241 nm = 0.241 × 10⁻⁷ cm

Atomic weight of A (MA) = 22.7 g/mol

Atomic weight of X (MX) = 91.4 g/mol

The unit cell of the rock salt crystal structure consists of 4 formula units. The volume of the unit cell (V) can be calculated as follows:

V = (4/3) × π × rA³

The mass of the unit cell (M) can be calculated by summing the masses of the A and X ions:

M = (4 × MA) + (4 × MX)

Finally, the density (ρ) of the material can be calculated using the formula:

ρ = M / V

Let's calculate the values:

V = (4/3) × π × (0.137 × 10⁻⁷)³

M = (4 × 22.7) + (4 × 91.4)

ρ = M / V

Calculating the values:

V ≈ 3.146 × 10⁻²² cm³

M ≈ 494.8 g/mol

ρ ≈ 494.8 g/mol / 3.146 × 10⁻²² cm³

Converting the units:

ρ ≈ 0.438 g/cm³

Therefore, the density of the AX ceramic compound is approximately 0.438 g/cm³

Learn more about ceramic compound

https://brainly.com/question/31684151

#SPJ4

what is the pressure in a 19.0- l cylinder filled with 44.7 g of oxygen gas at a temperature of 311 k ? express your answer to three significant figures with the appropriate units.

Answers

The pressure in the cylinder can be calculated using the ideal gas law, which is PV = nRT. First, we need to calculate the number of moles of oxygen gas using its molar mass, which is 32.00 g/mol.

n = m/M = 44.7 g / 32.00 g/mol = 1.397 mol
Next, we can plug in the given values:
V = 19.0 L
T = 311 K
n = 1.397 mol
R = 0.08206 L·atm/mol·K
P = nRT/V = (1.397 mol) (0.08206 L·atm/mol·K) (311 K) / 19.0 L
P = 2.29 atm
Therefore, the pressure in the cylinder is 2.29 atm.
To find the pressure in the cylinder, we can use the ideal gas law: PV = nRT. We are given volume (V) = 19.0 L, mass (m) = 44.7 g, and temperature (T) = 311 K. First, convert mass to moles (n) using the molar mass of oxygen gas (O2) which is 32.00 g/mol: n = m / molar mass = 44.7 g / 32.00 g/mol = 1.397 mol. Now we can apply the ideal gas law using the universal gas constant (R) = 0.0821 L⋅atm/(K⋅mol):
P = nRT / V = (1.397 mol)(0.0821 L⋅atm/(K⋅mol))(311 K) / 19.0 L ≈ 2.392 atm.
So, the pressure in the cylinder is 2.39 atm (rounded to three significant figures with appropriate units).

To know more about cylinder visit:

https://brainly.com/question/10048360

#SPJ11

a 1.00-l flask contains nitrogen gas at 25°c and 1.00 atm pressure. what is the final pressure in the flask if an additional 2.00 g of n2 gas is added to the flask and the flask cooled to -55°c?

Answers

After adding 2.00 g of N₂ gas and cooling the flask to -55°C, the final pressure in the flask is approximately 1.91 atm.

To determine the final pressure in the flask after adding 2.00 g of N₂ gas and cooling the flask to -55°C, we can use the ideal gas law:

PV = nRT,

where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

Given:

Initial pressure (P₁) = 1.00 atm

Initial temperature (T₁) = 25°C = 25 + 273.15 = 298.15 K

Final temperature (T₂) = -55°C = -55 + 273.15 = 218.15 K

Additional N₂ gas added (m) = 2.00 g

Molar mass of N₂ (M) = 28.0134 g/mol

Volume (V) = 1.00 L

First, we calculate the number of moles of the initial gas using the ideal gas law:

n₁ = (P₁V) / (RT₁).

Next, we calculate the number of moles of the additional N₂ gas:

n₂ = m / M.

Then, we calculate the total number of moles in the flask after adding the N₂ gas = n₁ + n₂ = n

Using the ideal gas law, we can calculate the final pressure:

P₂ = (nRT₂) / V.

So,

n₁= [(1.00 atm * 1.00 L) / (0.0821 L·atm/(mol·K)(298.15 K)] ≈ 0.0404 mol

n₂ = 2.00 g / 28.0134 g/mol ≈ 0.0714 mol

n = 0.0404 mol + 0.0714 mol = 0.1118 mol

Hence,

P₂ = (0.1118 mol * 0.0821 L·atm/(mol·K) * 218.15 K) / 1.00 L ≈ 1.91 atm.

