One third of the trees in an orchard are olive trees.
One-quarter of the trees are fig trees.
The others are 180 mixed fruit trees.
In the first week of the season the owner harvests one-third of the olive trees and one third of the fig trees. How many trees in the orchard still have to be harvested?

Answers

Answer 1

In the orchard, one-third of the trees are olive trees, which means the olive trees constitute 1/3 of the total trees. Similarly, one-quarter of the trees are fig trees, which means the fig trees constitute 1/4 of the total trees. The remaining trees are 180 mixed fruit trees. 7/36 of the total trees need to be harvested.

Let's assume there are a total of x trees in the orchard.

The number of olive trees is (1/3) * x.

The number of fig trees is (1/4) * x.

The number of mixed fruit trees is 180.

In the first week of the season, the owner harvests one-third of the olive trees, which is (1/3) * (1/3) * x = (1/9) * x olive trees.

Similarly, the owner harvests one-third of the fig trees, which is (1/3) * (1/4) * x = (1/12) * x fig trees.

The total number of trees that need to be harvested is the sum of the harvested olive trees and the harvested fig trees:

(1/9) * x + (1/12) * x = (4/36 + 3/36) * x = (7/36) * x.

Therefore, 7/36 of the total trees need to be harvested. To find the actual number of trees, we need to know the value of x.

LEARN MORE ABOUT  number here: brainly.com/question/3589540

#SPJ11


Related Questions

1-5 Equations of Lines and Planes: Problem 3 Previous Problem Problem List Next Problem (1 point) Find an equation of a plane containing the three points (-5, 2, 2), (0, 6, 0), (0, 7, 2) in which the

Answers

Normal vector is perpendicular to the line given by the parametric equations x = 2 - t, y = 3 + 2t, z = 4t.

To find an equation of the plane, we first need to determine the normal vector. Since the plane is perpendicular to the line, the direction vector of the line will be parallel to the normal vector of the plane.

The direction vector of the line is given by <dx/dt, dy/dt, dz/dt> = <-1, 2, 4>.

To find a normal vector, we can take the cross product of two vectors in the plane. We can choose two vectors by considering two pairs of points on the plane.

Let's consider the vectors formed by the points (-5, 2, 2) and (0, 6, 0), and the points (-5, 2, 2) and (0, 7, 2).

Vector 1 = <0 - (-5), 6 - 2, 0 - 2> = <5, 4, -2>

Vector 2 = <0 - (-5), 7 - 2, 2 - 2> = <5, 5, 0>

Taking the cross product of Vector 1 and Vector 2, we have:

<5, 4, -2> x <5, 5, 0> = <-10, 10, 5>

This resulting vector, <-10, 10, 5>, is perpendicular to the plane.

Now we can use the normal vector and one of the given points, such as (-5, 2, 2), to write the equation of the plane in the form ax + by + cz = d.

Plugging in the values, we have:

-10(x - (-5)) + 10(y - 2) + 5(z - 2) = 0

Simplifying, we get:

-10x + 50 + 10y - 20 + 5z - 10 = 0

Combining like terms, we have:

-10x + 10y + 5z + 20 = 0

Dividing both sides by 5, we obtain the equation of the plane:

-2x + 2y + z + 4 = 0

Therefore, an equation of the plane containing the three given points and with a normal vector perpendicular to the line is -2x + 2y + z + 4 = 0.

To learn more about equation of the plane visit:

brainly.com/question/27190150

#SPJ11

Correct answer gets brainliest!!!

Answers

Points have no size and no dimension

Points have no length or height.

option C and D are the correct answers.

What are the characteristics of points?

A point is an exact location without any size or does not have any length, area, volume or any other dimensional attribute. It is normally shown by a dot.

The following are the characteristics of points;

Points are considered to be zero-dimensional objectsA point represents a specific location in spacePoints are indivisible and cannot be further divided.Points have no size or extentPoints are infinitely numerousPoints have no inherent orientation. The distance between two points is defined as the straight-line.

Thus, from the given options; the characteristic of points are;

Points have no size and no dimension

Points have no length or height.

Learn more about points here: https://brainly.com/question/7243416

#SPJ1

4. Which one gives the area of the region enclosed by the I curve y = = and the lines y = 2x, y = ? I (a) xdx - (b) [th Tydy + [2=2ªdy √2 ²2-y² (c) [ ² Tydy + [²2 - ²³ dy y r/27 /24-x² -dx (

Answers

Among the given options, option (c) [ ² Tydy + [²2 - ²³ dy y r/27 /24-x² -dx gives the area of the region enclosed by the curve y = = and the lines y = 2x and y = ?.

The expression [ ² Tydy + [²2 - ²³ dy represents the integral of y with respect to y from the lower limit to the upper limit. The limits of integration in this case are determined by the intersection points of the curve y = = and the lines y = 2x and y = ?.

The expression r/27 /24-x² -dx represents the integral of 1 with respect to x from the lower limit to the upper limit. The limits of integration in this case are determined by the x-values where the curve y = = intersects the lines y = 2x and y = ?.

By evaluating these integrals within the given limits, we can determine the area of the region enclosed by the curve and the lines.

To learn more about intersection points : brainly.com/question/29188411

#SPJ11

1. Find the critical numbers of f(x) = 2r³-9x². 2. Find the open intervals on which the function is increasing or decreasing. 3 f(x) = x³ - ²/³x² 3. Find the open intervals on which the function

Answers

The critical numbers of f(x) = 2x³ - 9x² are x = 0 and x = 3. f'(x) is positive on the interval (4/9, ∞), implying that the function is increasing again on this interval.

1. To find the critical numbers of f(x) = 2x³ - 9x², we need to find the values of x where the derivative of the function is equal to zero or undefined.

First, let's find the derivative of f(x):

f'(x) = 6x² - 18x

Next, we set the derivative equal to zero and solve for x:

6x² - 18x = 0

Factoring out 6x, we have:

6x(x - 3) = 0

Setting each factor equal to zero, we get two critical numbers:

6x = 0  =>  x = 0

x - 3 = 0  =>  x = 3

Therefore, the critical numbers of f(x) = 2x³ - 9x² are x = 0 and x = 3.

2. To determine the open intervals on which the function is increasing or decreasing, we can analyze the sign of the derivative f'(x) on different intervals.

Using the critical numbers found in the previous step, we can create a sign chart:

Interval | f'(x)

-----------------

(-∞, 0)  |  -

(0, 3)   |  +

(3, ∞)   |  -

From the sign chart, we can see that f'(x) is negative on the interval (-∞, 0), which means the function is decreasing on this interval. It is positive on the interval (0, 3), indicating that the function is increasing there. Finally, f'(x) is negative on the interval (3, ∞), implying that the function is decreasing again on this interval.

