Mr. Kusakye has a wife with six Children and his total income in 2019 was GH¢ 8,500.00. He was allowed the following free of tax Personal - GHC 1200.00 Wife - GH¢ 300.00 each child - GHC 250.00 for a maximum of 4 Dependent relative - 400.00 Insurance - 250.00 The rest was taxed at 10% calculate: his total allowances​

Answers

Answer 1
To calculate Mr. Kusakye's total allowances, we need to sum up the amounts he was allowed free of tax for each category. Let's calculate it step by step:

Personal allowance: GH¢ 1200.00
Wife allowance: GH¢ 300.00
Children allowance (for 6 children): GH¢ 250.00 × 4 = GH¢ 1000.00 (since the maximum allowance for children is 4)
Dependent relative allowance: GH¢ 400.00
Insurance allowance: GH¢ 250.00

Now, let's add up all the allowances:

Total allowances = Personal allowance + Wife allowance + Children allowance + Dependent relative allowance + Insurance allowance
Total allowances = GH¢ 1200.00 + GH¢ 300.00 + GH¢ 1000.00 + GH¢ 400.00 + GH¢ 250.00

Calculating the sum:

Total allowances = GH¢ 3150.00

Therefore, Mr. Kusakye's total allowances amount to GH¢ 3150.00.

Related Questions

Use the triangle below to answer the questions.

Answers

Answer:

√3

-------------------

Use the definition for tangent function:

tangent = opposite leg / adjacent leg

Substitute values as per details in the picture:

tan 60° = 7√3 / 7tan 60° = √3

Find parametric equations for the line tangent to the curve of intersection of the surfaces at the given point.
Surfaces: x
+
y
2
+
2
z
=
4
,
x
=
1
Point: (
1
,
1
,
1
)

Answers

The parametric equations for the line tangent to the curve of intersection of the surfaces x + y²+ 2z = 4 and x = 1 at the point (1, 1, 1) can be expressed as x = 1 + t, y = 1 + t², and z = 1 - 2t.

To find the parametric equations for the line tangent to the curve of intersection of the surfaces, we need to determine the direction vector of the tangent line at the given point. Firstly, we find the intersection curve by equating the two given surfaces:

x + y² + 2z = 4 (Equation 1)

x = 1 (Equation 2)

Substituting Equation 2 into Equation 1, we get:

1 + y²+ 2z = 4

y² + 2z = 3 (Equation 3)

Now, we differentiate Equation 3 with respect to t to find the direction vector of the tangent line:

d/dt (y² + 2z) = 0

2y(dy/dt) + 2(dz/dt) = 0

Plugging in the coordinates of the given point (1, 1, 1) into Equation 3, we get:

1²+ 2(1) = 3

1 + 2 = 3

Therefore, the direction vector of the tangent line is perpendicular to the surface at the point (1, 1, 1), and it can be expressed as (1, 2, 0).

Finally, using the parametric equation form x = x0 + at, y = y0 + bt, and z = z0 + ct, where (x0, y0, z0) are the coordinates of the point and (a, b, c) is the direction vector, we substitute the values:

x = 1 + t

y = 1 + 2t

z = 1 + 0t

Therefore, the parametric equations for the line tangent to the curve of intersection of the surfaces at the point (1, 1, 1) are x = 1 + t, y = 1 + 2t, and z = 1.

Learn more about tangent here: https://brainly.com/question/10053881

#SPJ11

help please
QUESTION 7 Evaluate the limit of g(x) as x approaches 0, given that V5-2x2 58(*) SV5- x2 for all - 1sx51 State the rule or theorem that was applied to find the limit.

Answers

The limit of g(x) as x approaches 0 is 5.

Given the inequality [tex]V5 - 2x^2 < g(x) < V5 - x^2 for all -1 < x < 1.[/tex]

We want to find the limit of g(x) as x approaches 0, so we consider the inequality for x values approaching 0.

Taking the limit as x approaches 0 of the inequality, we get[tex]V5 - 0^2 < lim g(x) < V5 - 0^2.[/tex]

Simplifying, we have[tex]V5 < lim g(x) < V5.[/tex]

From the inequality, it is clear that the limit of g(x) as x approaches 0 is 5.

The theorem applied to find the limit is the Squeeze Theorem (also known as the Sandwich Theorem or Squeeze Lemma).

learn more about:- theorems here

https://brainly.com/question/30066983

#SPJ11

A company manufactures and sets x cellphones per week. The weekly price demand and cost equations are given below p=600 -0.1x and Cox) - 20,000+ 140x (A) What price should the company charge for the p

Answers

a) The company should produce 49 phones with price of $300.1

 Maximum weekly revenue: $14,707.9

b) The company should produce 38 phones with price of $368.2.

Maximum weekly profit:  $3,231.6

(A) To maximize the weekly revenue, we need to find the value of x that maximizes the revenue function R(x), where R(x) is the product of the price and the quantity sold (x).

The revenue function is given by:

R(x) = x  p(x)

where p(x) = 600 - 6.1x

Substitute p(x) into the revenue function:

R(x) = x (600 - 6.1x)

Now, we can find the value of x that maximizes the revenue by taking the derivative of R(x) with respect to x and setting it equal to zero:

dR/dx = 600 - 12.2x

Setting dR/dx = 0 and solving for x:

600 - 12.2x = 0

12.2x = 600

x = 600 / 12.2

x = 49.18

Since we cannot produce a fraction of a cellphone, we round down to 49 phones.

Now, to find the price, substitute the value of x back into the price-demand equation:

p = 600 - 6.1 x 49

   = 600 - 299.9

   = 300.1

So, the company should produce 49 phones each week and charge a price of $300.1 to maximize the weekly revenue.

Maximum weekly revenue:

R(49) = 49 x 300.1

         = $14,707.9

(B) The profit function is given by:

P(x) = R(x) - C(x)

where C(x) = 20 + 140x

Substitute the expressions for R(x) and C(x) into the profit function:

P(x) = (x (600 - 6.1x)) - (20 + 140x)

Now, take the derivative of P(x) with respect to x and set it equal to zero

dP/dx = 600 - 12.2x - 140

Setting dP/dx = 0 and solving for x:

600 - 12.2x - 140 = 0

-12.2x = -460

x = -460 / -12.2

   = 37.7

Since we cannot produce a fraction of a cellphone, we round up to 38 phones.

Now, to find the price, substitute the value of x back into the price-demand equation:

p = 600 - 6.1 x 38

  = 600 - 231.8

  = 368.2

So, the company should produce 38 phones each week and charge a price of $368.2 to maximize the weekly profit.