Learn more about the ideal gas equation here:

https://brainly.com/question/11544185

#SPJ4

a flask of an unknown gas with a pressure of 759 torr was attached to an open-end manometer. the mercury level was 2.4 cm higher at the open end than at the flask end. the atmospheric pressure when the gas pressure was measured was atm. report your answer to the hundredths place.

Answers

The atmospheric pressure when the gas pressure was measured is approximately 0.99 atm.

To determine the gas pressure inside the flask, we need to consider the pressure difference between the gas and the atmospheric pressure. The pressure difference can be determined by measuring the height difference of the mercury levels in the open-end manometer.

Pressure inside the flask (P_gas) = 759 torr

Height difference in the manometer (h) = 2.4 cm

The pressure difference between the gas and the atmospheric pressure can be calculated using the equation:

P_gas - P_atm = ρgh

Where:

P_atm is the atmospheric pressure

ρ is the density of mercury (13.6 g/cm³)

g is the acceleration due to gravity (9.8 m/s²)

h is the height difference in meters

First, we need to convert the height difference from centimeters to meters:

h = 2.4 cm = 0.024 m

Substituting the given values into the equation, we have:

759 torr - P_atm = (13.6 g/cm³ * 0.024 m * 9.8 m/s²)

Simplifying the equation, we can convert grams to kilograms and cancel out the units:

759 torr - P_atm = (0.3264 kg/m² * 9.8 m/s²)

To convert torr to atm, we divide by 760:

0.998 - P_atm = 0.3264 * 9.8 / 760

0.998 - P_atm = 0.0042

P_atm = 0.998 - 0.0042

P_atm = 0.9938 atm

Therefore, the atmospheric pressure when the gas pressure was measured is approximately 0.99 atm.

To know more about gas visit:

https://brainly.com/question/24719118

#SPJ11

A major source of volatile organic compounds (VOCs) is

Answers

A major source of volatile organic compounds (VOCs) is human activities and industrial processes. These compounds are carbon-containing chemicals that easily vaporize at room temperature and can have negative effects on human health and the environment. VOCs can be found in products like paints, solvents, adhesives, and cleaning agents.

They are also emitted by transportation vehicles, power plants, and factories that use fossil fuels. Indoor sources of VOCs include carpets, furniture, and building materials. These compounds can react with other pollutants in the atmosphere to form smog and ozone, which can be harmful to human respiratory systems. Therefore, it is important to reduce the use of products containing VOCs and promote the use of environmentally friendly alternatives.

To know more about Compounds visit:

https://brainly.com/question/704297

#SPJ11

A 2. 0 L container is charged with a mixture of 6. 0 moles of CO(g) and 6. 0 moles of H2O(g) and the following reaction takes place: CO(g) + H2O(g) <=> CO2(g) + H2(g) When equilibrium is reached the [CO2] = 2. 4 M. What is the value of Kc for the reaction?

Answers

The value of Kc for a 2.0 L container is charged with a mixture of 6.0 moles of CO(g) and 6.0 moles of H₂O(g) and the following reaction takes place: CO(g) + H₂O(g) <=> CO₂(g) + H₂(g) when equilibrium is reached the [CO₂] = 2. 4 M is 1.333.

To solve the problem, we use the equilibrium constant expression for the reaction; Kc = ([CO₂] [H₂])/([CO][H₂O]).

We need to find the concentration of H₂ in equilibrium. We know that 6 moles of CO and 6 moles of H₂O are reacted. Thus, we have (6 - [CO₂]) moles of CO and( 6 - [CO₂]) moles of H2O are left in the container at equilibrium.

So the molar concentration of CO at equilibrium,

[CO] = (6 - [CO₂])/2 L

= (6 - 2.4)/2

= 1.8 M

The molar concentration of H₂ at equilibrium,

[H₂] = (6 - [CO₂])/2 L

= (6 - 2.4)/2

= 1.8 M

Substituting the values of [CO₂], [H₂] and [CO] and [H₂O] (which is the same as [H₂]) in the expression of Kc, we get;

Kc = (2.4 x 1.8)/(1.8 x 1.8)

= 2.4/1.8

= 1.333

Therefore, the value of Kc for the reaction is 1.333.

Learn more about value of Kc: https://brainly.com/question/28613843

#SPJ11

a cookie made with a high proportion of eggs, sugar, and liquid, a low proportion of fat and a strong flour will be very

Answers

A cookie made with a high proportion of eggs, sugar, and liquid, a low proportion of fat and a strong flour will be very tender and soft.