3. For the function f(x) = x³ - (2/3)x², we can find the open intervals on which the function is increasing or decreasing by following similar steps as in the previous question.

First, let's find the derivative of f(x):

f'(x) = 3x² - (4/3)x

Setting the derivative equal to zero and solving for x:

3x² - (4/3)x = 0

Factoring out x, we have:

x(3x - 4/3) = 0

Setting each factor equal to zero, we get two critical numbers:

x = 0

3x - 4/3 = 0  =>  3x = 4/3  =>  x = 4/9

The critical numbers are x = 0 and x = 4/9.

Using these critical numbers, we can create a sign chart:

Interval | f'(x)

-----------------

(-∞, 0)  |  +

(0, 4/9) |  -

(4/9, ∞) |  +

From the sign chart, we can determine that f'(x) is positive on the interval (-∞, 0), indicating that the function is increasing on this interval. It is negative on the interval (0, 4/9), indicating that the function is decreasing there. Finally, f'(x) is positive on the interval (4/9, ∞), implying that the function is increasing again on this interval.

To learn more about interval click here:

brainly.com/question/20036296

#SPJ11

.Find the slope using the given points and choose the equation in point-slope form; then select the equation in slope-intercept form.
(-0.01,-0.24)(-0.01,-0.03)

Answers

The slope of the line passing through the given points is undefined. This equation represents a vertical line passing through all points on the x-axis with y-coordinate equal to -0.24.

To find the slope of the line passing through the given points (-0.01,-0.24) and (-0.01,-0.03), we use the formula:
slope = (y2-y1)/(x2-x1)
Substituting the given values, we get:
slope = (-0.03 - (-0.24))/(-0.01 - (-0.01))
Simplifying, we get:
slope = 0/0
Since the denominator is zero, the slope is undefined. This means that the line passing through the two given points is a vertical line passing through the point (-0.01,-0.24) and all points on this line have the same x-coordinate (-0.01).
To write the equation of the line in point-slope form, we use the point (-0.01,-0.24) and the undefined slope:
y - (-0.24) = undefined * (x - (-0.01))
Simplifying this equation, we get:
x = -0.01
To write the equation of the line in slope-intercept form (y = mx + b), we cannot use the slope-intercept form directly since the slope is undefined. Instead, we use the equation we obtained in point-slope form:
x = -0.01
Solving for y, we get:
y = any real number
Therefore, the equation of the line in slope-intercept form is:
y = any real number
This equation represents a horizontal line passing through all points on the y-axis with x-coordinate equal to -0.01.

To know more about vertical line visit :-

https://brainly.com/question/29325828

#SPJ11

Previous Problem Problem List Next Problem (9 points) Let F counterclockwise (6x2y + 2y3 + 7e)i + (2ey? + 150x) 3. Consider the line integral of F around the circle of radius a, centered at the origin

Answers

The line integral of F around the circle of radius a = 1, centered at the origin and transversed counterclockwise, is 2π + 28.

To calculate the line integral, we need to parameterize the circle. Let's use polar coordinates (r, θ), where r = 1 and θ varies from 0 to 2π.

The unit tangent vector T(t) is given by T(t) = (cos t, sin t), where t is the parameterization of the curve.

Substituting the parameterization into the vector field F, we get:

F(r, θ) = (6(1)²(cos θ)(sin θ) + 2(sin θ)³ + 7e(1*cos θ)) i + (2e(sin² θ) + 150(1)) j

Now we evaluate the dot product of F and T:

F • T = (6(cos θ)(sin θ) + 2(sin θ)³ + 7e(1*cos θ))(cos t) + (2e(sin² θ) + 150)(sin t)

Integrating this dot product with respect to t from 0 to 2π, we obtain the line integral as 2π + 28.

learn more about Line integral here:

https://brainly.com/question/32250032

#SPJ4

the complete question is:

F=( 6x²y + 2y³ + 7 eˣ) i + (2eʸ² + 150x )j, Consider the line integral of F around the circle of radius a, centered at the origin and transversed counterclockwise.

Find the line integral for a = 1

find the Taylor polynomials of the given function centered at degree two approximating the given point.
121. f(x) = ln x al a
123. f(x) = eª at a = 1
123. f(x) = e* at

Answers

The Taylor polynomials centered at a of the given functions are as follows:

121. f(x) = ln x at a:

  T2(x) = ln a + (x - a)/a - ((x - a)/a)^2/2

123. f(x) = e^a at a = 1:

  T2(x) = e + (x - 1)e + ((x - 1)e)^2/2

123. f(x) = e^(at):

  T2(x) = e^a + (x - a)e^a + ((x - a)e^a)^2/2

121. f(x) = ln x at a:

To find the Taylor polynomial centered at a, we need to compute the function and its derivatives at the point a. The Taylor polynomial of degree 2 is given by:

T2(x) = f(a) + f'(a)(x - a) + f''(a)(x - a)^2/2

First, let's find the derivatives of f(x) = ln x:

f'(x) = 1/x

f''(x) = -1/x^2

Substituting these derivatives into the formula, we have:

T2(x) = ln a + (x - a)/a - ((x - a)/a)^2/2

123. f(x) = e^a at a = 1:

Similar to the previous problem, we need to find the derivatives of f(x) = e^x:

f'(x) = e^x

f''(x) = e^x

Using the Taylor polynomial formula, we have:

T2(x) = f(a) + f'(a)(x - a) + f''(a)(x - a)^2/2

Substituting a = 1 and the derivatives into the formula, we get:

T2(x) = e + (x - 1)e + ((x - 1)e)^2/2

123. f(x) = e^(at):

Similarly, we need to find the derivatives of f(x) = e^(ax):

f'(x) = ae^(ax)

f''(x) = a^2e^(ax)

Using the Taylor polynomial formula, we have:

T2(x) = f(a) + f'(a)(x - a) + f''(a)(x - a)^2/2

Substituting the derivatives into the formula, we get:

T2(x) = e^a + (x - a)e^a + ((x - a)e^a)^2/2

These are the Taylor polynomials of degree 2 approximating the given functions centered at the specified point.

Learn more about Taylor polynomials here:

brainly.com/question/30481013

#SPJ11

Approximately how many raindrops fall on 125 acres during a 5.0
inch rainfall? (Estimate the size of a raindrop to be 0.004
in3.
number of raindrops (order of magnitude only)

Answers

Approximately 9.9 × 10⁹ raindrops fall on 125 acres during a 5.0-inch rainfall. The number of raindrops (order of magnitude only) that fall on 125 acres during a 5.0-inch rainfall can be calculated as follows:

Given that the size of a raindrop is estimated to be 0.004 in³.