Now, Maximum weekly profit:

P(38) = (38 x (600 - 6.1 x 38)) - (20 + 140 * 38)

        = $3,231.6

Learn more about Revenue Problem here:

https://brainly.com/question/31404496

#SPJ12

The question attached here seems to be incomplete, the complete question is:

company manufactures and sells x cellphones per week. The weekly price-demand and cost equations are given below

p = 600 - 6.1x and C(x) = 20 + 140x

(A) What price should the company charge for the phones, and how many phones should be produced to maximize the weekly revenue? What is the maximum weekly revenue?

The company should produce phones each week at a price of (Round to the nearest cent as needed) Box

The maximum weekly revenue is $ (Round to the nearest cent as needed)

(B) What price should the company charge for the phones, and how many phones should be produced to maximize the weekly profit? What is the maximus weekly prof

Box s The company should produce phones each week at a price of (Round to the nearest cent as needed) root(, 5) Box

The maximum weekly profit is $ (Round to the nearest cent as needed

Find the general solution of the differential equation (Remember to use absolute values where appropriate. Use for the constant of integration) sec (6) tan(t) + 1 - InK(1+tan (1) de Find the area of the region bounded by the graphs of the equations. Use a graphing utility to verify your result. (Round your answer to three decimal places.) x = 1, * = 2, y = 0

Answers

The area bounded by the graphs of the equations x = 1, x = 2, and y = 0 is 1 square unit.

To find the general solution of the given differential equation, we start by separating the variables. The equation is:

sec(θ)tan(t) + 1 - ln|K(1+tan(1))|dy = 0.

Next, we integrate both sides with respect to y:

∫[sec(t)tan(t) + 1 - ln|K(1+tan(1))|]dy = ∫0dy.

The integral of 0 with respect to y is simply a constant, which we'll denote as C. Integrating the other terms, we have:

∫sec(t)tan(t)dy + ∫dy - ∫ln|K(1+tan(1))|dy = C.

The integral of dy is simply y, and the integral of ln|K(1+tan(1))|dy is ln|K(1+tan(1))|y. Thus, our equation becomes:

sec(t)tan(t)y + y - ln|K(1+tan(1))|y = C.

Factoring out y, we get:

y(sec(t)tan(t) + 1 - ln|K(1+tan(1))|) = C.

Dividing both sides by (sec(t)tan(t) + 1 - ln|K(1+tan(1))|), we obtain the general solution:

y = -ln|sec(t)| + ln|K(1+tan(1))| + C.

To find the area bounded by the graphs of the equations x = 1, x = 2, and y = 0, we can visualize the region on a graphing utility or by plotting the equations manually. From the given equations, we have a rectangle with vertices (1, 0), (2, 0), (1, 1), and (2, 1). The height of the rectangle is 1 unit, and the width is 1 unit. Therefore, the area of the region is 1 square unit.

Learn more about integral here:

https://brainly.com/question/31059545

#SPJ11

A land parcel has topographic contour of an area can be mathematically
represented by the following equation:
i)
z = 0.5xt + xIny + 2cos x For earthwork purpose, the landowner needs to know the contour
slope with respect to each independent variables of the contour.
Determine the slope equations
Compute the contour slopes in x and y at the point (2, 3).

Answers

To determine the slope equations and compute the contour slopes in x and y at a specific point (2, 3) on the land parcel's contour, we can use the partial derivative of the contour equation with respect to each independent variable.

To find the slope equations, we need to calculate the partial derivatives of the contour equation with respect to x and y.

To find the slope equation with respect to x, we differentiate the equation with respect to x while treating y as a constant:

∂z/∂x = 0.5t + lny - 2sin(x)

Similarly, to find the slope equation with respect to y, we differentiate the equation with respect to y while treating x as a constant:

∂z/∂y = x/y

Now, to compute the contour slopes in x and y at the point (2, 3), we substitute the values of x = 2 and y = 3 into the slope equations:

Slope in x at (2, 3):

∂z/∂x = 0.5t + ln(3) - 2sin(2)

Slope in y at (2, 3):

∂z/∂y = 2/3

By evaluating the above expressions, we can determine the contour slopes in x and y at the point (2, 3) on the land parcel's contour.

Learn more about differentiate here:

https://brainly.com/question/24062595

#SPJ11

A rectangle has a length that is 8 inches more than its width, w. The area of the rectangle is 65 square inches.
W
length-
(a) Write an expression for the length of the rectangle in terms if its width w
length
(b) Using your answer from (a), write an equation that could be used to solve for the width, w of the rectangle
Equation:
(c) is -7 a solution to the equation you wrote? (yes or no)Justify by substituting 7 in for the variable w in your equation from question (b). What is the value when w = 7?

Answers

The expression for the length of the rectangle in terms of its width, w is length =w+8, the equation to solve for the width, w, of the rectangle is 65 = (w + 8) × w and -7 is not a solution.

The expression for the length of the rectangle in terms of its width, w, can be written as:

Length = w + 8

(b) Using the expression from (a), we can write the equation to solve for the width, w, of the rectangle:

Area = Length ×Width

65 = (w + 8) × w

(c) To determine if -7 is a solution to the equation, we substitute w = -7 into the equation and check the result:

65 = (-7 + 8)× (-7)

65 = 1× (-7)

65 = -7

The value on the left side of the equation is 65, while the value on the right side is -7. Since these values are not equal, -7 is not a solution to the equation.

Therefore, -7 is not a solution to the equation.

To learn more on Rectangle click:

https://brainly.com/question/15019502

#SPJ1

Define an exponential expression

Answers

An exponential expression is a mathematical expression that involves a base raised to a power. It has the general form of "a raised to the power of b," where "a" represents the base and "b" represents the exponent. The exponent indicates how many times the base is multiplied by itself.

For example, in the expression 2^3, the base is 2, and the exponent is 3. This means that 2 is multiplied by itself three times: 2 * 2 * 2 = 8. So, 2^3 is equal to 8.

Exponential expressions can also include negative exponents, fractional exponents, or variables as the base or exponent. They are widely used in various fields of mathematics, science, and finance to model exponential growth, decay, and other phenomena.

Consider the heat conduction problem 49 u =u 0 0 xx u(0,t) =0, u(1,t) = 0, >0 t = u(x,0) = sin(4 tex), 0sx51 (a) (5 points): What is the temperature of the bar at x=0 and x=1? (b)

Answers

The boundary conditions u(0,t) = 0 and u(1,t) = 0, which specify that the temperature at the ends of the bar is fixed at zero.