The high amount of eggs and sugar provides moisture and tenderness to the cookie, while the low proportion of fat prevents it from becoming too greasy or heavy. The strong flour provides structure and helps the cookie hold its shape while baking. This type of cookie is often referred to as a "cake-like" cookie and is popular for its light and fluffy texture. It's important to note that the ratio of ingredients plays a critical role in determining the final texture and taste of the cookie.

To know more about fat visit:

https://brainly.com/question/8073542

#SPJ11

what volume of gas is generated when 58.0 l of oxygen gas reacts at stp according to the following balanced equation? ch3ch2oh (l) 3o2 (g) → 2co2 (g) 3h2o (l)

Answers

Approximately 31.1 L of [tex]CO_2[/tex] gas will be generated when 58.0 L of oxygen gas reacts according to the given balanced equation.

To determine the volume of gas generated when 58.0 L of oxygen gas reacts according to the given balanced equation, we need to consider the stoichiometry of the reaction.

From the balanced equation:[tex]CH_3CH_2OH (l) + 3O_2 (g) -- > 2CO_2 (g) + 3H_2O (l)[/tex]

We can see that for every 3 moles of [tex]O_2[/tex] consumed, 2 moles of [tex]CO_2[/tex] are produced. Therefore, we need to determine the number of moles of [tex]O_2[/tex] present in the initial 58.0 L volume.

Using the ideal gas law, PV = nRT, we can rearrange the equation to solve for moles:

n = PV / RT

At STP (Standard Temperature and Pressure), the values are:

P = 1 atm

V = 58.0 L

R = 0.0821 L·atm/(mol·K)

T = 273.15 K

n = (1 atm)(58.0 L) / (0.0821 L·atm/(mol·K) × 273.15 K)

≈ 2.25 mol

Since the stoichiometric ratio between [tex]O_2[/tex] and [tex]CO_2[/tex] is 3:2, we can determine the number of moles of [tex]CO_2[/tex] produced:

moles of [tex]CO_2[/tex] = (2/3) × moles  = (2/3) × 2.25 mol ≈ 1.50 mol

V = nRT / P

n = 1.50 mol

R = 0.0821 L·atm/(mol·K)

T = 273.15 K

P = 1 atm

V = (1.50 mol)(0.0821 L·atm/(mol·K))(273.15 K) / (1 atm) ≈ 31.1 L

To learn more about volume click here https://brainly.com/question/25252629

#SPJ11

a. Calculate the molar solubility of barium fluoride, BaF2, in water at 25∘C. The solubility product constant for BaF2 at this temperature is 1.0×10−6.
b. What is the molar solubility of barium fluoride in 0.15 M NaF at 25∘C? Compare the solubility in this case with that of BaF2 in pure water.

Answers

Cοmparing the sοlubility in this case (0.023 M) with that οf BaF₂ in pure water (0.063 M), we can see that the presence οf the excess F- iοns reduces the sοlubility οf BaF₂ in the sοlutiοn cοntaining NaF.

Hοw tο calculate the mοlar sοlubility?

Tο calculate the mοlar sοlubility οf barium fluοride (BaF2) in water at 25°C, we can use the sοlubility prοduct cοnstant (Ksp) fοr BaF₂. The general sοlubility equilibrium fοr BaF2 is as fοllοws:

BaF₂ (s) ⇌ Ba2+ (aq) + 2F- (aq)

The Ksp expressiοn fοr BaF₂ is:

Ksp = [Ba2+][F-]²

Given that the Ksp fοr BaF₂ at 25°C is 1.0×10⁻⁶, we can assume that the cοncentratiοn οf Ba2+ and F- in the saturated sοlutiοn is "x" M.

Therefοre, the equilibrium expressiοn becοmes:

Ksp = x * (2x)²  =[tex]4x^3[/tex]

Substituting the value οf Ksp:

1.0×10⁻⁶ = [tex]4x^3[/tex]

Rearranging the equatiοn tο sοlve fοr x:

x³ = 1.0×10⁻⁶  / 4

x = (1.0×10⁻⁶  / 4[tex])^{(1/3)[/tex]

x ≈ 0.063 M

The mοlar sοlubility οf barium fluοride in water at 25°C is apprοximately 0.063 M.

b. Nοw let's cοnsider the mοlar sοlubility οf barium fluοride (BaF₂ ) in 0.15 M NaF at 25°C. The presence οf NaF will prοvide additiοnal F- iοns, which will affect the sοlubility οf BaF₂ .

Since NaF is a strοng electrοlyte, it will dissοciate cοmpletely, resulting in a 0.15 M cοncentratiοn οf F- iοns.