Since 1 acre = 63,360 in², therefore, 125 acres = 125 × 63,360 in² = 7,920,000 in²

The volume of water that falls on 125 acres during a 5.0-inch rainfall can be calculated as follows:

Volume = Area × height= 7,920,000 × 5.0 in= 39,600,000 in³

Now, the total number of raindrops that fall on 125 acres during a 5.0-inch rainfall can be estimated by dividing the total volume by the volume of a single raindrop.

The number of raindrops (order of magnitude only)= (Volume of water) ÷ (Volume of a single raindrop)

= (39,600,000 in³) ÷ (0.004 in³)

≈ 9.9 × 10⁹Raindrops, order of magnitude only.

To learn more about volume of water, refer:-

https://brainly.com/question/29174247

#SPJ11

how do you prove that the mearsure of an angle formed by two secants, a tangent and a secant, or two tangents intersecting in the exterior of a circle is equal to one galf the difference of the measures of the intercepted arcs

Answers

The measure of an angle formed by two secants, a tangent and a secant, or two tangents intersecting in the exterior of a circle is equal to half the difference between the measures of the intercepted arcs.

Let's consider the case of two secants intersecting in the exterior of a circle. The intercepted arcs are the parts of the circle that lie between the intersection points. The angle formed by the two secants is formed by two rays starting from the intersection point and extending to the endpoints of the secants. The measure of this angle can be proven to be equal to half the difference between the measures of the intercepted arcs.

To prove this, we can use the fact that the measure of an arc is equal to the central angle that subtends it. We know that the sum of the measures of the central angles in a circle is 360 degrees. In the case of two secants intersecting in the exterior, the sum of the measures of the intercepted arcs is equal to the sum of the measures of the central angles subtending those arcs.

Let A and B be the measures of the intercepted arcs, and let x be the measure of the angle formed by the two secants. We have A + B = x + (360 - x) = 360. Rearranging the equation, we get x = (A + B - 360)/2, which simplifies to x = (A - B)/2. Therefore, the measure of the angle formed by the two secants is equal to half the difference between the measures of the intercepted arcs. The same reasoning can be applied to the cases of a tangent and a secant, or two tangents intersecting in the exterior of a circle.

Learn more about tangent here:

https://brainly.com/question/10053881

#SPJ11

Compute the following derivative. d -(5 In (7x)) dx d (5 In (7x)) = dx

Answers

The derivative of the function 5ln(7x) is 5/x

How to find the derivative of the function

From the question, we have the following parameters that can be used in our computation:

The function 5ln(7x)

This can be expressed as

d (5ln(7x))/dx

The derivative of the function can be calculated using the first principle which states that

if f(x) = axⁿ, then f'(x) = naxⁿ⁻¹

Using the above as a guide, we have the following:

d (5ln(7x))/dx = 5/x

Hence, the derivative is 5/x

Read more about derivatives at

brainly.com/question/5313449

#SPJ4

Question

Compute the following derivative

d (5ln(7x))/dx

Find k so that the following function is continuous on any interval: f(x) = kx if 0≤x<3 , and f(x) = 9x^2 if 3≤x. k = ___

Answers

The value of k that makes the function continuous on any interval is 27. To find the value of k that makes the function continuous on any interval, we need to ensure that the two parts of the function, kx and 9x², are equal at the point where x transitions from being less than 3 to being greater than or equal to 3.

For a function to be continuous at a particular point, the left-hand limit and the right-hand limit of the function at that point should be equal, and they should also be equal to the value of the function at that point.

In this case, the function transitions at x = 3. So we need to find the value of k such that kx is equal to 9x² when x = 3.

Setting up the equation:

k(3) = 9(3)²

3k = 9(9)

3k = 81

k = 81/3

k = 27

Therefore, the value of k that makes the function continuous on any interval is 27.

Learn more about limit here: https://brainly.com/question/30782259

#SPJ11

A colony of bacteria is grown under ideal conditions in a laboratory so that the population increases exponentially with time. At the end of 4 hours there are 30,000 bacteria. At the end of 6 hours there are 30,000. How many bacteria were present initially?

Answers

There were initially 7,500 bacteria present in the colony.

To determine the initial number of bacteria, we can use the exponential growth formula:

P = P0 × [tex]e^{kt}[/tex]

Where:

P is the final population size

P0 is the initial population size

k is the growth rate constant

t is the time in hours

We are given two data points:

At t = 4 hours, P = 30,000

At t = 6 hours, P = 60,000

Using these data points, we can set up two equations:

30,000 = P0 × [tex]e^{4k}[/tex]

60,000 = P0 × [tex]e^{6k}[/tex]

Dividing the second equation by the first equation, we get:

2 = [tex]e^{2k}[/tex]

Taking the natural logarithm of both sides, we have:

ln(2) = 2k

Solving for k, we find:

k = [tex]\frac{ln2}{2}[/tex]

Substituting the value of k back into one of the original equations, we can solve for P0:

30,000 = P0 × [tex]e^{\frac{4ln(2)}{2} }[/tex]

Simplifying, we have:

30,000 = P0 × [tex]e^{2ln(2)}[/tex]

330,000 = P0 × [tex]2^{2}[/tex]

30,000 = 4P0

Dividing both sides by 4, we find:

P0 = 7,500

Therefore, there were initially 7,500 bacteria present in the colony.

Learn more about exponential here:

https://brainly.com/question/29160729

#SPJ11








Evaluate the given double integral for the specified region R. 19) S S 3x2 dA, where R is the rectangle bounded by the lines x=-1,x= 3, y = -2, and y=0. R A) 96 B) - 96 C) - 32 D) 32

Answers

The value of the double integral is 56.

Evaluate the double integral?

To evaluate the double integral of [tex]3x^2[/tex] over the region R, which is the rectangle bounded by the lines x = -1, x = 3, y = -2, and y = 0, we set up the integral as follows:

∬R [tex]3x^2[/tex] dA

Since R is a rectangle, we can express the double integral as an iterated integral. First, we integrate with respect to y and then with respect to x:

∫[-2, 0] ∫[-1, 3] [tex]3x^2[/tex] dx dy

Integrating with respect to x, we get:

∫[-2, 0] [[tex]x^3[/tex]] [-1, 3] dy

∫[-2, 0] ([tex]3^3[/tex] - (-1)^3) dy

∫[-2, 0] (27 - (-1)) dy

∫[-2, 0] (28) dy

[28y] [-2, 0]

28(0) - 28(-2)

0 + 56

56

Therefore, the value of the double integral is 56.