The temperature of the bar at x=0 and x=1, we can solve the given heat conduction problem using the one-dimensional heat equation. The equation is given as:

∂u/∂t = α * ∂²u/∂x²

where u(x,t) represents the temperature distribution in the bar at position x and time t, α is the thermal diffusivity, and ∂²/∂x² denotes the second partial derivative with respect to x.

In this case, we are given the boundary conditions u(0,t) = 0 and u(1,t) = 0, which specify that the temperature at the ends of the bar is fixed at zero.

By solving the heat equation with these boundary conditions and the initial condition u(x,0) = sin(4πx), where 0 ≤ x ≤ 1, we can determine the temperature distribution in the bar at any point in time.

b) The temperature distribution in a bar is determined using the one-dimensional heat equation with appropriate boundary and initial conditions. In this problem, the bar has fixed ends at x=0 and x=1 with zero temperature. The initial temperature distribution is given by sin(4πx), where x ranges from 0 to 1. By solving the heat equation, we can obtain the temperature distribution at any point in time.

To solve the heat conduction problem, we need to apply suitable mathematical techniques such as separation of variables or Fourier series to obtain the general solution. The specific solution will depend on the initial condition and the properties of the material, such as thermal diffusivity.

In this case, we are not provided with the value of the thermal diffusivity or the specific time at which we want to determine the temperature at x=0 and x=1. Thus, we can only discuss the general procedure for solving the problem.

Learn more about distribution here:

https://brainly.com/question/29664127

#SPJ11

.

In a frequency distribution, the classes should always: A) be overlapping B) have the same frequency C) have a width of 10
D) be non-overlapping

Answers

In a frequency distribution, the classes should always be non-overlapping which is option d.

How should the classes always be in a frequency distribution?

In a frequency distribution, the classes should always be non-overlapping. This means that no data point should belong to more than one class. If the classes were overlapping, then it would be difficult to determine which class a data point belonged to.

However, since the classes should be non-overlapping. Each data point should fall into only one class or interval. This ensures that the data is organized properly and avoids any ambiguity or confusion in determining which class a particular data point belongs to. Non-overlapping classes allow for accurate representation and analysis of the data.

Learn more on frequency distribution here;

https://brainly.com/question/27820465

#SPJ1

Use the Laplace transform to solve the given initial value problem. y" – 2y – 168y = 0; y(0) = 5, y'(0) = 18 = = =

Answers

Applying the Laplace transform and its inverse, we can solve the given initial value problem y" - 2y - 168y = 0 with initial conditions y(0) = 5 and y'(0) = 18. increase.

To solve an initial value problem using the Laplace transform, start with the Laplace transform of the differential equation. Applying the Laplace transform to the given equation y" - 2y - 168y = 0 gives the algebraic equation [tex]s^2Y(s) - sy(0) - y'(0) - 2Y(s) - 168Y(s) = 0[/tex] where Y(s) represents the Laplace transform of y(t).

Then substitute the initial condition into the transformed equation and get [tex]s^2Y(s) - 5s - 18 - 2Y(s) - 168Y(s) = 0[/tex]. Rearranging the equation gives [deleted] s ^2 - 2 - . 168) Y(s) = 5s + 18. Now we can solve for Y(s) by dividing both sides of the equation by[tex](s^2 - 2 - 168)[/tex], Y(s) =[tex](5s + 18) / (s^2 - 2 - 168)[/tex] It can be obtained.

Finally, apply the inverse Laplace transform to find the time-domain solution y(t). Using a table of Laplace transforms or a partial fraction decomposition, you can find the inverse Laplace transform of Y(s) to get the solution y(t). 

Learn more about laplace transform here:

https://brainly.com/question/30759963

#SPJ11

please answer the question clearly
3. (15 points) Use the method of Lagrange Multipliers to find the value of and y that minimize –r? - 3xy - 3y2 + y + 10, subject to the constraint 10-r-y=0. 11 115 Point A

Answers

The values of x, y, and r that minimize the function are:x = not determined by lagrange multipliers

y = 1/9r = 91/9

to find the values of x and y that minimize the function -r? - 3xy - 3y² + y + 10, subject to the constraint 10 - r - y = 0, we can use the method of lagrange multipliers.

first, let's define the objective function and the constraint:

objective function: f(x, y) = -r² - 3xy - 3y² + y + 10constraint: g(x, y) = 10 - r - y

now, we can set up the lagrange function l(x, y, λ) as follows:

l(x, y, λ) = f(x, y) + λ * g(x, y)

          = (-r² - 3xy - 3y² + y + 10) + λ * (10 - r - y)

to find the minimum, we need to find the critical points of l(x, y, λ).

taking partial derivatives with respect to x, y, and λ and setting them equal to zero, we have:

∂l/∂x = -3y - λ = 0    (1)∂l/∂y = -6y + 1 - λ = 0  (2)

∂l/∂λ = 10 - r - y = 0  (3)

from equation (1), we get:-3y - λ = 0   =>   -λ = 3y   (4)

substituting equation (4) into equation (2), we have:

-6y + 1 - 3y = 0   =>   -9y + 1 = 0   =>   y = 1/9   (5)

substituting y = 1/9 into equation (4), we get:-λ = 3(1/9)   =>   -λ = 1/3   (6)

finally, substituting y = 1/9 and λ = 1/3 into equation (3), we can solve for r:

10 - r - (1/9) = 0   =>   r = 91/9   (7)

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Evaluate the following definite integral. 3π/4 I co S cos x dx 0 Find the antiderivative of cos x dx. S cos x dx = □ Evaluate the definite integral. 3π/4 S cos x dx = 0

Answers

We need to evaluate the definite integral of cos x with respect to x over the interval [tex][0, \frac{3\pi}{4}][/tex]. The antiderivative of cos x is sin x, and evaluating the definite integral yields the result of 1.

To evaluate the definite integral [tex]\int_0^{\frac{3\pi}{4}} \cos(x) dx[/tex], we first find the antiderivative of cos x. The antiderivative of cos x is sin x, so we have:

[tex]\int_{0}^{\frac{3\pi}{4}} \cos x , dx = \sin x \Bigg|_{0}^{\frac{3\pi}{4}}[/tex]

To evaluate the definite integral, we substitute the upper limit [tex](\frac{3}{4} )[/tex] into sinx and subtract the value obtained by substituting the lower limit (0) into sin x:

[tex]\sin\left(\frac{3\pi}{4}\right) - \sin(0)[/tex]

The value of sin(0) is 0, so the expression simplifies to:

[tex]\sin\left(\frac{3\pi}{4}\right)[/tex]

Since [tex]\sin\left(\frac{\pi}{2}\right) = 1[/tex], we can rewrite [tex]\sin\left(\frac{3\pi}{4}\right)[/tex] as:

[tex]\sin\left(\frac{3\pi}{4}) = \sin\left(\frac{\pi}{2}\right)[/tex]

Therefore, the definite integral evaluates to:

[tex]\int_0^{\frac{3\pi}{4}} \cos x dx = 1[/tex]

In conclusion, the definite integral of cos x over the interval [tex][0, \frac{3\pi}{4}][/tex]evaluates to 1.

