Solve by the graphing method.

x - 2y = 9
3x - y = 7

Answers

Answer 1
Hello there ~

For graphing method, we need atleast two points lying on both the lines.

so, lets start with this one :

[tex]\qquad\displaystyle \tt \dashrightarrow \: x - 2y = 9[/tex]

1.) put y = 0

[tex]\qquad\displaystyle \tt \dashrightarrow \: x - 2(0) = 9[/tex]

[tex]\qquad\displaystyle \tt \dashrightarrow \: x = 9[/tex]

so our first point on line " x - 2y = 9 " is (9 , 0)

similarly,

2.) put x = 1

[tex]\qquad\displaystyle \tt \dashrightarrow \: 1 - 2y = 9[/tex]

[tex]\qquad\displaystyle \tt \dashrightarrow \: - 2y = 9 - 1[/tex]

[tex]\qquad\displaystyle \tt \dashrightarrow \: - 2y = 8[/tex]

[tex]\qquad\displaystyle \tt \dashrightarrow \: y = 8 \div ( - 2)[/tex]

[tex]\qquad\displaystyle \tt \dashrightarrow \: y = - 4[/tex]

next point : (1 , -4)

Now, for the next line " 3x - y = 7 "

1.) put x = 0

[tex]\qquad\displaystyle \tt \dashrightarrow \: 3(0) - y = 7[/tex]

[tex]\qquad\displaystyle \tt \dashrightarrow \: - y = 7[/tex]

[tex]\qquad\displaystyle \tt \dashrightarrow \: y = - 7[/tex]

First point is (0 , -7)

2.) put x = 1

[tex]\qquad\displaystyle \tt \dashrightarrow \: 3(1) - y = 7[/tex]

[tex]\qquad\displaystyle \tt \dashrightarrow \: 3 - y = 7[/tex]

[tex]\qquad\displaystyle \tt \dashrightarrow \: - y = 7 - 3[/tex]

[tex]\qquad\displaystyle \tt \dashrightarrow \: y = - (7 - 3)[/tex]

[tex]\qquad\displaystyle \tt \dashrightarrow \: y = - 4[/tex]

second point : (1 , -4)

Now, plot the points respectively and join the required points to draw those two lines. and the point where these two lines intersects is the unique solution of the two equations.

Check out the attachment for graph ~

Henceforth we conclude that our solution is

(1 , -4), can also be written as : x = 1 & y = -4

Solve By The Graphing Method.x - 2y = 9 3x - Y = 7

Related Questions

9. The vectors a and b have lengths 2 and 1, respectively. The vectors a +5b and 2a - 36 are Vectors a perpendicular. Determine the angle between a and b.

Answers

The angle between vectors a and b is 90 degrees or pi/2 radians.

To determine the angle between vectors a and b, we can use the dot product formula:

a · b = |a| |b| cos(theta),

where a · b is the dot product of vectors a and b, |a| and |b| are the lengths of vectors a and b, and theta is the angle between the two vectors.

Given that the lengths of vectors a and b are 2 and 1, respectively, we have:

|a| = 2 and |b| = 1.

We are also given two other vectors, a + 5b and 2a - 36, and we know that vector a is perpendicular to one of these vectors.

Let's check the dot product of a and a + 5b:

(a · (a + 5b)) = |a| |a + 5b| cos(theta).

Since a is perpendicular to one of the vectors, the dot product should be zero:

0 = 2 |a + 5b| cos(theta).

Simplifying, we have:

|a + 5b| cos(theta) = 0.

Since the length |a + 5b| is a positive value, the only way for the equation to hold is if cos(theta) = 0.

The angle theta between vectors a and b is such that cos(theta) = 0, which occurs at 90 degrees or pi/2 radians.

Therefore, the angle between vectors a and b is 90 degrees or pi/2 radians.

for more  such questions on angle visit

https://brainly.com/question/25716982

#SPJ8

what is the area of the opening in a duct that has a diameter of 7 inches? round the answer to the nearer thousandth square inch.

Answers

The opening area for a 7 inch diameter channel is approximately 38.484 square inches.

The area of ​​a circular opening can be found using the circle area formula given by [tex]A = \pi r^2[/tex]. where A is the area and r is the radius of the circle. In this case, the duct diameter is 7 inches. The radius can be calculated by dividing the diameter by 2, so the radius is 7/2 = 3.5 inches.

Substituting the radius into the equation gives A = π(3,5)^2. Evaluating this formula gives A = [tex]\pi[/tex](12.25) ≈ 38.484 square inches. Rounding the result to the nearest thousandth, the area of ​​the channel opening is approximately 38.484 square inches.

Therefore, a 7 inch diameter duct has an orifice area of ​​approximately 38.484 square inches. 


Learn more about diameter here:

https://brainly.com/question/31445584


#SPJ11








My 2. (10.08 HC) The function h is defined by the power series h(x) => Mx)= x x x x+1 no2n+1 Part A: Determine the interval of convergence of the power series for h. (10 points) Part B: Find h '(-1) a

Answers

Part A: The interval of convergence for the power series of function h is (-1, 1).

Part B: To find h'(-1), we need to differentiate the power series term by term. Differentiating the given power series h(x) term by term results in h'(x) = 1 - 4x^2 + 9x^4 - 16x^6 + ...  Evaluating this at x = -1, we get[tex]h'(-1) = 1 - 4 + 9 - 16 + ... = -1 + 9 - 25 + 49 - ... = -15.[/tex]

Part A: The interval of convergence for a power series is the range of x values for which the series converges. In this case, the given power series is of the form [tex]Σ(Mn*x^n)[/tex] where n starts from 0. To determine the interval of convergence, we need to find the values of x for which the series converges. Using the ratio test or other convergence tests, it can be shown that the given series converges for |x| < 1, which means the interval of convergence is (-1, 1).

Part B: To find h'(-1), we differentiate the power series term by term. The derivative of xn is nx^(n-1), so differentiating the given power series term by term gives us h'(x) = 1 - 4x^2 + 9x^4 - 16x^6 + ... Evaluating this at x = -1 gives us h'(-1) = 1 - 4 + 9 - 16 + ... which is an alternating series. By evaluating the series, we find that the sum is -1 + 9 - 25 + 49 - ..., which can be written as an infinite geometric series with a common ratio of -4. Using the formula for the sum of an infinite geometric series, we find the sum to be -15. Therefore, h'(-1) = -15.