To know more about double integral, refer here:

https://brainly.com/question/27360126

#SPJ4

Simplify the radical expression. Assume that all variables
represent positive real numbers.
327a6b3c10
Multiply and simplify: 37
-257+ 5
Simplify: 2x5-24x3+16x4x

Answers

The simplified radical expression is 3a^3b^1c^5√(3a^3b^1c^5), the product of 37 and the sum of -257 and 5 is -9324, and the expression 2x^5 - 24x^3 + 16x^4 is already simplified.

To simplify the radical expression 327a^6b^3c^10, you can break down the number and variables under the radical into their prime factors. The simplified expression would be 3a^3b^1c^5√(3a^3b^1c^5).

To multiply and simplify 37 * (-257 + 5), you first simplify the parentheses by combining -257 and 5, resulting in -252. Then, you multiply -252 by 37 to get -9324.

For the expression 2x^5 - 24x^3 + 16x^4, there's no further simplification possible. This is already in its simplest form.

For more information on simplifying equations visit : brainly.com/question/31864965

#SPJ11

A tank contains 1000 L of brine with 15 kg of dissolved salt.Pure water enters the tank at a rate of 10L/min. The solution iskept thoroughly mixed and drains from the tank at the same rate.How much salt is in the tank
(a) after t minutes
(b) after 20 minutes?

Answers

The concentration of salt in the tank at any given time can be described by the equation C(t) = e^(-k * t + ln(0.015)), and the amount of salt in the tank after 20 minutes depends on the value of k and the volume of the tank.

To solve this problem, we need to consider the rate of salt entering and leaving the tank over time.

(a) After t minutes:

The rate of salt entering the tank is constant because pure water is being added. The rate of salt leaving the tank is proportional to the concentration of salt in the tank at any given time.

Let's define the concentration of salt in the tank at time t as C(t) (in kg/L). Initially, the concentration of salt is 15 kg/1000 L, which can be written as C(0) = 15/1000 = 0.015 kg/L.

Since pure water enters the tank at a rate of 10 L/min, the rate of salt entering the tank is 0 kg/min because the water is salt-free.

The rate of salt leaving the tank is proportional to the concentration of salt in the tank at any given time. Let's call this rate k. So, the rate of salt leaving the tank is k * C(t).

Using the principle of conservation of mass, the change in the amount of salt in the tank over time is equal to the difference between the rate of salt entering and the rate of salt leaving:

dS(t)/dt = 0 - k * C(t),

where dS(t)/dt represents the derivative of the amount of salt in the tank with respect to time.

We can solve this first-order ordinary differential equation to find an expression for C(t):

dS(t)/dt = - k * C(t),

dS(t)/C(t) = - k * dt.

Integrating both sides:

∫(dS(t)/C(t)) = ∫(- k * dt),

ln(C(t)) = - k * t + C,

where C is a constant of integration.

Solving for C(t):

C(t) = e^(-k * t + C).

To determine the constant of integration C, we can use the initial condition that C(0) = 0.015 kg/L:

C(0) = e^(-k * 0 + C) = e^C = 0.015,

C = ln(0.015).

Therefore, the equation for C(t) is:

C(t) = e^(-k * t + ln(0.015)).

Now, we need to find the value of k. Since the tank contains 1000 L of brine with 15 kg of dissolved salt initially, we have:

C(0) = 15 kg / 1000 L = 0.015 kg/L,

C(t) = e^(-k * t + ln(0.015)).

Substituting t = 0 and C(0) into the equation:

0.015 = e^(-k * 0 + ln(0.015)),

0.015 = e^ln(0.015),

0.015 = 0.015.

This equation is satisfied for any value of k, so k can take any value.

In summary, the concentration of salt in the tank at time t is given by:

C(t) = e^(-k * t + ln(0.015)).

To find the amount of salt in the tank at time t, we multiply the concentration by the volume of the tank:

Amount of salt in the tank at time t = C(t) * Volume of the tank.

(b) After 20 minutes:

To find the amount of salt in the tank after 20 minutes, we substitute t = 20 into the equation for C(t) and multiply by the volume of the tank:

Amount of salt in the tank after 20 minutes = C(20) * Volume of the tank.

To know more about amount of salt,

https://brainly.com/question/30578434

#SPJ11

Ana starts walking from point A. She walks east 10 miles and north 6 miles to point B. Next, she walks 2 miles east and 2 miles south to point C. What is the distance from point straight back to point

Answers

To find the distance from point A straight back to point C, we can treat this as a right-angled triangle problem. Point A is the starting point, point B is the intermediate point, and point C is the final destination. We can use the Pythagorean theorem to calculate the distance from A to C.

The distance between A and C can be found by considering the horizontal and vertical distances separately. From point A to point B, the horizontal distance is 10 miles, and from point B to point C, the horizontal distance is 2 miles. Thus, the total horizontal distance from A to C is 10 + 2 = 12 miles. Similarly, from point A to point B, the vertical distance is 6 miles, and from point B to point C, the vertical distance is -2 miles (moving south). Therefore, the total vertical distance from A to C is 6 - 2 = 4 miles. Using the Pythagorean theorem, the distance from A to C is the square root of the sum of the squares of the horizontal and vertical distances. Therefore, the distance from A to C is √(12² + 4²) = √(144 + 16) = √160 = 4√10 miles.

To know more about Pythagorean theorem here: brainly.com/question/14930619

#SPJ11

Circle P is shown. Line segment P Q is a radius. Line segment Q R is a tangent that intersects the circle at point Q. A line is drawn from point R to point P and goes through a point on the circle. Angle Q P R is 53 degrees.
What is the measure of angle R?

Answers

The measure of angle R can be determined using the properties of a tangent line and an inscribed angle. The measure of angle R is 37 degrees.

In the given scenario, we have a circle with a radius PQ, and a tangent line QR that intersects the circle at point Q. Let's consider the point of intersection between the line RP and the circle as point S. Since the angle QPR is given as 53 degrees, we can use the property of an inscribed angle.

An inscribed angle is formed by two chords (in this case, the line segment QR and the line segment SR) that intersect on the circumference of the circle. The measure of an inscribed angle is half the measure of the intercepted arc. In this case, angle QSR is the inscribed angle, and the intercepted arc is QR.

Since angle QPR is given as 53 degrees, the intercepted arc QR has a measure of 2 * 53 degrees = 106 degrees. Therefore, angle QSR (angle R) is half the measure of the intercepted arc, which is 106 degrees / 2 = 53 degrees.

Hence, the measure of angle R is 37 degrees.