Learn more of definite integral here:

https://brainly.com/question/29974649

#SPJ11

on 5 5 n 1 point The definite integral used to compute the area bounded between the two curves comes from the Riemann sum lim (height)(thickness), where i=1 the thickness is the width of the ith rectangle and its height is the C right curve minus left curve if the width is Ay upper curve minus lower curve if the width is Ay. upper curve minus lower curve if the width is Ax. right curve minus left curve if the width is Ax

Answers

The definite integral used to compute the area bounded between two curves is obtained by taking the limit of a Riemann sum, where the height represents the difference between the upper and lower curves and the thickness represents the width of each rectangle.

To calculate the area between two curves, we divide the interval into small subintervals, each with a width denoted as Δx or Δy. The height of each rectangle is determined by the difference between the upper and lower curves. If the width is in the x-direction (Δx), the height is obtained by subtracting the equation of the lower curve from the equation of the upper curve. On the other hand, if the width is in the y-direction (Δy), the height is obtained by subtracting the equation of the left curve from the equation of the right curve.

By summing up the areas of these rectangles and taking the limit as the width of the subintervals approaches zero, we obtain the definite integral, which represents the area between the two curves.

In conclusion, the definite integral is used to compute the area bounded between two curves by considering the difference between the upper and lower (or left and right) curves as the height of each rectangle and the width of the subintervals as the thickness.

To learn more about Riemann sum, visit:

https://brainly.com/question/29012686

#SPJ11

Given a correlation of r=60, the amount of the dependent variable that seems determined by the independent variable is:
A. 90%.
B. 60%.
C. 36%.
D. 16%.

Answers

The amount of the dependent variable that seems determined by the independent variable is 36%, which corresponds to option C.

The amount of the dependent variable that seems determined by the independent variable can be determined by the square of the correlation coefficient. In this case, with a correlation of r=60, we need to calculate the square of 60 to find the percentage.

The square of the correlation coefficient, [tex]r^2[/tex], represents the proportion of the variance in the dependent variable that can be explained by the independent variable. In other words, it measures the amount of the dependent variable that seems determined by the independent variable.

In this case, r=60. To find the percentage, we need to calculate [tex]r^2[/tex], which is [tex](0.6)^2[/tex] = 0.36. To express this as a percentage, we multiply by 100, resulting in 36%.

To learn more about dependent variable, refer:-

https://brainly.com/question/17034410

#SPJ11

answere correctly please
A man starts walking south at 5 ft/s from a point P. Thirty minute later, a woman starts waking north at 4 ft/s from a point 100 ft due west of point P. At what rate are the people moving apart 2 hour

Answers

The rate at which the people are moving apart after 2 hours is 0 ft/s.

To find the rate at which the man and the woman are moving apart after 2 hours, we can calculate the distance between them at the starting point and then use the concept of relative velocity to determine their rate of separation.

The man starts walking south at 5 ft/s from point P.

Thirty minutes later (0.5 hours), the woman starts walking north at 4 ft/s from a point 100 ft due west of point P.

Let's calculate the distance between them at the starting point (after 30 minutes):

Distance = Rate × Time

Distance = 5 ft/s × 0.5 hours

Distance = 2.5 feet

Now, after 2 hours, the man has been walking for 2 hours and 30 minutes (2.5 hours), while the woman has been walking for 2 hours.

The distance between them after 2 hours is the sum of the distance traveled by each person. Since they are walking in opposite directions, we can add their distances:

Distance = (5 ft/s × 2.5 hours) + (4 ft/s × 2 hours)

Distance = 12.5 feet + 8 feet

Distance = 20.5 feet

To find the rate at which they are moving apart, we differentiate the distance with respect to time:

Rate of separation = d(Distance) / dt

Since the distance is constant (20.5 feet), the rate of separation is zero. This means that after 2 hours, the man and the woman are not moving apart from each other; they are at a constant distance from each other.

Therefore, the rate at which the people are moving apart after 2 hours is 0 ft/s.

To learn more about Relative Velocity, click here:

brainly.com/question/29655726

#SPJ11

Calculate the limit. lim (-1)"n3 n->00 (Give an exact answer. Use symbolic notation and fractions where needed. Enter DNE if the limit does not exist.) lim (-1)"n3 = = 0 n- Incorrect

Answers

The limit of (-1)^n^3 as n approaches infinity does not exist (DNE).

The expression (-1)^n^3 represents a sequence that alternates between positive and negative values as n increases. Let's analyze the behavior of the sequence for even and odd values of n.

For even values of n, (-1)^n^3 = (-1)^(2m)^3 = (-1)^(8m^3) = 1, where m is a positive integer. Therefore, the sequence is always 1 for even values of n.

For odd values of n, (-1)^n^3 = (-1)^(2m+1)^3 = (-1)^(8m^3 + 12m^2 + 6m + 1) = -1, where m is a positive integer. Therefore, the sequence is always -1 for odd values of n.

Since the sequence alternates between 1 and -1 as n increases, it does not approach a single value. Hence, the limit of (-1)^n^3 as n approaches infinity does not exist (DNE).

Learn more about sequence here, https://brainly.com/question/29589773

#SPJ11

1. Let f(x) be a differentiable function. Differentiate the following functions with respect to *, leaving your answer in terms of f(x): (a) y = tan(x)) (b) y = sin(f(x)x2) 17 [3] [4]

Answers

(a) Given, f(x) be a differentiable function. To differentiate the function y = tan(x) with respect to f(x), we need to apply the chain rule. Let's denote g(x) = tan(x), and h(x) = f(x).

Then, y can be expressed as y = g(h(x)). Applying the chain rule, we have:

dy/dx = dy/dh * dh/dx,

where dy/dh is the derivative of g(h(x)) with respect to h(x), and dh/dx is the derivative of h(x) with respect to x.