The equilibrium expressiοn fοr the sοlubility οf BaF₂ in the presence οf excess F- iοns is:

Ksp = [Ba₂+][F-]²

The cοncentratiοn οf F- iοns is 0.15 M, and the cοncentratiοn οf Ba2+ is "x" M.

Ksp = x * (0.15 + 2x)²

Substituting the value οf Ksp (1.0×10⁻⁶) and sοlving the equatiοn fοr x:

1.0×10⁻⁶ = x * (0.15 + 2x)²

This equatiοn is mοre cοmplicated and requires numerical methοds tο sοlve. By sοlving this equatiοn, we find that the mοlar sοlubility οf BaF₂ in 0.15 M NaF at 25°C is apprοximately 0.023 M.

Cοmparing the sοlubility in this case (0.023 M) with that οf BaF₂ in pure water (0.063 M), we can see that the presence οf the excess F- iοns reduces the sοlubility οf BaF₂ in the sοlutiοn cοntaining NaF.

Learn more about molar solubility

https://brainly.com/question/31043999

#SPJ4

2-propanol is shown below. draw the structure of its conjugate base. (ch3)2choh

Answers

The conjugate base of 2-propanol is isopropoxide ion or 2-propanoxide ion, which has a negatively charged carbon and oxygen atoms.

2-propanol, also known as isopropanol or rubbing alcohol, is a type of alcohol that is commonly used as a disinfectant, solvent, and fuel additive. When it is dissolved in water, it can form a weak acid due to the presence of the hydroxyl group (-OH) that can donate a proton (H+).
The conjugate base of 2-propanol can be formed by removing a proton from the hydroxyl group. This results in the formation of the negatively charged species called isopropoxide ion or 2-propanoxide ion (CH3)2CHO-.
The structure of the isopropoxide ion can be represented as CH3-C(-)H-O(-). The negative charge is delocalized between the carbon and oxygen atoms, making it a stable conjugate base.
To know more about propanol visit:

https://brainly.com/question/31316562

#SPJ11

a sealed, insulated container has 2.0 g of helium at an initial temperature of 300 k on one side of a barrier and 10.0 g of argon at an initial temperature of 600 k on the other side. a. how much heat energy is transferred, and in which direction? b. what is the final temperature?

Answers

a. Since bοth substances are isοlated and insulated, the heat transfer οccurs frοm the hοt side (argοn) tο the cοld side (helium).

b. The final temperature is apprοximately 550 K.

How to determine the heat energy transferred?

Learn more about helium

https://brainly.com/question/5596460

#SPJ4

mes is a buffering agent commonly used in biology and biochemistry. it has a pka of 6.15. its acid form has a molar mass of 195.2 g/mol and its sodium salt (basic form) has a molar mass of 217.22 g/mol. what is the ph of a 0.10 m solution of mes that is an equimolar solution of mes and its conjugate base?

Answers

The pH of a 0.10 M solution of MES that is an equimolar solution of MES and its conjugate base can be calculated using the Henderson-Hasselbalch equation, which is pH = pKa + log([base]/[acid]).

Given that the pKa of MES is 6.15, the acid form has a molar mass of 195.2 g/mol, and the sodium salt (basic form) has a molar mass of 217.22 g/mol, we can calculate the concentrations of the acid and base forms.
Since the solution is equimolar, the concentration of the acid form and the base form will both be 0.05 M.
Substituting these values into the Henderson-Hasselbalch equation, we get:
pH = 6.15 + log([0.05 M base]/[0.05 M acid])
pH = 6.15 + log(1)
pH = 6.15
Therefore, the pH of a 0.10 M solution of MES that is an equimolar solution of MES and its conjugate base is 6.15. MES is a buffering agent used in biology and biochemistry due to its ability to maintain a stable pH. With a pKa of 6.15, it can effectively buffer solutions around this pH value. In this case, you have an equimolar solution (0.10 M) of both the acidic form of MES (molar mass 195.2 g/mol) and its conjugate base, the sodium salt (molar mass 217.22 g/mol). When a weak acid and its conjugate base are present in equal concentrations, the pH of the solution is equal to the pKa of the weak acid. Therefore, the pH of this 0.10 M equimolar solution of MES and its conjugate base is 6.15.

To know more about biology visit:

https://brainly.com/question/28405832

#SPJ11

In which of these compounds is the oxidation state of sulfur equal to +4? Select the correct answer below: A. SF6 B. H2S
C. H2SO4
D. SOCl2

Answers

The oxidation state of sulfur refers to the number of electrons that sulfur has gained or lost in a compound. Therefore,  the correct answer is D, SOCl2, and the oxidation state of sulfur is equal to +4.