Learn more about inscribed angle here:

https://brainly.com/question/30752012

#SPJ11

The sets A and H are given below. A={-1,3,7,8} H=(-2, 0, 3, 5, 6, 8} Find the intersection of A and H. Find the union of A and H. Write your answers using set notation (in roster form). An H = [] AU, H = ... X S 0,0.... ?

Answers

The intersection of sets A and H, denoted by A ∩ H, is {-1, 3, 8}. The union of sets A and H, denoted by A ∪ H, is {-2, -1, 0, 3, 5, 6, 7, 8}.

To find the intersection of sets A and H, we identify the elements that are common to both sets. Set A contains {-1, 3, 7, 8}, and set H contains {-2, 0, 3, 5, 6, 8}. The intersection of these sets is the set of elements that appear in both sets. In this case, {-1, 3, 8} is the intersection of A and H, which can be represented as A ∩ H = {-1, 3, 8}.

To find the union of sets A and H, we combine all the elements from both sets, removing any duplicates. Set A contains {-1, 3, 7, 8}, and set H contains {-2, 0, 3, 5, 6, 8}. The union of these sets is the set that contains all the elements from both sets. By combining the elements without duplicates, we get {-2, -1, 0, 3, 5, 6, 7, 8}, which represents the union of A and H, denoted as A ∪ H = {-2, -1, 0, 3, 5, 6, 7, 8}.

In summary, the intersection of sets A and H is {-1, 3, 8}, and the union of sets A and H is {-2, -1, 0, 3, 5, 6, 7, 8}.

Learn more about union of sets here:

https://brainly.com/question/28278437

#SPJ11

(1 point) Lety 3.02 Find the change in y, Ay when Find the differential dy when x = 3 and A2 0.4 3 and doc 0.4

Answers

The change in y, Ay, when x changes from 3 to 3.02 is approximately -2.636144.

Given the differential equation dy = 0.4x² dx, we are asked to find the change in y, Ay, when x changes from 3 to 3.02.

To find the change in y, we need to integrate the differential equation between the given x-values:

∫dy = ∫0.4x² dx

Integrating both sides:

y = 0.4 * (x³ / 3) + C

To find the constant of integration, C, we can use the initial condition A2, where y = 0 when x = 2:

0 = 0.4 * (2³ / 3) + C

C = -0.8/3

Substituting C back into the equation:

y = 0.4 * (x³ / 3) - 0.8/3

Now, we can find the change in y, Ay, when x changes from 3 to 3.02:

Ay = y(3.02) - y(3)

Ay = 0.4 * (3.02³ / 3) - 0.8/3 - (0.4 * (3³ / 3) - 0.8/3)

Ay ≈ 0.4 * 3.244726 - 0.8/3 - (0.4 * 9 - 0.8/3)

Ay ≈ 1.29789 - 0.26667 - 3.6 + 0.26667

Ay ≈ -2.636144

To know more about differential equation click on below link:

https://brainly.com/question/31492438#

#SPJ11








D Question 1 When we use trig substitution to evaluate S S√64 – x²dx which substitution statement do we use? x = 2 · tan , de = 2 • sec 6 x = 8. sin , dä do = 8. cos 0 I= 2 · cos 0, dz de =

Answers

When using trigonometric substitution to evaluate the integral ∫√(64 - x²) dx, the appropriate substitution statement to use is x = 8sin(θ), dx = 8cos(θ)dθ.

To evaluate the given integral using trigonometric substitution, we want to choose a substitution that will simplify the integrand. In this case, the integral involves the square root of a quadratic expression.

By letting x = 8sin(θ), we can rewrite the expression under the square root as 64 - x² = 64 - (8sin(θ))² = 64 - 64sin²(θ) = 64cos²(θ).

Using the trigonometric identity cos²(θ) = 1 - sin²(θ), we can further simplify 64cos²(θ) = 64(1 - sin²(θ)) = 64 - 64sin²(θ).

Now, substituting x = 8sin(θ) and dx = 8cos(θ)dθ into the integral, we have ∫√(64 - x²) dx = ∫√(64 - 64sin²(θ)) (8cos(θ)dθ).

Simplifying the expression inside the square root gives ∫√(64cos²(θ)) (8cos(θ)dθ = ∫8cos²(θ) cos(θ)dθ = ∫8cos³(θ)dθ.

This integral can be evaluated using standard techniques, such as the power rule for the integration of cosine.

Therefore, the appropriate substitution statement to use is x = 8sin(θ), dx = 8cos(θ)dθ.

Learn more about integral here:

https://brainly.com/question/31433890

#SPJ11








Question 2. Evaluate the following integrals. 2 (1) / (2) / (3) ["" (1 – 3 sin a)? + 9 cos"(x) dr. x2 x) C-1 dr. VE 1 dr. 1+ 4.12 2 0 (4) 4 22 - 1 dr. T3 - 3r +1 (5) / 1/25+5 dr. IV 5 . 1 4 +1 (6)

Answers

Upon evaluating the supplied integrals, the following is obtained:

(1) [tex]\int\limits(1 - 3sin(a))^2 + 9cos^2(x) dx = 19x - 6sin(a)x + C[/tex]

(2) [tex]\int\limitsx^2/(x + 1) dx =(1/3)x^3 - x^2 + ln|x + 1| + C[/tex]

(3)[tex]\int\limits(4x^2 - 1) dx from -1 to 1 = 8/3[/tex] (4) [tex]\int\limits(22 - 1) dr from 4 to 2 = 20[/tex]

(5) [tex]\int\limits(3 - 3r + 1)/(25 + 5r) dr = (3/25)r - 3/5ln|1 + r/5| + C[/tex]            

(6) [tex]\int\limits(4x + 1)/(x^4 + 1) dx = 2ln|x^2 - x + 1| - 2ln|x^2 + x + 1| + C[/tex]

To evaluate the given integrals, I'll go through each one:

(1) [tex]\int\limits (1 - 3sin(a))^2 + 9cos^2(x) dx:[/tex]

Expand the square terms and simplify:

[tex]= \int\limit(1 - 6sin(a) + 9sin^2(a) + 9cos^2(x)) dx[/tex]

[tex]= \int\limits(10 - 6sin(a) + 9) dx[/tex]

= 10x - 6sin(a)x + 9x + C

= (19x - 6sin(a)x + C)

(2) [tex]\int\limitsx^2/(x + 1) dx:[/tex]

Perform long division or use the method of partial fractions to simplify the integrand:

= ∫(x - 1 + 1/(x + 1)) dx

=[tex](1/3)x^3 - x^2 + ln|x + 1| + C[/tex]