Learn more about power series here:

https://brainly.com/question/32525627

#SPJ11

joan has just moved into a new apartment and wants to purchase a new couch. To determine if there is a difference between the average prices of couches at two different stores, she collects the following data. Test the hypothesis that there is no difference in the average price. Store 1, x1=$650, standard deviation= $43, n1=42, Store 2, x2=$680, standard deviation $52, n2=45.

Answers

We can use statistical software or a t-distribution table to determine the p-value. Whether or not we reject the null hypothesis depends on the p-value attached to the derived test statistic.

To test the hypothesis that there is no difference in the average price of couches between the two stores, we can conduct a two-sample t-test.

Let's define the null hypothesis (H0) as there is no difference in the average prices of couches between the two stores. The alternative hypothesis (H1) would then be that there is a difference.

H0: μ1 - μ2 = 0 (There is no difference in the average prices)

H1: μ1 - μ2 ≠ 0 (There is a difference in the average prices)

We will use the formula for the two-sample t-test, which takes into account the sample means, sample standard deviations, and sample sizes of both stores.

The test statistic (t) is calculated as follows:

t = (x1 - x2) / √[(s1²/n1) + (s2²/n2)]

Where x1 and x2 are the sample means, s1 and s2 are the sample standard deviations, and n1 and n2 are the sample sizes.

Substituting the given values into the formula:

x1 = $650, s1 = $43, n1 = 42

x2 = $680, s2 = $52, n2 = 45

Calculating the test statistic:

t = ($650 - $680) / √[($43²/42) + ($52²/45)]

Calculating the numerator and denominator separately:

Numerator: ($650 - $680) = -$30

Denominator: √[($43²/42) + ($52²/45)]

Using a calculator or software, we can calculate the value of the test statistic as:

t ≈ -1.305

Next, we need to determine the critical value or p-value to make a decision about the null hypothesis. The critical value depends on the desired level of significance (e.g., α = 0.05).

If the p-value is less than the chosen level of significance (0.05), we reject the null hypothesis and conclude that there is a significant difference in the average prices of couches between the two stores. If the p-value is greater than the chosen level of significance, we fail to reject the null hypothesis.

To obtain the p-value, we can consult a t-distribution table or use statistical software. The p-value associated with the calculated test statistic can determine whether we reject or fail to reject the null hypothesis.

To know more about null hypothesis refer here:

https://brainly.com/question/30821298?#

#SPJ11

Question 5 < > Compt 3 Details Given L = 3 [(*+( 0 - 1)(a +48 - 1) 4+ ( 72 sin express the limit of L, as no as a definite integral; that is, provide a, b and f(x) in the expression fizdz. a = b = f(x

Answers

we have the definite integral representation of L with the given values of a, b, and f(x): L = ∫[0, 1] (x^4 + (72 sin(x))^2) dz

To express the limit L as a definite integral, we can represent it as follows:

L = ∫[a, b] f(x) dz

Given that a = 0, b = 1, and f(x) = (x^4 + (72 sin(x))^2, we can substitute these values into the expression to obtain the definite integral representation of L:

L = ∫[0, 1] (x^4 + (72 sin(x))^2) dz

Please note that the original question specified "fizdz" as the expression, but it seems to be a typo. The correct expression is "f(x) dz".

Now, we have the definite integral representation of L with the given values of a, b, and f(x):

L = ∫[0, 1] (x^4 + (72 sin(x))^2) dz

To know more about Equation related question visit:

https://brainly.com/question/29657983

#SPJ11

jamal baked muffins forthe school bake sale. He made 12 corn muffins and 15 blueberry muffins. What is the ratio of the blueberry muffins to all muffins

Answers

The Ratio of blueberry muffins to all muffins is 15/27.

The ratio of blueberry muffins to all muffins, we need to determine the total number of muffins.

Given that Jamal made 12 corn muffins and 15 blueberry muffins, the total number of muffins is the sum of these quantities: 12 + 15 = 27.

The blueberry muffins are a subset of the total muffins, so the ratio of blueberry muffins to all muffins can be calculated as:

Number of blueberry muffins / Total number of muffins

Substituting the values, we have:

15 blueberry muffins / 27 total muffins

This ratio can be simplified by dividing both the numerator and denominator by their greatest common divisor (in this case, 3):

15 / 27

Since 15 and 27 do not have any common factors other than 1, this is the simplified ratio.

Therefore, the ratio of blueberry muffins to all muffins is 15/27.

To know more about Ratio .

https://brainly.com/question/12024093

#SPJ8

3) (10 pts) When its 75.0kW engine is generating full power, a small single-engine airplane with mass 750kg gains altitude at a rate of 2.50m/s. What fraction of the engine power is being used to make airplane climb

Answers

The fraction of engine power being used to make the airplane climb is 33.3%.

To find the fraction of engine power being used to make the airplane climb, we need to use the formula:

Power = force x velocity

The force that is responsible for lifting the airplane off the ground is the weight of the airplane, which is given by:

Weight = mass x gravity

where mass = 750kg and gravity = 9.81m/s^2

Weight = 750kg x 9.81m/s^2 = 7357.5N

The power required to lift the airplane at a rate of 2.50 m/s is given by:

Power = force x velocity = 7357.5N x 2.50m/s = 18393.75W

To find the fraction of engine power being used, we divide the power required for climbing by the engine power, which is 75.0kW = 75000W:

Fraction of engine power = Power for climbing / Engine power x 100%

= 18393.75W / 75000W x 100%

= 24.5%

Therefore, the fraction of engine power being used to make the airplane climb is 24.5%. This means that the remaining 75.5% of the engine power is being used to overcome drag and other forces that oppose the airplane's motion.

Overall, this shows that flying an airplane requires a lot of power, and even a small fraction of the engine power can make a significant difference in altitude.

Learn more about force here.

https://brainly.com/questions/30507236

#SPJ11

= = = > = 3ă + = (1 point) Suppose à = (3,-6), 7 = (0,7), c = (5,9,8), d = (2,0,4). Calculate the following: a+b=( 46 = { ) lal = la – 51 = ita- 38 + 41 - { = — = = 4d = 2 16 = = = lë – = =

Answers

The answer is: ||a × d|| = √(24^2 + 12^2 + (-12)^2) = √(576 + 144 + 144) = √864 = 12√6.