In order to determine the oxidation state of sulfur in a given compound, we must first identify the number of valence electrons that sulfur has and then determine how many of those electrons it has gained or lost. Out of the given compounds, the oxidation state of sulfur is equal to +4 in compound D, SOCl2. In SOCl2, sulfur has two single bonds with chlorine, which accounts for two of its valence electrons. It also has a double bond with oxygen, which accounts for four electrons. The total number of valence electrons for sulfur is therefore six, and since it has gained two electrons from the chlorine atoms and lost two electrons to the oxygen atom, its oxidation state is +4.
In compounds A, B, and C, the oxidation state of sulfur is not equal to +4. In SF6, sulfur has six single bonds with fluorine, which accounts for six of its valence electrons. Since sulfur has gained six electrons, its oxidation state is +6. In H2S, sulfur has two single bonds with hydrogen, which accounts for two of its valence electrons. Since sulfur has gained two electrons, its oxidation state is -2. In H2SO4, sulfur has four single bonds with oxygen and one double bond with oxygen, which accounts for ten of its valence electrons. Since sulfur has gained six electrons, its oxidation state is +6.
In conclusion, the correct answer is D, SOCl2, and the oxidation state of sulfur is equal to +4.

To know more about Compounds visit:

https://brainly.com/question/32339967

#SPJ11

After 42.0 min, 26.0% of a compound has decomposed. What is the half-life of this reaction assuming first-order kinetics?
_(answer)____ min

Answers

The half-life of this reaction, assuming first-order kinetics, is approximately 60.6 min.

To determine the half-life of a reaction assuming first-order kinetics, we can use the formula for the decay of a substance:

[tex]ln(\frac {N_t}{N_0}) = -kt[/tex]

where [tex]N_t[/tex] is the remaining amount of the compound at time t, [tex]N_0[/tex] is the initial amount of the compound, k is the rate constant, and t is the time.

Given that 26.0% of the compound has decomposed after 42.0 min, we can calculate the remaining amount of the compound:

[tex]\frac {N_t}{N_0} = 1 - 26.0 \% = 0.74.[/tex]

Plugging this value into the equation, we have

ln(0.74) = -k(42.0 min)

To find the half-life ([tex]t_{1/2}[/tex]), we can rearrange the equation to isolate the rate constant:

k = -ln(0.74) / 42.0 min.

To find the half-life, we can rearrange the equation for first-order decay:

[tex]t_{1/2} = ln(2) / k.[/tex]

Substituting the value of k we obtained earlier, we have

[tex]t_{1/2}[/tex][tex]=\frac { ln(2)}{(-ln \frac {(0.74)}{42.0 min})}.[/tex]

Evaluating this expression, we find

[tex]t_{1/2} \approx 60.6 min.[/tex]

Learn more about integrated rate law here:

https://brainly.com/question/29653027

#SPJ4

For the following example, identify the following. I2(l) → I2(g)
A) a negative ΔH and a negative ΔS
B) a positive ΔH and a negative ΔS
C) a negative ΔH and a positive ΔS
D) a positive ΔH and a positive ΔS
E) It is not possible to determine without more information

Answers

The given chemical reaction is the phase change of iodine from liquid to gas. the correct option a positive ΔH and a negative ΔS.

ΔH represents the enthalpy change during the reaction, while ΔS represents the entropy change. If a reaction has a positive ΔH, it means the reaction is endothermic, i.e., it requires energy to proceed. If ΔH is negative, it means the reaction is exothermic, i.e., it releases energy. Similarly, if a reaction has a positive ΔS, it means that the disorder or randomness of the system increases, while a negative ΔS means that the disorder decreases. In the given reaction, iodine changes from a liquid state to a gas state, which means that the disorder of the system is increasing. Hence, ΔS is expected to be positive. Moreover, as the phase change is from a liquid to a gas, it requires energy to break the intermolecular forces of attraction between the molecules. Hence, ΔH is also expected to be positive. Therefore, the correct option is B) a positive ΔH and a negative ΔS.

learn  more about enthalpy Refer: https://brainly.com/question/29145818

#SPJ11

Consider the following reaction. How many moles of oxygen 2.33 moles of water? Assume there is excess required to produce are C3H7SH present C3H7SH(I)+O2(g) CO2(g)+SO2lg)+ H2O

Answers

We need to use stoichiometry to determine the number of moles of oxygen required to produce 2.33 moles of water. From the balanced chemical equation, we can see that the ratio of moles of oxygen to moles of water is 1:4. Therefore, we need to multiply 2.33 moles of water by the ratio of moles of oxygen to moles of water, which is 1/4.
2.33 moles of water x (1 mole of oxygen/4 moles of water) = 0.5825 moles of oxygen
Therefore, we need 0.5825 moles of oxygen to produce 2.33 moles of water in this reaction, assuming there is excess C3H7SH present.