Now, let's calculate the derivatives:

dy/dh:

Since g(x) = tan(x), the derivative of g(h(x)) with respect to h(x) is simply dg/dx evaluated at h(x):

dy/dh = dg/dx = d(tan(x))/dx = sec²(x).

dh/dx:

The derivative of f(x) with respect to x is given as f'(x).

Combining both derivatives, we have:

dy/dx = dy/dh * dh/dx = sec²(x) * f'(x).

Therefore, the derivative of y = tan(x) with respect to f(x) is

dy/dx = sec²(x) * f'(x).

(b) To differentiate the function y = sin(f(x) * x²) with respect to f(x), again we need to use the chain rule.

Let's denote g(x) = sin(x), and h(x) = f(x) * x² . Then, y can be expressed as y = g(h(x)). Applying the chain rule, we have:

dy/dx = dy/dh * dh/dx,

where dy/dh is the derivative of g(h(x)) with respect to h(x), and dh/dx is the derivative of h(x) with respect to x.

Now, let's calculate the derivatives:

dy/dh:

Since g(x) = sin(x), the derivative of g(h(x)) with respect to h(x) is simply dg/dx evaluated at h(x):

dy/dh = dg/dx = d(sin(x))/dx = cos(x).
dh/dx:

The derivative of f(x) * x² with respect to x involves the product rule. Let's differentiate f(x) and x² separately:

dh/dx = d(f(x) * x²)/dx = f'(x) * x² + f(x) * d(x²)/dx = f'(x) * x² + f(x) * 2x.

Combining both derivatives, we have:

dy/dx = dy/dh * dh/dx = cos(x) * (f'(x) * x² + f(x) * 2x).

Therefore, the derivative of y = sin(f(x) * x²) with respect to f(x) is dy/dx = cos(x) * (f'(x) * x² + f(x) * 2x).

To learn more about differentiable function visit:

brainly.com/question/31428683

#SPJ11

Which shows the elements of (A\B) × (BIA), where A = (1,2.31 and B = (3.4.51?
AlB is the same as A-B, the set difference, which is the set of elements in A that are not in B.
(A) {(1,4), (1,5), (2,4), (2,5))
(B) {(1,4), (2,5))
(C) {(1,2). (2,1),(5,4), (4,5))
(D) 1(4,1), (5,1), (4,2), (5,2))

Answers

Hence, the correct option is (A) {(1,4), (1,5), (2,4), (2,5)) when the elements of (A\B) × (BIA) where AlB is the same as A-B, the set difference.

Given that A = (1, 2, 3), and B = (3, 4, 5).

We have to find the elements of (A\B) × (BIA).

Let's first calculate A\B and BIA.

Using set difference, we get: A\B = {1, 2}

Using set union, we get: BIA = {3, 4, 5, 1, 2}

Next, we need to calculate the cartesian product of (A\B) × (BIA).

(A\B) × (BIA) = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}

Therefore, the elements of (A\B) × (BIA), where A = (1, 2, 3) and B = (3, 4, 5) are {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}.

To learn more about cartesian click here https://brainly.com/question/29298525

#SPJ11

researchers at a media company want to study news-reading habits among different age groups. They tracked print and online subscription data and made a 2-way table. a. create a segmented bar graph using one bar for each row of the table.
b. Is there an association between age groups and the method they use to read articles? Explain your reasoning.

Answers

a. To create a segmented bar graph, draw one bar for each row in the 2-way table, with segments representing the proportion of each age group using print or online methods.

b. To determine association, analyze the bar graph. If segment lengths vary significantly among age groups, it suggests an association between age and reading method preferences.

a. To create a segmented bar graph based on the 2-way table, follow these steps:

Identify the rows and columns in the table. Let's assume the table has three age groups: Group A, Group B, and Group C. The two methods of reading articles are Print and Online.

Create a bar for each row in the table. The length of each bar will represent the proportion or percentage of individuals within that age group who use a specific reading method.

Divide each bar into segments corresponding to the different reading methods (Print and Online). The length of each segment within a bar will represent the proportion or percentage of individuals within that age group who use that specific reading method.

Label each bar and segment appropriately to indicate the age group and reading method it represents.

Provide a legend or key to explain the colors or patterns used to distinguish between the different reading methods.

b. To determine if there is an association between age groups and the method they use to read articles, we need to analyze the segmented bar graph.

If the lengths of the segments within each bar are relatively similar across all age groups, it suggests that the method of reading articles is not strongly associated with age. In other words, the reading habits are similar among different age groups.

On the other hand, if there are noticeable differences in the lengths of the segments within each bar, it suggests an association between age groups and the method they use to read articles. The differences indicate that certain age groups have a preference for a particular reading method.

To draw a definitive conclusion, we would need to analyze the specific data values in the 2-way table and examine the proportions or percentages represented by the segments in the segmented bar graph. By comparing the proportions or percentages between age groups, we can determine if there is a significant association. Statistical methods such as chi-square tests or contingency table analysis can be used for a more rigorous analysis.

for such more question on chi-square tests

https://brainly.com/question/17142834

#SPJ8

Jacob office recycled a
total of 42 kilograms of
paper over 7 weeks. After
11 weeks, how many
kilograms of paper will his
office had recycled?

Answers

Answer:

66 kg

Step-by-step explanation:

Answer:

66 kg

Step-by-step explanation:

We know that in a total of 7 weeks, the office recycled 42 kg of paper.

We are asked to find how many kgs of paper were recycled after 11 weeks, (if the paper over each week was consistent, respectively)

To do this, we first need to know how much paper was recycled in 1 week.

Total amount of paper/weeks

42/7

=6

So, 6 kg of paper was recycle each week.

Now, we need to know how much paper was recycled after 11 weeks:

11·6

=66

So, 66 kg of paper was recycled after 11 weeks.

Hope this helps! :)

Suppose that f(t) = Qoat = Qo(1+r) with f(2)= 74.6 and f(9) = 177.2. Find the following: (a) a = (b) r = (Give both answers to at least 5 decimal places.)