To calculate the given expressions involving vectors, let's go step by step:

a + b:

We have a = (3, -6) and b = (0, 7).

Adding the corresponding components, we get:

a + b = (3 + 0, -6 + 7) = (3, 1).

||a||:

Using the formula for the magnitude of a vector, we have:

||a|| = √(3^2 + (-6)^2) = √(9 + 36) = √45 = 3√5.

||a - b||:

Subtracting the corresponding components, we get:

a - b = (3 - 0, -6 - 7) = (3, -13).

Using the formula for the magnitude, we have:

||a - b|| = √(3^2 + (-13)^2) = √(9 + 169) = √178.

a · c:

We have a = (3, -6) and c = (5, 9, 8).

Using the dot product formula, we have:

a · c = 3*5 + (-6)*9 + 0*8 = 15 - 54 + 0 = -39.

||a × d||:

We have a = (3, -6) and d = (2, 0, 4).

Using the cross product formula, we have:

a × d = (3, -6, 0) × (2, 0, 4).

Expanding the cross product, we get:

a × d = (0*(-6) - 4*(-6), 4*3 - 2*0, 2*(-6) - 0*3) = (24, 12, -12).

Using the formula for the magnitude, we have:

||a × d|| = √(24^2 + 12^2 + (-12)^2) = √(576 + 144 + 144) = √864 = 12√6.

In this solution, we performed vector calculations involving the given vectors a, b, c, and d. We added the vectors a and b by adding their corresponding components.

We calculated the magnitude of vector a using the formula for vector magnitude. We found the magnitude of the difference between vectors a and b by subtracting their corresponding components and calculating the magnitude.

We found the dot product of vectors a and c using the dot product formula. Finally, we found the cross product of vectors a and d by applying the cross product formula and calculated its magnitude using the formula for vector magnitude.

To learn more about vector, click here: brainly.com/question/17157624

#SPJ11

Consider a population of foxes and rabbits. The number of foxes and rabbits at time t are given by f(t) and r(t) respectively. The populations are governed by the equations df = 5f-9r dr =3f-7r. dt a.

Answers

The derivative of f(t) with respect to t is [tex]d²f/dt² = -2f + 18r[/tex].The derivative of r(t) with respect to t is [tex]d²r/dt² = -6f + 22r[/tex].

To find the derivative of f(t) and r(t) with respect to t, we can apply the chain rule.

Given:

[tex]df/dt = 5f - 9r ...(1)dr/dt = 3f - 7r ...(2)[/tex]

Taking the derivative of equation (1) with respect to t:

[tex]d²f/dt² = 5(df/dt) - 9(dr/dt)[/tex]

Substituting the expressions for df/dt and dr/dt from equations (1) and (2), respectively:

[tex]d²f/dt² = 5(5f - 9r) - 9(3f - 7r)= 25f - 45r - 27f + 63r= -2f + 18r[/tex]

Therefore, the derivative of f(t) with respect to t is [tex]d²f/dt² = -2f + 18r.[/tex]

Similarly, taking the derivative of equation (2) with respect to t:

[tex]d²r/dt² = 3(df/dt) - 7(dr/dt)[/tex]

Substituting the expressions for df/dt and dr/dt from equations (1) and (2), respectively:

[tex]d²r/dt² = 3(5f - 9r) - 7(3f - 7r)= 15f - 27r - 21f + 49r= -6f + 22r[/tex]

Therefore, the derivative of r(t) with respect to t is[tex]d²r/dt² = -6f + 22r.[/tex]

learn more about derivatives here:
https://brainly.com/question/24062595

#SPJ11

Find a parametric representation for the surface. the part of the sphere x2 + y2 + z2 = 144 that lies between the planes z = 0 and z = 63. (Enter your answer as a comma-separated list of equations. Le

Answers

To find a parametric representation for the surface that lies between the planes z = 0 and z = 63 and satisfies the equation x^2 + y^2 + z^2 = 144, we can use spherical coordinates.

In spherical coordinates, a point on the surface of a sphere is represented by (r, θ, φ), where r is the radius, θ is the polar angle, and φ is the azimuthal angle.

For this particular case, we have the constraint that z lies between 0 and 63, which corresponds to the range of φ between 0 and π.

The equation x^2 + y^2 + z^2 = 144 can be rewritten in spherical coordinates as r^2 = 144.

To find the parametric representation, we can express x, y, and z in terms of r, θ, and φ. The equations are:

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ)

By substituting the constraints and equations into the parametric representation, we get:

0 ≤ φ ≤ π

0 ≤ θ ≤ 2π

0 ≤ r ≤ 12

In summary, the parametric representation for the surface of the sphere x^2 + y^2 + z^2 = 144 that lies between the planes z = 0 and z = 63 is given by the equations:

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ)

where r ranges from 0 to 12, θ ranges from 0 to 2π, and φ ranges from 0 to π. These equations define the surface and allow us to generate points on it by varying the parameters r, θ, and φ within their specified ranges.

To learn more about parametric click here:

brainly.com/question/28537985

#SPJ11










lim (1 point) Find the limits. Enter "DNE' if the limit does not exist. 1 - cos(7xy) (x,y)--(0,0) ху X - y lim (x.99–18.8) 4 - y 11

Answers

The limit of (1 - cos(7xy)) as (x,y) approaches (0,0) exists between -1 and 2, but the exact value cannot be determined. The limit of [tex](x^0.99 - 18.8) / (4 - y^11)[/tex]as (x,y) approaches (x,y) is -4.7.

To find the limits, let's evaluate each one:

1. lim (x,y)→(0,0) (1 - cos(7xy)):

We can use the squeeze theorem to determine the limit. Since -1 ≤ cos(7xy) ≤ 1, we have:

-1 ≤ 1 - cos(7xy) ≤ 2

Taking the limit as (x,y) approaches (0,0) of each inequality, we get:

-1 ≤ lim (x,y)→(0,0) (1 - cos(7xy)) ≤ 2

Therefore, the limit exists and is between -1 and 2.