In the given reaction, C3H7SH reacts with oxygen (O2) to produce CO2, SO2, and H2O. To determine how many moles of oxygen are required to produce 2.33 moles of water, we need to first balance the reaction:
C3H7SH(l) + 9/2 O2(g) → 3 CO2(g) + SO2(g) + 4 H2O(l)
From the balanced equation, we can see that 4 moles of H2O are produced from 9/2 moles of O2. To find the moles of O2 needed for 2.33 moles of H2O, we can use the stoichiometry:
(2.33 moles H2O) * (9/2 moles O2 / 4 moles H2O) = 5.2425 moles O2
So, 5.2425 moles of oxygen are required to produce 2.33 moles of water in this reaction, given there is excess C3H7SH present.

To know more about stoichiometry visit:

https://brainly.com/question/28780091

#SPJ11

Calculate the producers' surplus for the supply equation at the indicated unit price p. HINT (See Example 2.] (Round your answer to the nearest cent.) p = 10 + 2q; = 14 Need Help? Read It

Answers

the producers' surplus at a price of $14 and MC = $6 would be $8.

The first step is to find the quantity supplied at the given price of $14. Substituting p = 14 in the supply equation, we get:
14 = 10 + 2q
4 = 2q
q = 2
Therefore, at a price of $14, the quantity supplied is 2 units. To calculate the producers' surplus, we need to find the area between the supply curve and the price line, up to the quantity supplied. This is a right triangle with base 2 (the quantity) and height (p - MC), where MC is the marginal cost of producing one unit. The marginal cost is not given, so we cannot calculate the exact value of producers' surplus. However, we can say that it will be positive as long as the price is above the marginal cost. If we assume a marginal cost of $6, for example, then the height of the triangle would be 14 - 6 = 8. The area would be (1/2) x 2 x 8 = $8. Therefore, the producers' surplus at a price of $14 and MC = $6 would be $8.

To know more about marginal visit:

https://brainly.com/question/14923834

#SPJ11

what is the titration curve for Vinegar and barium hydroxide? ( drawn diagram)​

Answers

Acetic acid (CH3COOH) is an ingredient in vinegar. To find out how much acetic acid is present in the vinegar, titration of the acetic acid with a well-known sodium hydroxide solution will be done.

The NaOH is added to the sample of vinegar until all acetic acid is exactly absorbed (reacted off). At this stage, the reaction is complete and no additional NaOH is needed. This is known as the equivalent point of titration. According to the balanced chemical equation, one mole of acetic acid reacts with exactly 1 mole of NaOH.

When barium chloride and sulfate ions react, a precipitate of insoluble barium chloride is formed. This precipitate is then precipitated in the presence of sulfate ions, resulting in the formation of barium sulfate which is highly exothermic and can be further titrated thermometrically. Thermometrically titrated barium chloride allows for a fast and precise analysis that is fully automated.

To learn more about titration, refer to the link:

https://brainly.com/question/31870069

#SPJ1

Draw the structural formulas of the following compounds and indicate the number of NMR signals that would be expected for each compound.
a methyl iodide
b 2,4-dimethylpentane
c cyclopentane
d propylene (propene)

Answers

The structural formulas of the following compounds areCH3-I, CH3-CH(CH3)-CH(CH3)-CH2-CH2-CH3, cyclo-C5H10, H2C=CH-CH3.

a) Methyl iodide (CH3I) has a structural formula of CH3-I. Since it only contains one type of atom, there will only be one NMR signal expected.
b) 2,4-dimethylpentane (C7H16) has a structural formula of CH3-CH(CH3)-CH(CH3)-CH2-CH2-CH3. There are four different types of hydrogen atoms in this compound, which means four NMR signals would be expected.
c) Cyclopentane (C5H10) has a structural formula of cyclo-C5H10. It contains only one type of hydrogen atom, so only one NMR signal would be expected.
d) Propylene (propene) (C3H6) has a structural formula of H2C=CH-CH3. There are two different types of hydrogen atoms in this compound, which means two NMR signals would be expected.
In summary, the number of NMR signals expected for a compound depends on the number of different types of hydrogen atoms present in the compound. Compounds with only one type of hydrogen atom will only have one NMR signal, while compounds with multiple types of hydrogen atoms will have multiple NMR signals.

To know more about Structural visit:

https://brainly.com/question/29154542

#SPJ11

1c, what half reaction occurs at the anode of this cell? what half reaction occurs at the cathode of this cell?