Answers

To find the values of 'a' and 'r' in the equation f(t) = Qo * a^t, we can use the given information:

Given: f(2) = 74.6 and f(9) = 177.2

Step 1: Substitute the values of t and f(t) into the equation:

f(2) = Qo * a^2

74.6 = Qo * a^2

f(9) = Qo * a^9

177.2 = Qo * a^9

Step 2: Divide the second equation by the first equation to eliminate Qo:

(177.2)/(74.6) = (Qo * a^9)/(Qo * a^2)

2.3765 = a^(9-2)

2.3765 = a^7

Step 3: Take the seventh root of both sides to solve for 'a':

a = (2.3765)^(1/7)

a ≈ 1.20338 (rounded to 5 decimal places)

Step 4: Substitute the value of 'a' into one of the original equations to find Qo:

74.6 = Qo * (1.20338)^2

74.6 = Qo * 1.44979

Qo ≈ 51.4684 (rounded to 5 decimal places)

Step 5: Calculate 'r' using the value of 'a':

r = a - 1

r ≈ 0.20338 (rounded to 5 decimal

Learn more about equation here;

https://brainly.com/question/29657983

#SPJ11

The height in metres, above the ground of a car as a Ferris wheel rotates can be modelled by the function h(t) + 18, where t is the time in seconds. What is the maximum height of the Ferris wheel? 20

Answers

Since the function is h(t) + 18, we can conclude that the maximum height of the Ferris wheel is 18 meters.

The function h(t) + 18 indicates that the height of the car above the ground is determined by the value of h(t) added to 18.

The term h(t) represents the varying height of the car as the Ferris wheel rotates, but regardless of the specific value of h(t), the height above the ground will always be 18 meters higher due to the constant term 18.

Therefore, the maximum height of the Ferris wheel, as given by the function h(t) + 18, is 18 meters.

To learn more about function click here: brainly.com/question/31062578

#SPJ11

Explain how to compute the exact value of each of the following definite integrals using the Fundamental Theorem of Calculus. Leave all answers in exact form, with no decimal approxi- mations. (a) 2x3+6x-7)dx (b) 6 cosxdx (c) 10edx

Answers

The exact value of the definite integral ∫(2x³ + 6x - 7)dx over any interval [a, b] is (1/2) * (b⁴ - a⁴ + 3(b² - a²) - 7(b - a). This expression represents the difference between the antiderivative of the integrand evaluated at the upper limit (b) and the lower limit (a). It provides a precise value without any decimal approximations.

To compute the definite integral ∫(2x³ + 6x - 7)dx using the Fundamental Theorem of Calculus, we have to:

1: Find the antiderivative of the integrand.

Compute the antiderivative (also known as the indefinite integral) of each term in the integrand separately. Recall the power rule for integration:

∫x^n dx = (1/(n + 1)) * x^(n + 1) + C,

where C is the constant of integration.

For the given integral, we have:

∫2x³dx = (2/(3 + 1)) * x^(3 + 1) + C = (1/2) * x⁴ + C₁,

∫6x dx = (6/(1 + 1)) * x^(1 + 1) + C = 3x²+ C₂,

∫(-7) dx = (-7x) + C₃.

2: Evaluate the antiderivative at the upper and lower limits.

Plug in the limits of integration into the antiderivative and subtract the value at the lower limit from the value at the upper limit. In this case, let's assume we are integrating over the interval [a, b].

∫[a, b] (2x³ + 6x - 7)dx = [(1/2) * x⁴ + C₁] evaluated from a to b

                            + [3x²+ C₂] evaluated from a to b

                            - [7x + C₃] evaluated from a to b

Evaluate each term separately:

(1/2) * b⁴ + C₁ - [(1/2) * a⁴+ C₁]

+ 3b²+ C₂ - [3a² C₂]

- (7b + C₃) + (7a + C₃)

Simplify the expression:

(1/2) * (b⁴ a⁴ + 3(b² - a²) - (7b - 7a)

= (1/2) * (b⁴ - a⁴) + 3(b² - a²) - 7(b - a)

This is the exact value of the definite integral of (2x³+ 6x - 7)dx over the interval [a, b].

To know more about definite integral refer here:

https://brainly.com/question/29685762#

#SPJ11

= Let A(x) represent the area bounded by the graph, the horizontal axis, and the vertical lines at t = 0 and t = = x for the graph below. Evaluate A(z) for x = 1, 2, 3, and 4. = 5 4 3 N 1 1 2 3 4 5 A(

Answers

The area bounded by the graph, the horizontal axis, and the vertical lines at t = 0 and t = x for the given graph can be evaluated using the formula for the area under a curve.

Evaluating A(z) for x = 1, 2, 3, and 4 results in the following values:A(1) = 2.5 A(2) = 9 A(3) = 18.5 A(4) = 32To calculate the area, we can divide the region into smaller rectangles and sum up their areas. The height of each rectangle is determined by the graph, and the width is equal to the difference between the consecutive values of x. By calculating the area of each rectangle and summing them up, we obtain the desired result. In this case, we have divided the region into rectangles with equal widths of 1, resulting in the given areas.

Learn more about rectangle here

brainly.com/question/2607596

#SPJ11

Find the volume of the solid bounded by the surface f(x,y)=4-²-², the planes x = 2 and y = 3, and the three coordinate planes. 16 a. 20.5 cubic units b. 21.5 cubic units c. 20.0 cubic units d. None of the choices. e. 21.0 cubic units

Answers

The volume of the solid bounded by the surface f(x,y)=4-[tex]x^2[/tex]-[tex]y^2[/tex], the planes x=2, y=3, and the three coordinate planes is 20.5 cubic units (option a).

To find the volume of the solid, we need to integrate the function f(x,y) over the given region. The region is bounded by the surface f(x,y)=4-[tex]x^2[/tex]-[tex]y^2[/tex], the planes x=2, y=3, and the three coordinate planes.

First, let's determine the limits of integration. Since the plane x=2 bounds the region, the limits for x will be from 0 to 2. Similarly, since the plane y=3 bounds the region, the limits for y will be from 0 to 3.

Now, we can set up the integral for the volume:

V = ∫∫R (4-[tex]x^2[/tex]-[tex]y^2[/tex]) dA

Integrating with respect to y first, we have:

V = ∫[0,2] ∫[0,3] (4-[tex]x^2[/tex]-[tex]y^2[/tex]) dy dx

Evaluating this integral, we get V = 20.5 cubic units.

Therefore, the correct answer is option a) 20.5 cubic units.

Learn more about plane here:

https://brainly.com/question/2400767

#SPJ11

from 1990 to 2000 the student tuition at a university grew from $12,000 to $18,000. (a) using the exponential growth model, determine r, the annual rate of increase for the population as a decimal accurate to 3 places (b) assuming the same growth rate use r found in part (a) above, find in what year (to the nearest year) the tuition of rutgers will reach $30.000

Answers

To determine the annual rate of increase (r) using the exponential growth model, we can use the formula:

Final Value = Initial Value * (1 + r)^t

Where:

Final Value = $18,000 (tuition in 2000)

Initial Value = $12,000 (tuition in 1990)

t = 2000 - 1990 = 10 years (time period)

Using the formula, we can solve for r:

$18,000 = $12,000 * (1 + r)^10

Divide both sides by $12,000:

1.5 = (1 + r)^10

Taking the 10th root of both sides:

(1 + r) ≈ 1.5^(1/10)

(1 + r) ≈ 1.048808848

Subtracting 1 from both sides:

r ≈ 1.048808848 - 1

r ≈ 0.048808848

Therefore, the annual rate of increase (r) for the tuition is approximately 0.0488 or 4.88% (rounded to three decimal places).