2.[tex]lim (x,y)\rightarrow(x,y) (x^0.99 - 18.8) / (4 - y^11):[/tex]

Since the limit is not specified, we can evaluate it by substituting the values of x and y into the expression:

[tex]lim (x,y)\rightarrow(x,y) (x^0.99 - 18.8) / (4 - y^11) = (0^0.99 - 18.8) / (4 - 0^11) = (-18.8) / 4 = -4.7[/tex]

Thus, the limit of the expression is -4.7.

To learn more about limits visit:

https://brainly.com/question/30339394

#SPJ4

Provide an appropriate response. Determine the interval(s) over which f(x) = (x+3)3 is concave upward. O (-0, -3) O (-3,0) O (-0,3) O (-0,00)

Answers

The concavity of a function is determined by its second derivative. The function f(x) = (x+3)^3 is concave upward in the interval (-3, 0).

To determine the intervals over which a function is concave upward, we need to examine the second derivative of the function. If the second derivative is positive, then the function is concave upward.

First, let's find the second derivative of f(x) = (x+3)^3. Taking the first derivative, we get f'(x) = 3(x+3)^2. Taking the second derivative, we have f''(x) = 6(x+3).

To find the intervals where f(x) is concave upward, we set f''(x) > 0. In this case, we have 6(x+3) > 0.

Solving the inequality, we find that x > -3. This means that the function f(x) = (x+3)^3 is concave upward for x values greater than -3.

Therefore, the interval over which f(x) is concave upward is (-3, 0), as it includes values greater than -3 but not including -3 itself.

Learn more about  concave upward here:

https://brainly.com/question/32681302

#SPJ11

If x2 + y2 = 4, find dx dt = 2 when x = 4 and y = 6, assume x and y are dependent upon t.

Answers

If x = 4, y = 6, and dx/dt = 2, the value of differentiation dy/dt is -4/3.

To find dx/dt when x = 4 and y = 6, we can differentiate both sides of the equation x^2 + y^2 = 4 with respect to t, treating x and y as functions of t.

Differentiating both sides with respect to t:

2x(dx/dt) + 2y(dy/dt) = 0

Since we are given that dx/dt = 2, x = 4, and y = 6, we can substitute these values into the equation and solve for dy/dt:

2(4)(2) + 2(6)(dy/dt) = 0

16 + 12(dy/dt) = 0

12(dy/dt) = -16

dy/dt = -16/12

dy/dt = -4/3

Therefore, when x = 4, y = 6, and dx/dt = 2, the value of dy/dt is -4/3.

Learn more about differentiation at https://brainly.com/question/30892359

#SPJ11




O = Homework: GUIA 4_ACTIVIDAD 1 Question 3, *9.1.15 Part 1 of 4 HW Score: 10%, 1 of 10 points O Points: 0 of 1 Save Use Euler's method to calculate the first three approximations to the given initial

Answers

To solve the given initial value problem using Euler's method, we have the differential equation dy/dx = -473 * y with the initial condition y(0) = 9. The increment size is dx = 0.2.

Determine Euler's method?

Using Euler's method, we can approximate the solution by iteratively updating the value of y based on the slope at each step.

The first approximation is given by y₁ = y₀ + dx * f(x₀, y₀), where f(x, y) represents the right-hand side of the differential equation. In this case, f(x, y) = -473 * y.

Using the given values, we can calculate the first approximation:

y₁ = 9 + 0.2 * (-473 * 9) = -849.6 (rounded to four decimal places).

Similarly, we can calculate the second and third approximations:

y₂ = y₁ + 0.2 * (-473 * y₁)

y₃ = y₂ + 0.2 * (-473 * y₂)

To find the exact solution, we can solve the differential equation analytically. In this case, the exact solution is y = 9 * exp(-473x).

Now, we can calculate the exact solution and the error at the three points: x₁ = 0.2, x₂ = 0.4, x₃ = 0.6.

Finally, we can compare the values of y(Euler) and y(exact) at each point to calculate the error.

To know more about Euler's method, refer here:

https://brainly.com/question/30699690#

#SPJ4

Complete question here:

O = Homework: GUIA 4_ACTIVIDAD 1 Question 3, *9.1.15 Part 1 of 4 HW Score: 10%, 1 of 10 points O Points: 0 of 1 Save Use Euler's method to calculate the first three approximations to the given initial value problem for the specified increment size. Calculate the exact solution. Round your results to four decimal places dy = -473 dx .y(0) = 9, dx = 0.2 71-0 (Type an integer or decimal rounded to four decimal places as needed.) The first approximation is y1 = (Round to four decimal places as needed.) The second approximation is y2 = [ (Round to four decimal places as needed.) The third approximation is yz = [ (Round to four decimal places as needed.) The exact solution to the differential equation is y=| Calculate the exact solution and the error at the three points. y(Euler) y(exact) Error х Y1 X2 Y2 Хэ Уз (Round to four decimal places as needed.) х

Which of the following series is convergent? Select one: 2n3 3n3 +1 Σ () n=1 4n3 Σ 3n2 + 2 n=1 00 n Σ 5n 2n3 + 4 n=1 None of them 2n3 Σ( 21 ) 3n2 + 4 1

Answers

The convergent series among the ones offered is (2n3 + 4)/(3n2 + 4).

We can take into consideration a variety of series convergence tests to determine convergence:

1. (2n-3)/(3n-2 + 1): In this series, the numerator and the denominator each include a term of degree three. Applying the Ratio Test, we see that the series diverges when the absolute value of the ratio of consecutive terms exceeds 1 as n approaches infinity.

2. (4n,3): A word of degree 3 is included in this series. We discover that the series converges by using the p-series Test with p = 3.

learn more about convergent here :

https://brainly.com/question/29258536

#SPJ11

Evaluate the definite integral. 9v dv Need Help? Read It Watch it 2. (-/1 Points) DETAILS LARAPCALC10 5.4.020.

Answers

To evaluate the definite integral ∫[a,b] 9v dv, we can use the fundamental theorem of calculus.  The first step is to find the antiderivative of the integrand, which is 9v.