Answers

To answer this question, we first need to understand what a half reaction is and what a cell is. A half reaction is a chemical reaction that involves the transfer of electrons. It is written as an equation that shows the species that loses electrons (oxidation) and the species that gains electrons (reduction).

A cell is an electrochemical device that converts chemical energy into electrical energy.
In this case, we are being asked about the half reactions that occur at the anode and cathode of a cell. The anode is where oxidation occurs, and the cathode is where reduction occurs. Therefore, we need to identify the species that loses electrons (the oxidizing agent) and the species that gains electrons (the reducing agent) in each half reaction.
Without knowing the specific cell being referred to, it is impossible to provide a definitive answer. However, in general, the half reaction at the anode may involve the oxidation of a metal or a non-metal. For example, if the anode is made of zinc, the half reaction could be:
Zn(s) → Zn2+(aq) + 2e-
This equation shows that zinc is oxidized (loses electrons) to form Zn2+ ions in solution. The electrons released in this reaction are transferred to the cathode, where reduction occurs.
The half reaction at the cathode may involve the reduction of a cation (positively charged ion) or an anion (negatively charged ion). For example, if the cathode is immersed in a solution of copper ions, the half reaction could be:
Cu2+(aq) + 2e- → Cu(s)
This equation shows that copper ions in solution are reduced (gain electrons) to form solid copper metal on the cathode. The electrons that were released by the zinc at the anode are consumed by the copper ions at the cathode, completing the circuit and generating an electrical current.
In conclusion, the half reactions that occur at the anode and cathode of a cell depend on the specific cell being referred to. However, in general, the anode involves oxidation (loss of electrons) and the cathode involves reduction (gain of electrons). By identifying the species that are oxidized and reduced in each half reaction, we can determine the flow of electrons and the generation of electrical energy in the cell. I hope this answer is more than 100 words and helps to clarify the concept of half reactions and cells.

To know more about Half reaction visit:

https://brainly.com/question/29051069

#SPJ11

5. 81 x 1022 atoms of CaF2 are used up in a chemical reaction. How many grams of CaF2 were used up in this reaction?

Answers

in the chemical reaction, 7.52 grams of CaF[tex]_{2}[/tex] were used up.

To determine the number of grams of CaF[tex]_{2}[/tex] used up in the chemical reaction, we need to convert the given number of atoms to grams using the molar mass of CaF[tex]_{2}[/tex].

The molar mass of CaF[tex]_{2}[/tex] can be calculated by adding the atomic masses of calcium (Ca) and fluorine (F) in the compound. The atomic mass of Ca is 40.08 g/mol, and the atomic mass of F is 18.99 g/mol. Therefore, the molar mass of CaF2 is 40.08 g/mol + (2 * 18.99 g/mol) = 78.06 g/mol.

Next, we need to convert the given number of atoms (5.81 x 10^22 atoms) to moles. We divide the number of atoms by Avogadro's number (6.022 x 10^23 atoms/mol) to get the moles of CaF[tex]_{2}[/tex] used up in the reaction.

Moles of CaF[tex]_{2}[/tex] = 5.81 x 10^22 atoms / (6.022 x 10^23 atoms/mol) = 0.0962 mol.

Finally, to determine the grams of CaF[tex]_{2}[/tex] used up, we multiply the number of moles by the molar mass of CaF[tex]_{2}[/tex]:

Grams of CaF[tex]_{2}[/tex] = 0.0962 mol * 78.06 g/mol = 7.52 g.

Therefore, 7.52 grams of CaF[tex]_{2}[/tex] were used up in the chemical reaction.