Next, to find in what year the tuition will reach $30,000, we can use the same exponential growth model equation:

Final Value = Initial Value * (1 + r)^t

Where:

Final Value = $30,000

Initial Value = $12,000

r = 0.0488 (as found in part (a))

t = number of years we want to find

We need to solve for t:

$30,000 = $12,000 * (1 + 0.0488)^t

Divide both sides by $12,000:

2.5 = (1.0488)^t

Taking the logarithm of both sides (base 10 or natural logarithm can be used):

log(2.5) = log(1.0488)^t

Using logarithmic properties:

log(2.5) = t * log(1.0488)

Divide both sides by log(1.0488):

t ≈ log(2.5) / log(1.0488)

Using a calculator, we can find:

t ≈ 11.72

Rounded to the nearest year, the tuition of Rutgers will reach $30,000 in the year 1990 + 11.72 ≈ 2002.

Therefore, the tuition of Rutgers will reach $30,000 in the year 2002 (to the nearest year).

(a)The annual rate of increase (r) is approximately 0.047 or 4.7%

To determine the annual rate of increase (r) using the exponential growth model, we can use the formula:

P = P0 * (1 + r)^t

Where:

P is the final value (tuition at the end year),

P0 is the initial value (tuition at the starting year),

r is the annual rate of increase (as a decimal),

t is the number of years.

We are given that the tuition grew from $12,000 (P0) to $18,000 (P) over a period of 10 years (t = 2000 - 1990 = 10). Plugging these values into the formula, we can solve for r:

18,000 = 12,000 * (1 + r)^10

Dividing both sides of the equation by 12,000, we have:

1.5 = (1 + r)^10

Taking the 10th root of both sides:

(1 + r) ≈ 1.5^(1/10)

Calculating this expression, we find:

(1 + r) ≈ 1.047

Subtracting 1 from both sides:

r ≈ 1.047 - 1

r ≈ 0.047

Therefore, the annual rate of increase (r) is approximately 0.047 or 4.7% (as a decimal accurate to 3 decimal places).

(b) The tuition will reach $30,000 around the year 2010.

Using the rate of increase found in part (a), we can determine in what year the tuition will reach $30,000. Let's use the same formula and solve for t:

30,000 = 12,000 * (1 + 0.047)^t

Dividing both sides by 12,000:

2.5 = (1.047)^t

Taking the logarithm of both sides:

log(2.5) = t * log(1.047)

Solving for t, we have:

t = log(2.5) / log(1.047)

Calculating this expression, we find:

t ≈ 9.67

Rounding to the nearest year, the tuition of Rutgers will reach $30,000 in approximately 10 years (2000 + 10 = 2010).

Therefore, the tuition will reach $30,000 around the year 2010.

To know more about exponential growth refer here:

https://brainly.com/question/1596693?#

#SPJ11

The marketing research department of a computer company used a large city to test market the​ firm's new laptop. The department found the relationship between price p​ (dollars per​ unit) and the demand x​ (units per​ week) was given approximately by the following equation.
p= 1275 = 0.17x^2 0 < x < 80
So, weekly revenue can be approximated by the following equation.
R(x)= rp = 1275x- 0.17x^3 0 < x <80
Required:
a. Find the local extrema for the revenue function. What is/are the local maximum/a?
b. On which intervals is the graph of the revenue function concave upward?
c. On which intervals is the graph of the revenue function concave downward?

Answers

(a) the lοcal maximum fοr the revenue functiοn οccurs at x = 50.

(b) the range οf x is 0 < x < 80, there are nο intervals οn which the graph οf the revenue functiοn is cοncave upward.

(c) the range οf x is 0 < x < 80, the graph οf the revenue functiοn is cοncave dοwnward fοr the interval 0 < x < 80.

What is Revenue?

revenue is the tοtal amοunt οf incοme generated by the sale οf gοοds and services related tο the primary οperatiοns οf the business.

a. Tο find the lοcal extrema fοr the revenue functiοn R(x) =[tex]1275x - 0.17x^3,[/tex] we need tο find the critical pοints by taking the derivative οf the functiοn and setting it equal tο zerο.

[tex]R'(x) = 1275 - 0.51x^2[/tex]

Setting R'(x) = 0 and sοlving fοr x:

[tex]1275 - 0.51x^2 = 0[/tex]

[tex]0.51x^2 = 1275[/tex]

[tex]x^2 = 2500[/tex]

x = ±50

We have twο critical pοints: x = -50 and x = 50.

Tο determine whether these critical pοints are lοcal maxima οr minima, we can examine the secοnd derivative οf the functiοn.

R''(x) = -1.02x

Evaluating R''(x) at the critical pοints:

R''(-50) = -1.02(-50) = 51

R''(50) = -1.02(50) = -51

Since R''(-50) > 0 and R''(50) < 0, the critical pοint x = -50 cοrrespοnds tο a lοcal minimum, and x = 50 cοrrespοnds tο a lοcal maximum fοr the revenue functiοn.

Therefοre, the lοcal maximum fοr the revenue functiοn οccurs at x = 50.

b. The graph οf the revenue functiοn is cοncave upward when the secοnd derivative, R''(x), is pοsitive.

R''(x) = -1.02x

Fοr R''(x) tο be pοsitive, x must be negative. Since the range οf x is 0 < x < 80, there are nο intervals οn which the graph οf the revenue functiοn is cοncave upward.

c. The graph οf the revenue functiοn is cοncave dοwnward when the secοnd derivative, R''(x), is negative.

R''(x) = -1.02x

Fοr R''(x) tο be negative, x must be pοsitive. Since the range οf x is 0 < x < 80, the graph οf the revenue functiοn is cοncave dοwnward fοr the interval 0 < x < 80.

To learn more about Revenue from the given link

https://brainly.com/question/32455692

#SPJ4

cylindrical container needs to be constructed such that the volume is a maximum. if you are given 20 square inches of aluminum to construct the cylinder, what are the radius and height that would maximize the volume?

Answers

To maximize the volume of a cylindrical container given 20 square inches of aluminum, the radius and height should be chosen such that the volume is maximized.