The antiderivative of 9v with respect to v is (9/2)v^2 + C, where C is the constant of integration. Next, we can apply the fundamental theorem of calculus to evaluate the definite integral. By substituting the limits of integration a and b into the antiderivative, we can find the difference between the antiderivative evaluated at b and the antiderivative evaluated at a: ∫[a,b] 9v dv = [(9/2)v^2 + C] evaluated from a to b = [(9/2)b^2 + C] -[(9/2)a^2 + C] = (9/2)b^2 - (9/2)a^2

Therefore, the value of the definite integral ∫[a,b] 9v dv is given by (9/2)b^2 - (9/2)a^2. In conclusion, the definite integral ∫[a,b] 9v dv evaluates to (9/2)b^2 - (9/2)a^2. This represents the difference between the antiderivative of 9v evaluated at the upper limit b and the antiderivative evaluated at the lower limit a. The value of the integral depends on the specific values of a and b provided.

To learn more about fundamental theorem of calculus click here:

brainly.com/question/30761130

#SPJ11

Need solution for 7,9,11
7. RS for points R(5, 6, 12) and S(8, 13,6) 8. PQ for points P6, 8, 14) and Q(10, 16,9) 9. BA for points A(9, 13, -4) and B(3, 6, -10) 10. DC for points C(2,9, 0) and D(1, 4, 8) 11. Tree House Problem

Answers

(7) the distance RS is approximately 9.695.

(8) the distance PQ is approximately 10.247.

(9) the distance BA is 11.

What is the distance?

Distance refers to the amount of space between two objects or points. It is a measure of the length of the path traveled by an object or a person from one point to another. The most common units of distance are meters, kilometers, feet, miles, and yards.

7. To find the distance RS between points R(5, 6, 12) and S(8, 13, 6), we can use the distance formula in three-dimensional space:

RS = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)

  = √((8 - 5)² + (13 - 6)² + (6 - 12)²)

  = √(3² + 7² + (-6)²)

  = √(9 + 49 + 36)

  = √94

  ≈ 9.695

Therefore, the distance RS is approximately 9.695.

8. To find the distance PQ between points P(6, 8, 14) and Q(10, 16, 9), we use the distance formula:

PQ = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)

  = √((10 - 6)² + (16 - 8)² + (9 - 14)²)

  = √(4² + 8² + (-5)²)

  = √(16 + 64 + 25)

  = √105

  ≈ 10.247

Therefore, the distance PQ is approximately 10.247.

9. To find the distance BA between points A(9, 13, -4) and B(3, 6, -10), we use the distance formula:

BA = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)

  = √((3 - 9)² + (6 - 13)² + (-10 - (-4))²)

  = √((-6)² + (-7)² + (-6)²)

  = √(36 + 49 + 36)

  = √121

  = 11

Therefore, the distance BA is 11.

Hence, (7) the distance RS is approximately 9.695.

(8) the distance PQ is approximately 10.247.

(9) the distance BA is 11.

To learn more about the distance visit:

https://brainly.com/question/26550516

#SPJ4

a dj is preparing a playlist of songs. how many different ways can the dj arrange the first songs on the playlist?

Answers

To determine the number of different ways the DJ can arrange the first songs on the playlist, we need to know the total number of songs available and how many songs the DJ plans to include in the playlist.

Let's assume the DJ has a total of N songs and wants to include M songs in the playlist. In this case, the number of different ways the DJ can arrange the first songs on the playlist can be calculated using the concept of permutations.

The formula for calculating permutations is:

P(n, r) = n! / (n - r)!

Where n is the total number of items, and r is the number of items to be selected.

In this scenario, we want to select M songs from N available songs, so the formula becomes:

P(N, M) = N! / (N - M)!

Learn more about permutations here: https://brainly.com/question/29990226

#SPJ11

Use the function f(x) to answer the questions:
f(x) = 4x2 − 7x − 15
Part A: What are the x-intercepts of the graph of f(x)? Show your work.
Part B: Is the vertex of the graph of f(x) going to be a maximum or a minimum? What are the coordinates of the vertex? Justify your answers and show your work.
Part C: What are the steps you would use to graph f(x)? Justify that you can use the answers obtained in Part A and Part B to draw the graph.

Answers

The x-intercepts of the graph of f(x) are x = -1.25 and x = 3

The vertex is minimum and the coordinare is (0.875, -18.0625)

Part A: What are the x-intercepts of the graph of f(x)?

From the question, we have the following parameters that can be used in our computation:

f(x) = 4x² - 7x - 15

Factorize the function

So, we have

f(x) = (x + 1.25)(x - 3)

So, we have

x = -1.25 and x = 3

Hence, the x-intercepts are x = -1.25 and x = 3

Part B: The vertex of the graph of f(x)

We have

f(x) = 4x² - 7x - 15

The x value is calculated as

x = 7/(2 * 4)

So, we have

x = 0.875

Next, we have

f(x) = 4(0.875)² - 7(0.875) - 15

f(x) = -18.0625

So, the vertex is minimum and the coordinare is (0.875, -18.0625)

Part C: What are the steps you would use to graph f(x)?

The step is to plot the vertex and the x-intercepts

And then connect the points

Read more about quadratic functions at

https://brainly.com/question/1214333

#SPJ1

The population of an aquatic species in a certain body of water is 40,000 approximated by the logistic function G(t) = - 1+10e-0.66t where t is measured in years. Calculate the growth rate after 7 yea

Answers

The growth rate of the aquatic species after 7 years is approximately 4.42 individuals per year.

The given population model is a logistic function represented by G(t) = -1 + 10e^(-0.66t), where t is the number of years. To calculate the growth rate after 7 years, we need to find the derivative of the population function with respect to time (t).

Taking the derivative of G(t) gives us:

dG/dt = -10(0.66)e^(-0.66t)

To calculate the growth rate after 7 years, we substitute t = 7 into the derivative equation:

dG/dt = -10(0.66)e^(-0.66 * 7)

Calculating the value yields:

dG/dt ≈ -10(0.66)e^(-4.62) ≈ -10(0.66)(0.0094) ≈ -0.062

The negative sign indicates a decreasing population growth rate. The absolute value of the growth rate is approximately 0.062 individuals per year. Therefore, after 7 years, the growth rate of the aquatic species is approximately 0.062 individuals per year, or approximately 4.42 individuals per year when rounded to two decimal places.

Learn more about derivatives of a function :

https://brainly.com/question/29020856

#SPJ11

A 6-foot long piece of wire is to be cut into two pieces. One piece is used to make a circle and the other a square. Find the exact amount of wire used for the square so as to make the combined area of the square and the circle a minimum.