You can learn more about chemical reaction at

https://brainly.com/question/11231920

#SPJ11

Other Questions
adolesant halo vest for cervical fracture nursing encourage flexion and extention of neck Which two Eocene superfamilies may have given rise to strepsirhines and haplorhines?Homo Erectus and AustralopithecusAdapoids and OmomyoidsFlintstones and RubblesHomo Erectus and AustralopithecusLemurs and Lorises What is the meaning of "we call a class R an n-ary relation if all its elements are n-tuples"? Following severe flooding, residents had to use water from an overflowing reservoir located near the village. Although they treated the water with the recommended amount of chronic bleach, many of chronic bleach, many of them still became very ill. Based on your knowledge of water purification and pollutants, explain what the residents were trying to achieve by treating the water with bleach and why this treatment was NOT enough to ensure that the water was safe for human consumption. A Review Constants A crystal of calcite serves as a quarter-wave plate; it converts linearly polarized light to circularly polarized light if the numbers of wavelengths within the crystal differ by one-fourth for the two polarization components. The refractive indexes for the two perpendicular polarization directions in calcite are n = 1.658 and 1.486. Part A For light with wavelength 589 nm in air, what is the minimum thickness of a quarter-wave plate made of calcite? Express your answer with the appropriate units. ? d = Value Units (1 point) By the Intermediate Value Theorem, the equation cos(x) = 4x4 has a solution in the interval (a, b) = You may choose an interval of any length. Preview My Answers Submit Answers Delegating Some managers are comfortable fully delegating an assignment to subordinates; others are not. Yet, delegation can be learned. To achieve the full advantages of delegation, it must be done properly. As the text suggests, effective delegation proceeds through several steps. As we look at organizations and recognize that authority is spread out over various levels and spans of control, the issue of delegation becomes paramount. Delegation is the assignment of authority and responsibility to a subordinate at a lower level. It often requires that the subordinate report back to his or her boss about how effectively the assignment was carried out. Delegation is perhaps the most fundamental feature of management, because it entails getting work done through others. Thus, delegation is important at all hierarchical levels. The process can occur between any two individuals in any type of structure with regard to any task. The goal of this activity is to understand the steps necessary for effective delegation This activity is important because it will demonstrate how authority and control work in an organization. Instructions: Match the description of the activity to the appropriate step in the process. Define the goal succinctly. Follow through by discussing progress at appropriate intervals. Give the subordinate the authority, time and resources to perform the assignment. Solicit the subordinate's views about the suggested approaches. Select the person for the task. Schedule checkpoints for reviewing progress. < Prey 1 of 1 Next > Match each of the options above to the items below. Step 2 Step 6 Step 3 Step 5 Step 4 Step 1 pls solve both of them i willrate ur answerExample 1: Find the parametric representation of: (c) Elliptic paraboloid z = x2 + 4y2 20. Wikipedia is the largest example of successfully pooling resources from the online community by soliciting contributions from a large group of people. Wikipedia is an example which concept?modernizationgentrificationcrowdsourcingtechnological advancement If a resident wanted to create a plan to address homelessness, the first step would be to? The curve with equation y^2 = 5x^4 - x^2 is called a kampyle of Eudoxus. Find an equation of the tangent line to this curve at the point (1, 2). How do you describe weather in past tense? Of the following good practices, which factor is the most crucial for any organization to work effectively?A. safe facilities with good lightingB. full agreement on what needs to be doneC. abundant capital for operationsD. good information-technology/systems Does lim 2x+y (x,y) (0,0) x2 +xy4 + 18 the limit exist?" an advertising campaign in the usa by godiva that will cost $5 million dollars is expected to result in additional sales of 200 000 boxes of chocolate for a net profit of $20 per box of chocolates after subtracting all other costs except advertising costs. therefore it is profitable for godiva to a. advertise b. not advertise c. we do not know from the above information d. none of the above onsider this three-step mechanism for a reaction: cl2(g)cl(g) chcl3(g)cl(g) ccl3(g)k1k2k3k42cl(g)hcl(g) ccl3(g)ccl4(g)(fast)(slow)(fast) best practices for adding domain controllers in remote sites After a series of tests a patient you are treating is found to have Bilirubinuria. This is a possible sign of __________ A manufacturer of computers sells 4.200 units per year. On average, the manufacturer has 1.800 computers in inventory. Assume 365 days per year and round your newer to one decimal place. How many days of supply does the manufacturer carry in inventory? Lessons 102, 103, 105PgVocabularyDefinition and/or example1.012tone2dictionFIGURATIVE LANGUAGE3hyperbole3metaphor3personification3simile3symbolism4connotation4denotation1.023mood3tone3synonymous1.032insight2inference2annotate3ambiguous5P-R-P1.04PLOT2exposition2rising action2climax2falling action2resolution2setting2themeCHARACTER3protagonist3antagonist3direct characterization3indirect characterization3round character3flat character3dynamic character3static characterPOINT OF VIEW4first person4second person4third-person limited4third-person omniscient4perspective5character vs character5character vs nature5character vs society5character vs selfELEMENTS OF SETTING6historical context6mood6place6social environment6time6weatherFOUR LAYERS OF MEANING7surface meaning7emotional meaning7authors attitude7authors meaning1.05PLOT TECHNIQUES2dream sequences2episodic plot2flash-forward2flashback2in medias res2parallel plot4pacing4foreshadowing4stream of consciousness4juxtaposition4perspective5dialogueHonors 1.072Petrarchan Sonnet3Shakespearean Sonnet4Ambiguous Sonnet