(3) [tex]\int\limits(4x^2 - 1)[/tex] dx from -1 to 1:

Evaluate the definite integral:

= [tex][(4/3)x^3 - x][/tex]from -1 to 1

=[tex][(4/3)(1)^3 - 1] - [(4/3)(-1)^3 - (-1)][/tex]

= (4/3) - 1 - (-4/3 + 1)

= 8/3

(4) ∫(22 - 1) dr from 4 to 2:

Evaluate the definite integral:

= [(22 - 1)r] from 4 to 2

= [(22 - 1)(2)] - [(22 - 1)(4)]

= 20

(5) ∫(3 - 3r + 1)/(25 + 5r) dr:

Perform partial fraction decomposition:

= ∫(3/25) - (3/5)/(1 + r/5) dr

= (3/25)r - 3/5ln|1 + r/5| + C

(6) [tex]\int\limits(4x + 1)/(x^4 + 1) dx:[/tex]

Perform polynomial long division or use the method of partial fractions:

= [tex]\int\limits(4x + 1)/(x^4 + 1) dx[/tex]

= [tex]2ln|x^2 - x + 1| - 2ln|x^2 + x + 1| + C[/tex]

Learn more about integral at:

brainly.com/question/27419605

#SPJ4

The Sugar Sweet Company is going to transport its sugar to market. It will cost $6500 to rent trucks, and it will cost an additional $250 for each ton of sugar transported.
Let c represent the total cost (in dollars), and let s represent the amount of sugar (in tons) transported. Write an equation relating c to s. Then use this equation to find the total cost to transport 16 tons of sugar.

Answers

An equation relating c to s is c = 250s + 6500.

The total cost to transport 16 tons of sugar is $10,500.

What is the slope-intercept form?

In Mathematics and Geometry, the slope-intercept form of the equation of a straight line is given by this mathematical equation;

y = mx + b

Where:

m represent the slope or rate of change.x and y are the points.b represent the y-intercept or initial value.

Based on the information provided above, a linear equation that models the situation with respect to the rate of change is given by;

y = mx + b

c = 250s + 6500

When x = 16 tons of sugar, the total cost to transport it can be calculated as follows;

c = 250(16) + 6500

c = 4,000 + 6,500

c = $10,500.

Read more on slope-intercept here: brainly.com/question/7889446

#SPJ1

Solve the separable differential equation 9 dar dt and find the particular solution satisfying the initial condition z(0) = 9. = x(t) = Question Help: Video Post to forum Add Work Submit Question

Answers

To solve the separable differential equation 9dz/dt = 1 and find the particular solution satisfying the initial condition z(0) = 9, we can follow these steps:

First, let's separate the variables by moving the dz term to one side and the dt term to the other side: dz = dt/9. Now, we can integrate both sides of the equation. Integrating dz gives us z, and integrating dt/9 gives us (1/9)t + C, where C is the constant of integration. Therefore, we have:z = (1/9)t + C.

To find the particular solution satisfying the initial condition z(0) = 9, we substitute t = 0 and z = 9 into the equation: 9 = (1/9)(0) + C, 9 = C. Hence, the constant of integration is C = 9. Substituting this value back into the equation, we have: z = (1/9)t + 9.

Therefore, the particular solution of the separable differential equation 9dz/dt = 1 satisfying the initial condition z(0) = 9 is given by z = (1/9)t + 9.

To learn more about differential equation click here:

brainly.com/question/25731911

#SPJ11

3) C048Exp2 Weight:1 Use me to enter the answer Find the dimensions of the rectangle of maximum area that can be inscribed in a right triangle with base 8 units and height 6 units. length: units width: units 1 2 3 4 5 6 Back Done 7 8 9 0 Delete Tab tt Clear

Answers

The dimensions of the rectangle of maximum area that can be inscribed in a right triangle with base 8 units and height 6 units are: length = 4 units and width = 3 units.

To find the dimensions of the rectangle with maximum area inscribed in a right triangle, we need to consider the relationship between the sides of the rectangle and the right triangle.

Let the length of the rectangle be x units and the width be y units. Since the rectangle is inscribed in the right triangle, we have the following relationships:

x + y = 8 (base of the right triangle)

xy = 1/2 * 6 * 8 (area of the right triangle)

From the first equation, we can express y in terms of x: y = 8 - x.

Substituting this expression into the second equation, we get:

x(8 - x) = 1/2 * 6 * 8

Simplifying the equation, we obtain:

8x - x² = 24

Rearranging the equation and setting it equal to zero, we have:

x² - 8x + 24 = 0

Solving this quadratic equation, we find that x = 4 or x = 6.

Since the length cannot exceed the base of the triangle, we choose x = 4. Substituting this value back into y = 8 - x, we get y = 3.

learn more about Dimensions here:

https://brainly.com/question/20115617

#SPJ11

the line AB has midpoint (-2,4)
A has coordiantes (3,-2)
Find the coordinate of B

Answers

The Coordinates of point B are (-7, 10).

The coordinates of point B on the line AB, given that the midpoint of line AB is (-2, 4) and point A has coordinates (3, -2), we can use the midpoint formula.

The midpoint formula states that the coordinates of the midpoint of a line segment are the average of the coordinates of its endpoints.

Let (x1, y1) represent the coordinates of point A (3, -2).

Let (x2, y2) represent the coordinates of point B (the unknown point).

According to the midpoint formula:

Midpoint (M) = [(x1 + x2) / 2, (y1 + y2) / 2]

Substituting the given values, we have:

(-2, 4) = [(3 + x2) / 2, (-2 + y2) / 2]

Simplifying the equation, we can solve for x2 and y2:

-2 = (3 + x2) / 2   (1)

4 = (-2 + y2) / 2   (2)

To solve equation (1), we multiply both sides by 2:

-4 = 3 + x2

Then, we isolate x2:

x2 = -4 - 3

x2 = -7

To solve equation (2), we multiply both sides by 2:

8 = -2 + y2

Then, we isolate y2:

y2 = 8 + 2

y2 = 10

Therefore, the coordinates of point B are (-7, 10).

To know more about Coordinates .

https://brainly.com/question/31217877

#SPJ8

Is the function below continuous? If not, determine the x values where it is discontinuous. -x²-2x-1 if f (2) = { x≤-4 if -4

Answers

The function f(x) = -x²-2x-1 is continuous for all values of x except for the x values that make the function undefined or create a jump or hole in the graph. To determine if the function is continuous at a specific point, we need to check if the function's limit exists at that point and if the value of the function at that point matches the limit.

 

In this case, the given information is incomplete. The function is defined as f(x) = -x²-2x-1, but there is no information about the value of f(2) or the behavior of the function for x ≤ -4. Without this information, we cannot determine if the function is continuous or identify any specific x values where it may be discontinuous.