Answers

Therefore, the exact amount of wire used for the square is 6/5 feet and for the circle is 24/5 feet in order to minimize the combined area of the square and the circle.

Let's denote the length of the wire used for the square as "s" (in feet) and the length of the wire used for the circle as "c" (in feet).

The total length of the wire is 6 feet, so we can express this as an equation:

s + c = 6

To find the minimum combined area of the square and the circle, we need to express the area in terms of "s" and then minimize it.

Let's start with the square. The perimeter of the square is equal to the length of the wire used for the square:

4s = s

The area of the square is given by:

A_square = s^2

Now, let's consider the circle. The circumference of the circle is equal to the length of the wire used for the circle:

2πr = c

Since the total length of the wire is 6 feet, we can express "c" in terms of "s":

c = 6 - s

The radius of the circle, denoted as "r," is related to its circumference by the formula:

Circumference = 2πr

Substituting the value of "c" and solving for "r," we get:

2πr = 6 - s

r = (6 - s) / (2π)

The area of the circle is given by:

A_circle = πr^2

Substituting the value of "r" and simplifying, we get:

A_circle = π((6 - s) / (2π))^2

A_circle = ((6 - s)^2) / (4π)

Now, let's express the combined area of the square and the circle, denoted as "A_total," as a function of "s":

A_total = A_square + A_circle

A_total = s^2 + ((6 - s)^2) / (4π)

To find the minimum combined area, we can take the derivative of "A_total" with respect to "s" and set it equal to zero:

d(A_total) / ds = 2s - (12 - 2s) / (4π)

d(A_total) / ds = 2s - (12 - 2s) / (4π) = 0

Simplifying the equation, we have:

2s = (12 - 2s) / (4π)

8s = 12 - 2s

10s = 12

s = 12/10

s = 6/5

Now, we have the value of "s" which corresponds to the minimum combined area. To find the exact amount of wire used for the square, we substitute this value into the equation for the total length of the wire:

s + c = 6

6/5 + c = 6

c = 6 - 6/5

c = 30/5 - 6/5

c = 24/5

To know more about combined area,

https://brainly.com/question/30156692

#SPJ11

(8.14) In 2010, a Quinnipiac University Poll and a CNN Poll each asked a nationwide sample about their views on openly gay men and women serving in the military. Here are the two questions:
Question A: Federal law currently prohibits openly gay men and women from serving in the military. Do you think this law should be repealed or not?
Question B: Do you think people who are openly gay or homosexual should or should not be allowed to serve in the U.S. military?
One of these questions had 78% responding "should," and the other question had only 57% responding "should." Which wording is slanted toward a more negative response on gays in the military?
a-- question a
b-- question b
c-both

Answers

Question B is slanted toward a more negative response on gays in the military for the given sample.

The answer to Question B, which asks if those who identify as openly gay or homosexual should be permitted to serve in the U.S. military, is biassed more against gays serving in the military. This can be inferred from the fact that less people answered "should" to this question than to Question A for the sample.

Because Question B's language specifically mentions being openly gay or homosexual, it may have an impact on how certain respondents feel and act. The inquiry may incite biases or preconceptions held by people who are less accepting of homosexuality because it specifically mentions sexual orientation. This phrase may serve to reinforce societal stigma and prejudices, resulting in a decline in the proportion of respondents who support the inclusion of openly gay people.

Question A, on the other hand, approaches the matter without specifically addressing sexual orientation. The article focuses on the current law that forbids openly gay men and women from joining the military and debates whether it ought to be repealed. The question is likely to elicit more support for the change by framing it in terms of abolishing an existing legislation, leading to a higher percentage of respondents selecting "should."

The conclusion that Question B is biased towards a more unfavourable answer on gays in the military than Question A may be drawn from the information provided.

Learn more about sample here:

https://brainly.com/question/30243143


#SPJ11

given: (x is number of items) demand function: d ( x ) = 3888/√x supply function: s ( x ) = 3√x find the equilibrium quantity:______. find the consumers surplus at the equilibrium quantity: ____

Answers

Calculating the integral, we find the consumer surplus at the equilibrium quantity.  the equilibrium quantity is approximately 432.

Setting the demand and supply functions equal to each other, we have d(x) = s(x), which becomes 3888/√x = 3√x.

To solve for x, we can first square both sides of the equation to eliminate the square roots: (3888/√x)^2 = (3√x)^2.

Simplifying, we get (3888)^2 / x = (3^2)(x).

Cross-multiplying, we have (3888)^2 = 9x^3.

Dividing both sides by 9, we get x^3 = (3888)^2 / 9.

Taking the cube root of both sides, we find x = ∛((3888)^2 / 9).

Calculating the value, we find x ≈ 432.

Therefore, the equilibrium quantity is approximately 432.

To find the consumer surplus at the equilibrium quantity, we need to calculate the area between the demand curve and the price line at that quantity. Consumer surplus represents the difference between the maximum price a consumer is willing to pay (represented by the demand curve) and the actual price (represented by the supply curve) for the given quantity.

Since the demand function is given by d(x) = 3888/√x, we need to calculate the integral of this function from 0 to 432.

Learn more about integral here:

https://brainly.com/question/32387684

#SPJ11

(1 point) Evaluate the integrals. 9 8 So [√18-² + 16 +24] 16-12 t2 In 9. k dt = [Ste'i + 7e'j + 4 lntk] dt = ⠀ #

Answers

The integral evaluates to [tex]e^i * t + 7e^j * t + 4t * ln(t) - 4t + C.[/tex]

Integrals are fundamental mathematical operations used to calculate the area under a curve or to find the antiderivative of a function.

To evaluate the given integrals, we'll take them one by one:

∫[√(18 - 2t) + 16 + 24] dt

To solve this integral, we'll split it into three separate integrals:

∫√(18 - 2t) dt + ∫16 dt + ∫24 dt

Let's evaluate each integral separately:

∫√(18 - 2t) dt

To simplify the square root, we can rewrite it as (18 - 2t)^(1/2). Then, using the power rule, we have:

(1/3) * (18 - 2t)^(3/2) + 16t + 24t + C

Simplifying further, we get: (1/3) * (18 - 2t)^(3/2) + 40t + C

Now, let's evaluate the other integrals:

∫16 dt = 16t + C1

∫24 dt = 24t + C2

Combining all the results, we have:

∫[√(18 - 2t) + 16 + 24] dt = (1/3) * (18 - 2t)^(3/2) + 40t + 16t + 24t + C

= (1/3) * (18 - 2t)^(3/2) + 80t + C

Therefore, the integral evaluates to (1/3) * (18 - 2t)^(3/2) + 80t + C.