Let's denote the radius of the cylinder as r and the height as h. The formula for the volume of a cylindrical container is V = πr^2h. We are given that the total surface area (excluding the top and bottom) of the cylinder is 20 square inches, which can be expressed as 2πrh.

From the surface area equation, we can solve for h in terms of r: h = 20 / (2πr) = 10 / πr.

Substituting this expression for h into the volume equation, we have V = πr^2 (10 / πr) = 10r.

To maximize the volume, we differentiate the volume equation with respect to r and set it equal to zero: dV/dr = 10 = 0.

Solving for r, we find that r = 0.

However, since a radius of zero does not make physical sense, we conclude that there is no maximum volume possible with the given constraints.

Learn more about height  here:

https://brainly.com/question/29131380

#SPJ11




A bakery makes gourmet cookies. For a batch of 4000 oatmeal and raisin cookies, how many raisins should be used so that the probability of a cookie having no raisins is .02? Assume the number of raisi

Answers

The bakery should use approximately -ln(0.02) raisins in a batch of 4000 oatmeal and raisin cookies to achieve a probability of 0.02 for a cookie having no raisins.

To find the number of raisins to be used, we need to determine the parameter λ of the Poisson distribution. The probability of a cookie having no raisins is given as 0.02, which is equal to the probability of the Poisson random variable being 0.

In a Poisson distribution, the mean (λ) is equal to the parameter of the distribution. So, we need to find the value of λ for which P(X = 0) = 0.02.

The probability mass function of the Poisson distribution is given by P(X = k) = ([tex]e^(-\lambda)[/tex] × [tex]\lambda^k[/tex]) / k!, where k is the number of raisins.

Setting k = 0 and P(X = 0) = 0.02, we have:

0.02 = ([tex]e^(-\lambda)[/tex] × [tex]\lambda^0[/tex]) / 0!

Since 0! = 1, the equation simplifies to:

0.02 = [tex]e^{(-\lambda)[/tex]

Taking the natural logarithm (ln) of both sides, we get:

ln(0.02) = -λ

Solving for λ, we have:

λ = -ln(0.02)

Now, the bakery should use the value of λ as the number of raisins to be used in a batch of 4000 oatmeal and raisin cookies.

Learn more about the probability at

https://brainly.com/question/31828911

#SPJ4

The question is -

A bakery makes gourmet cookies. For a batch of 4000 oatmeal and raisin cookies, how many raisins should be used so that the probability of a cookie having no raisins is .02? Assume the number of raisins in a random cookie has a Poisson distribution.

The bakery should use ______ raisins.

Other Questions
name the following compound according to substitutive iupac nomenclature(CH3)2 CHCH2CH2CH2OH Assume table has been declared and initialized as a two-dimensional integer array with 9 rows and 5 columns. Which segment of code will correctly find the sum of the elements in the fifth column? (2 points)int sum = 0;for(int i = 0; i < table.length; i++)sum += table[4][i];int sum = 0;for(int i = 0; i < table.length; i++)sum += table[i][4];int sum = 0;for(int i = 0; i < table[0].length; i++)sum += table[i][4];int sum = 0;for(int outer = 0; outer < table[0].length; outer++)for(int inner = 0; inner < table.length; inner++)sum += table[outer][4];int sum = 0;for(int outer = 0; outer < table.length; outer++)for(int inner = 0; inner < table[0].length; inner++)sum += table[outer][4]; Determine the area of the shaded region bounded by y= -x^2+9x and y=x^2-5x A cantaloupe costs $0.45 per pound. If Jacinta pays $1.80, how many pounds did the cantaloupe weigh? * determine what type of reaction each unbalanced chemical equation represents Identify and explain the main factors that determine long-runeconomic growth. How do they relate to the prospects and challengesof the world economic growth post Covid-19? (6) (5 marks) Use the definition of the Taylor series to find the first four nonzero terms of the series for f(x) = x2/3 centered at x = 1. Next use this result to find the first three nonzero terms i gm is creating an alliance with lyft, a major ride-sharing service, to facilitate group of answer choices boundaries. stakeholder participation. financial awareness. creativity. which of the following acronyms best stands for the premier infection-control education organization in dentistry? The series diverges. O 1 O O 1 n = If the infinite series a has nth partial sum Sn= 2n- k=1 -N for n 1, what is the sum of the series ak? k=1 which of the following are types of bias? (select all that apply.) group of answer choicesa.beauty bias b.sample size bias c.response bias d.selection bias Given points A(2; -3), B(4;0), C(5; 1). Find the general equation of a straight line passing... 1. ...through the point A perpendicularly to vector AB 2. ...through the point B parallel to vector AC 3 what is the health and social care levy? what are the arguments infavour for it ? and what are the arguments against it ? Read: The Boeing 737 MAX: Lessons for Engineering Ethics, by Jospeh Herkert et al. You can find it on the internet. 1. Determining the facts. More often than not, accidents have more than one cause. Sometimes these causes take place in series, sometimes in parallel or in another complex interaction. One of the steps in accident analysis is to determine the sequence of events. Another concept is chain reaction': The Merriam Webster dictionary defines a chain reaction: a series of events so related to each other that each one initiates the next. This implies that removing one link from the chain, will stop the reaction from going to completion. Construct a series of events consisting of between five and ten events that caused the two Boeing 737 crashes. Removing any of these events should have prevented the accidents from happening. 2. Boeing is begin accused of negligence. Determine at least four features of postive or negative paradigms of negligence and use a line drawing to decide whether BOEING was negligent or not. 3. Consider the corrective actions taken. Can you categorize them under one or more of the four ethical approaches we considered? Consider three of the corrective actions. Use between 100 and 200 words. 4. Do you think BOEING can be accused of unethical behaviour? Social and personality psychologists share which common goal?A) understanding people who are mentally ill B) understanding individual differences C) understanding how the presence of others influences people D) understanding causes of human behavior please answer asap4. (10 points) Evaluate the integral 1. (+ V1 a2)ds. - (Hint:it can be interpreted in terms of areas. ) What instruction (with any necessary operands) would pop the top 32 bits of the runtime stack into the EBP register?What instruction would I use to save the current value of the flags register? which of the following was not an accounting issue in the sunbeam case? multiple choice cookie jar reserves channel stuffing bill and hold sales swap transactions Which of the following is a process by which the level of attainment by an exemplary program is used as a point of comparison to the current level of achievement? a) Benchmarking b) Standardizing c) Prototyping d) Modeling What were the scribes called who preserved the Old Testament text?Select one:a. Masoretesb. Essenesc. Jamnites