To fully analyze the continuity of the function, we would need additional information or a complete definition of the function for all x values.

To learn more about continuity : brainly.com/question/31523914

#SPJ11

during a sale, a clothing store sold each shirt at a price of $15 and each sweater at a price of $25. did the store sell more sweaters than shirts during the sale?

Answers

Based on the information provided, it is impossible to determine whether the store sold more sweaters than shirts during the sale. We do not know how many of each item was sold.
During the sale, the clothing store sold shirts for $15 each and sweaters for $25 each. To determine whether the store sold more sweaters than shirts, additional information such as the total number of items sold or the total revenue generated from each type of clothing is needed. Without this information, it is not possible to definitively say whether the store sold more sweaters or shirts during the sale. However, we can assume that the store made more profit from the sale of sweaters, as each sweater was sold at a higher price than each shirt. It is also possible that the store sold equal amounts of sweaters and shirts, but generated more revenue from the sale of sweaters. Ultimately, more information would be needed to make a definitive statement about which item sold more during the sale.

To learn more about total revenue, visit:

https://brainly.com/question/22909043

#SPJ11

6. Find the points on the curve where the tangent line is horizontal: a) f(x) = x?(4 – x?); b) f(x) = x+ 1 + c) f(x) = x2 – x+1 7. Find dy/dx if a) y2 = x-3; b) y sin x = x3 + cos y; c) x2 + xy =

Answers

Answer:

The function f(x) = x^2 – x + 1, the tangent line is horizontal at x = 1/2.

Derivatives dy/dx for the given functions y' = (3x^2 - y cos(x))/(sin(x) + sin(y)).

Step-by-step explanation:

To find the points on the curve where the tangent line is horizontal, we need to find the values of x where the derivative dy/dx is equal to zero.

a) For the function f(x) = x^(4 – x^2):

To find the points where the tangent line is horizontal, we find dy/dx and set it equal to zero:

f(x) = x^(4 – x^2)

Using the power rule and chain rule, we find the derivative:

f'(x) = (4 – x^2)x^(4 – x^2 - 1) - x^(4 – x^2) * 2x * ln(x)

Setting f'(x) = 0:

(4 – x^2)x^(4 – x^2 - 1) - x^(4 – x^2) * 2x * ln(x) = 0

Simplifying and factoring:

(4 – x^2)x^(3 – x^2) - 2x^(2 – x^2)ln(x) = 0

From here, we can solve for x numerically using numerical methods or a graphing calculator.

b) For the function f(x) = x^2 – x + 1:

To find the points where the tangent line is horizontal, we find dy/dx and set it equal to zero:

f(x) = x^2 – x + 1

Taking the derivative:

f'(x) = 2x - 1

Setting f'(x) = 0:

2x - 1 = 0

Solving for x:

2x = 1

x = 1/2

Therefore, for the function f(x) = x^2 – x + 1, the tangent line is horizontal at x = 1/2.

7. Finding dy/dx for the given functions:

a) For y^2 = x - 3:

To find dy/dx, we implicitly differentiate both sides of the equation with respect to x:

2yy' = 1

Dividing both sides by 2y:

y' = 1/(2y)

b) For y sin(x) = x^3 + cos(y):

Again, we implicitly differentiate both sides of the equation:

y' sin(x) + y cos(x) = 3x^2 - sin(y) * y'

Rearranging and solving for y':

y' (sin(x) + sin(y)) = 3x^2 - y cos(x)

y' = (3x^2 - y cos(x))/(sin(x) + sin(y))

These are the derivatives dy/dx for the given functions.

Learn more about implicit differentiation:https://brainly.com/question/11887805

#SPJ11

11. (15 pts) Salt and pepper sit on a table, and they are 1 meter apart from each other. The top of the table is 0.8 meters above the hard tile floor, and Salt is near the edge of the table. A cat jumps on the table and gently pushes Salt over the edge. Salt's vertical velocity is v(t) = -31 m/sec., where t is the time after being knocked over, and the negative direction is downward toward the floor. At what rate is the distance between Salt and pepper changing at any time after Salt falls off the edge of the counter and before Salt hits the floor? Salt Pepper

Answers

The rate at which the distance between Salt and Pepper is changing at any time after Salt falls off the edge of the counter and before Salt hits the floor is given by:ds/dt = (31²t)/√[(-31t)² + (0.8)²]Answer: (31²t)/√[(-31t)² + (0.8)²].

Given information:Vertical velocity of Salt, v(t) = -31 m/sec.

The distance between Salt and Pepper, s = 1 m.

The height of the table, h = 0.8 m.

The position of Salt, as it is near the edge of the table.Now, we need to find the rate at which the distance between Salt and Pepper is changing, which is nothing but the derivative of the distance between Salt and Pepper with respect to time.Since we are given the velocity of Salt, we can find the position of Salt as follows:

v(t) = -31 m/sec=> ds/dt = -31 m/sec [since velocity is the derivative of position with respect to time]

=> s = -31t + c [integrating both sides, we get the position of Salt in terms of time]

Now, we need to find the value of constant c.To do that, we need to use the information that Salt is near the edge of the table.The distance between Salt and the edge of the table is 0.2 m (since the distance between Salt and Pepper is 1 m).Also, the height of the table is 0.8 m.

Therefore, at t = 0, s = 0.2 m + 0.8 m = 1 m.

Substituting s = 1 m and t = 0 in the equation of s, we get:1 = -31(0) + c=> c = 1

Therefore, the position of Salt as a function of time is:s = -31t + 1

Now, let's find the distance between Salt and Pepper as a function of time.

Since Salt falls off the edge of the table, it will continue to move with the same velocity until it hits the ground.Therefore, time taken for Salt to hit the ground can be found as follows:0 = -31t + 1 [since the final position of Salt is 0 (on the ground)]=> t = 1/31 sec.