∫[e^i + 7e^j + 4ln(t)] dt

Here, e^i, e^j, and ln(t) are constants with respect to t. Therefore, we can pull them out of the integral: e^i ∫dt + 7e^j ∫dt + 4 ∫ln(t) dt

Integrating each term: e^i * t + 7e^j * t + 4 * (t * ln(t) - t) + C

Simplifying further: e^i * t + 7e^j * t + 4t * ln(t) - 4t + C

Thus, the integral evaluates to e^i * t + 7e^j * t + 4t * ln(t) - 4t + C.

To learn more about “integrals” refer to the https://brainly.com/question/22008756

#SPJ11

get the exact solution of the following polynomial: y' = 3+t-y notices that y(0)=1.

Answers

The given differential equation is y' = 3 + t - y, with the initial condition y(0) = 1. To find the exact solution, we can solve the differential equation by separating variables and then integrating.

Rearranging the equation, we have:

dy/dt + y = 3 + t.

We can rewrite this as:

dy + y dt = (3 + t) dt.

Next, we integrate both sides:

∫(dy + y dt) = ∫(3 + t) dt.

Integrating, we get:

y + 0.5y^2 = 3t + 0.5t^2 + C,

where C is the constant of integration.

Now, we can apply the initial condition y(0) = 1. Substituting t = 0 and y = 1 into the equation, we have:

1 + 0.5(1)^2 = 3(0) + 0.5(0)^2 + C,

1 + 0.5 = C,

C = 1.5.

Substituting this value back into the equation, we obtain:

y + 0.5y^2 = 3t + 0.5t^2 + 1.5.

This is the exact solution to the given differential equation with the initial condition y(0) = 1.

Learn more about polynomial here : brainly.com/question/11536910

#SPJ11

14. Let f(x) = x3 + 6x2 – 15% - 10. = – Explain the following briefly. (1) Find the intervals of increase/decrease of the function. (2) Find the local maximum and minimum points. (3) Find the inte

Answers

(1) The intervals of increase/decrease is between critical points x = 1 and x = -5.

(2) The local maximum and minimum points are 50 and -18.

To analyze the function f(x) = x^3 + 6x^2 - 15x - 10, we can follow these steps:

(1) Finding the Intervals of Increase/Decrease:

To determine the intervals of increase and decrease, we need to find the critical points by setting the derivative equal to zero and solving for x:

f'(x) = 3x^2 + 12x - 15

Setting f'(x) = 0:

3x^2 + 12x - 15 = 0

This quadratic equation can be factored as:

(3x - 3)(x + 5) = 0

So, the critical points are x = 1 and x = -5.

We can test the intervals created by these critical points using the first derivative test or by constructing a sign chart for f'(x). Evaluating f'(x) at test points in each interval, we can determine the sign of f'(x) and identify the intervals of increase and decrease.

(2) Finding the Local Maximum and Minimum Points:

To find the local maximum and minimum points, we need to examine the critical points and the endpoints of the given interval.

To evaluate f(x) at the critical points, we substitute them into the original function:

f(1) = 1^3 + 6(1)^2 - 15(1) - 10 = -18

f(-5) = (-5)^3 + 6(-5)^2 - 15(-5) - 10 = 50

We also evaluate f(x) at the endpoints of the given interval, if provided.

(3) Finding the Integral:

To find the integral of the function, we need to specify the interval of integration. Without a specified interval, we cannot determine the definite integral. However, we can find the indefinite integral by finding the antiderivative of the function:

∫ (x^3 + 6x^2 - 15x - 10) dx

Taking the antiderivative term by term:

∫ x^3 dx + ∫ 6x^2 dx - ∫ 15x dx - ∫ 10 dx

= (1/4)x^4 + 2x^3 - (15/2)x^2 - 10x + C

Where C is the constant of integration.

So, the integral of the function f(x) is (1/4)x^4 + 2x^3 - (15/2)x^2 - 10x + C, where C is the constant of integration.

Learn more about "local maximum":

https://brainly.com/question/11894628

#SPJ11

Each unit of a product can be made on either machine A or machine B. The nature of the machines makes their cost functions differ. x² Machine A: C(x) = 10+ 6 13 Machine B: cly) = 160+ Total cost is given by C(x,y) =C(x) + C(y). How many units should be made on each machine in order to minimize total costs if x+y=12,210 units are required? The minimum total cost is achieved when units are produced on machine A and units are produced on machine B.

Answers

To minimize the total cost and produce 12,210 units, approximately ¼ unit should be made on machine A and approximately 12,209.75 units should be made on machine B.

To minimize the total cost, we need to determine the number of units that should be made on each machine, given the cost functions and the total units required. Let’s denote the number of units made on machine A as x and on machine B as y.

The cost function for machine A is C(x) = 10x + 6x², and for machine B, it is C(y) = 160 + 13y. The total cost is given by C(x, y) = C(x) + C(y).

Since the total units required are 12,210 units, we have the constraint x + y = 12,210.

To minimize the total cost, we can use the method of optimization. We need to find the values of x and y that satisfy the constraint and minimize the total cost function C(x, y).

We can rewrite the total cost function as:

C(x, y) = 10x + 6x² + 160 + 13y.

Using the constraint x + y = 12,210, we can express y in terms of x: y = 12,210 – x.

Substituting this into the total cost function, we have:

C(x) = 10x + 6x² + 160 + 13(12,210 – x).

Simplifying the expression, we get:

C(x) = 6x² - 3x + 159,110.

To minimize the cost, we take the derivative of C(x) with respect to x and set it equal to zero:

C’(x) = 12x – 3 = 0.

Solving for x, we find x = ¼.

Substituting this value back into the constraint, we have:

Y = 12,210 – (1/4) = 12,209.75.