Now, we can find the distance between Salt and Pepper at any time t, as follows:

s = distance between Salt and Pepper= √[(distance traveled by Salt)² + (height of table)²]= √[(-31t)² + (0.8)²]Now, we can find the rate of change of s with respect to t, as follows:ds/dt = (1/2)[tex][(-31t)² + (0.8)²]^{-1/2}[/tex] × 2(-31t)(-31)= (31²t)/√[(-31t)² + (0.8)²]

To know   more about distance

https://brainly.com/question/30395212    [tex][(-31t)² + (0.8)²]^{-1/2}[/tex]

#SPJ11

A website developer wanted to compare the mean time needed to access hotel information for two major online travel agencies (A and B). Using a population of adults between the ages of 25-45, the developer randomly assigned 25 adults to access the Web site for agency A to locate hotel information for a major city in Florida. The time required to locate hotel information for agency A had a mean of 2.3 minutes and a standard deviation of 0.9 minutes. The developer then randomly assigned 25 different adults from this population to access the Web site for agency B to locate hotel information for the same city. The time required to locate hotel information for agency B had a mean of 2.1 minutes and a standard deviation of 0.6 minutes. Assuming the conditions for inference are met, which of the following statements about the p- value obtained from the data and the conclusion of the significance test is true?
Note: pick only one answer choice.
A) The p-value is less than 0.01, therefore there is a significant difference in mean search times on the two Web sites.
B) The p-value is greater than 0.05 but less than 0.10, therefore there is no evidence of a significant difference in mean search times on the two Web sites.
C) The p-value is greater than 0.01 but less than 0.05, therefore there is a significant difference in mean search times on the two Web sites.
D) The p-value is greater than 0.10, therefore, there is no evidence of a significant difference in mean search times on the two Web sites.

Answers

(B) The p-esteem is more prominent than 0.05 yet under 0.10, in this manner there is no proof of a tremendous distinction in mean hunt times on the two sites.

The p-value that was derived from the data and the significance level (alpha) that was selected for the test must be compared in order to determine the correct response.

Since the importance level isn't given in the inquiry, we'll expect a typical worth of 0.05, which is much of the time utilized in speculation testing.

A two-sample t-test can be used to test the hypothesis that the two websites have significantly different mean search times. The test statistic and its corresponding p-value can be calculated using the sample means, standard deviations, and sample sizes.

The appropriate degrees of freedom are used to calculate the p-value using statistical software or a calculator.

In this instance, we reject the null hypothesis if the calculated p-value falls below the significance level (alpha) of 0.05, assuming that the conditions for inference are satisfied. In any case, if the p-esteem is more noteworthy than or equivalent to 0.05, we neglect to dismiss the invalid speculation.

Since the importance level isn't unequivocally referenced in the inquiry, we'll expect to be alpha = 0.05.

The correct response is, as a result of this:

B) The p-esteem is more prominent than 0.05 yet under 0.10, in this manner there is no proof of a tremendous distinction in mean hunt times on the two sites.

To know more about standard deviations refer to

https://brainly.com/question/29115611

#SPJ11

Other Questions
PLEASE SHOW YOUR WORK!Question Difficulty: HARDPoint Range: 50 - 70First Answer Brainly: Yes.The period of a wave is the amount of time needed for a wave to pass a point. Use the formula to calculate the period of a wave that has a frequency of 0.10 Hz and a wavelength of 14 cm. Formula: f=1/T Find the average rate of change of the function over the given interval. (Round your answer to three decimal places.) f(x) = sin(x), Compare this average rate of change with the instantaneous rates of change at the endpoints of the interval. (Round your answers to three decimal places.) left endpoint right endpoint 1, 2, 3 please help1. If f(x) = 5x 6x + 4x - 2, w find f'(x) and f'(2). STATE all rules used. 2. If f(x) = xe, find f'(x) and f'(1). STATE all rules used. 3. Find x-x-12 lim x3 x + 8x + 15 (No points for using 25. (5 points total] The demand function for a certain commodity is given by p = -1.5.x2 - 6x +110, where p is the unit price in dollars and x is the quantity demanded per month. (a) [1 point] If the unit price is set at $20, show that = 6 by solving for x, the number of units sold, but not by plugging in 7 = 6. (b) [4 points) Find the consumers' surplus if the selling price is set at $20. Use = 6 even if you didn't solve part a). Who is the author of the thing they carried? find the volume v of the described solid base of s is the triangular region with vertices (0, 0), (2, 0), and (0, 2). cross-sections perpendicular to the xaxis are squares. persuasive essay about atomic bombs g 1. stronger economic growth in the united states would tend to: group of answer choices decrease imports, causing the trade deficit to go down increase imports, causing the trade deficit to go down increase imports, causing the trade deficit to go up decrease imports, causing the trade deficit to go up Jim has been convicted of assault. Which of the following explanations of his behavior would a social psychologist be most interested in studying? A) His genetic makeup B) His childhood experiences C) His current social environment D) All of the above Let E be the solid that lies under the plane z = 3x + y and above the region inthe xy-plane enclosed by y = 2/xand y =2x. Then, the volume of thesolid E is equal to35/3T/F what excerpt from dust tracks on a road best supports the answer to how hurston portrays herself as a child? A typical girl who likes to dress in nice clothesA bookworm who spends very little time outsidean inquisitive child who always wants explanationsan unusual child who isn't quite like everyone else TWO ways in which spectators may influence an athlete's sporting performance. The equation of the graphed line is 2x y = 6. A coordinate plane with a line passing through (negative 3, 0) and (0, 6). What is the x-intercept of the graph? 3 2 2 6 Mark this and return Save and Exit Next Submit let x represent the number of customers arriving during the morning hours and let y represent the number of customers arriving during the afternoon hours at a diner. you are givena. x and y are poisson distributed.b. the first moment of x is less than the first moment of y by 8. c. the second moment of x is 60% of the second moment of y. calculate the variance of y. Find the surface area of a square pyramid with side length 1 in and slant height 2 in. which of the following statements are true about the object relations approach to narcissistic personality disorder? choose all that apply. multiple select question. it is seen as a failure to form a cohesive, integrated sense of self. the narcissistic individual develops a false self based on grandiose and unrealistic ideas about their competence. early childhood insecurities are believed to be abandoned by adolescence. a person with this diagnosis engages in splitting. the wwaw word game is to find words within a word. for example, if you are given the word references then your job is to find new words using the letters provided in any order but only as often as they appear. for example, fences and referee would be valid but sense is not because there is only one s available. given a large list of english words and a target word, describe an efficient algorithm that finds all valid words in the list for the target according to the rules of the game. give the big-o runtime and space/memory requirements for your algorithm. you are free to use any data structures/algorithms discussed in the class. based on their positions in the periodic table, predict which atom of the following pair will have the smaller first ionization energy: A.It is not possible to determine without more information.B. a negative H and a positive SC. a positive H and a negative SD. a negative H and a negative S How did Hinduism and Buddhism affect Asia? Use the model for projectile motion, assuming there is no airresistance and g = 32 feet per second per second.A baseball is hit from a height of 3.4 feet above the groundwith an initial speed of 12Use the model for projectile motion, assuming there is no air resistance and g=32 feet per second per second A baseball is hit from a height of 3.4 feet above the ground with an initial speed of 120 f