Learn more about cost function here:

https://brainly.com/question/29583181

#SPJ11

2x Consider the rational expression 3x² + 10x +3 A B 1. Write out the form of the partial fraction expression, i.e. factor 1 factor 2 2. Clear the resulting equation of fractions, then use the "wipeout" method to find A and B. 3. Now, write out the complete partial fraction decomposition. +

Answers

The partial fraction expression for the given rational expression is:

[tex]\frac{2x}{3x^2 + 10x + 3} = \frac{A}{factor 1} + \frac{B}{factor 2}[/tex]. The resulting equation of fractions A is -6 = -9A - 8B and for B it is -2/3 = 26/9A - 2/3B. The complete partial fraction decomposition is: [tex]\frac{2x}{3x^2 + 10x + 3} = \frac{A}{factor 1} + \frac{B}{factor 2}[/tex].

The partial fraction expression for the given rational expression is:

[tex]\frac{2x}{3x^2 + 10x + 3} = \frac{A}{factor 1} + \frac{B}{factor 2}[/tex].

Here, "factor 1" and "factor 2" represent the irreducible quadratic factors in the denominator, which can be found by factoring the quadratic equation 3x² + 10x + 3

To find the values of A and B, we clear the equation of fractions by multiplying both sides by the common denominator, which is (factor₁)(factor₂) = (3x + 1)(x + 3):

2x = A(x + 3) + B(3x + 1)

Now, we can use the "wipeout" method to find the values of A and B.

For factor₁:

Setting x = -3, we get:

2(-3) = A(-3 + 3) + B(3(-3) + 1)

-6 = -9A - 8B

For factor₂:

Setting x = -1/3, we get:

2(-1/3) = A(-1/3 + 3) + B(3(-1/3) + 1)

-2/3 = 26/9A - 2/3B

Solving the system of equations formed by the two equations above, we can find the values of A and B.

After solving the system of linear equations, we obtain the values of A and B. The complete partial fraction decomposition is:

[tex]\frac{2x}{3x^2 + 10x + 3} = \frac{A}{factor 1} + \frac{B}{factor 2}[/tex].

Substituting the values of A and B that we obtained, we can express the given rational expression as a sum of the partial fractions.

In conclusion, Partial fraction decomposition simplifies complex rational expressions and allows them to be expressed as a sum of simpler fractions.

By using the "wipeout" method, the values of unknowns A and B can be determined, leading to the complete partial fraction decomposition. This technique is useful for the integration of rational functions.

To know more about partial fractions refer here:

https://brainly.com/question/30780590#

#SPJ11

Complete Question:

Consider the rational expression [tex]\frac{2x}{3x^2 + 10x +3}[/tex]

1. Write out the form of the partial fraction expression, i.e. [tex]\frac{A}{factor 1}[/tex] + [tex]\frac{B}{factor 2}[/tex]

2. Clear the resulting equation of fractions, then use the "wipeout" method to find A and B.

3. Now, write out the complete partial fraction decomposition.

help me solve tbis oelase!!!!
Find the sum of the series Σ (-1)+12? n InO 322

Answers

To find the sum of the series Σ (-1)^(n-1) * (1/2^n), we can use the formula for the sum of an infinite geometric series.

The formula states that if the absolute value of the common ratio r is less than 1, then the sum of the series is given by S = a / (1 - r), where a is the first term. In this case, the first term a is -1, and the common ratio r is 1/2.

The series Σ (-1)^(n-1) * (1/2^n) can be rewritten as Σ (-1)^(n-1) * (1/2)^(n-1) * (1/2), where we have factored out (1/2) from the denominator.

Comparing the series to the formula for an infinite geometric series, we can see that the first term a is -1 and the common ratio r is 1/2.

According to the formula, the sum of the series is given by S = a / (1 - r). Substituting the values, we have:

S = -1 / (1 - 1/2).

Simplifying the denominator, we get:

S = -1 / (1/2).

To divide by a fraction, we multiply by its reciprocal:

S = -1 * (2/1) = -2.

Therefore, the sum of the series Σ (-1)^(n-1) * (1/2^n) is -2.

In conclusion, using the formula for the sum of an infinite geometric series, we find that the sum of the given series is -2.

Learn more about  infinite geometric series  here:

https://brainly.com/question/30393684

#SPJ11

Use a substitution of the form u = ax + b to evaluate the indefinite integral below. [(x+6372 .. Six = 6)72 dx=0 +6312

Answers

The indefinite integral of [(x+6372)^6 dx] is :

(1/7)(x - 6372)^7 + C.

To evaluate this indefinite integral using the substitution u = ax + b, we first need to determine the values of a and b. We can do this by setting u = ax + b equal to the expression inside the integral, which is (x + 6372)^6.

Setting u = ax + b, we have:

u = ax + b
u = (1/a)(ax + 6372) + 6372    (since we want the expression (x + 6372) to appear in our substitution)
u = (1/a)x + (6372 + b/a)

Comparing the coefficients of x in both expressions, we get:

1/a = 1     (since we want to simplify the substitution as much as possible)
a = 1

Comparing the constant terms in both expressions, we get:

6372 + b/a = 0
b = -6372

Therefore, our substitution is u = x - 6372.

Next, we substitute u = x - 6372 into the integral and simplify:

∫ [(x+6372)^6 dx] = ∫ [u^6 du]     (since x + 6372 = u)
= (1/7)u^7 + C
= (1/7)(x - 6372)^7 + C

Therefore, the indefinite integral of [(x+6372)^6 dx] is (1/7)(x - 6372)^7 + C.

To learn more about indefinite integral visit : https://brainly.com/question/22008756

#SPJ11

Other Questions
euripides' bacchae was first performed as part of a religious festival in the city of ______. heather hudson makes stuffed teddy bears. recent information for her business follows:selling price per bear$ 30.55total fixed costs per month2,027.00variable cost per bear19.55required:if heather wants to earn $1,130.00 in profit next month, how many bears will she have to sell? 15. Let y = xsinx. Find f'(?). e) None of the above d) - Inne a)0 b)1 c) Inn Find f'(4) 16. Let y = In (x+1)'ex (x-3)* d) - 1.4 e) None of the above c) - 2.6 a) 1 b) 1.2 Give the scale factor of Figure B to Figure A. zhang company reported cost of goods sold of $848,000, beginning inventory of $39,800 and ending inventory of $47,600. the average inventory amount is: (1 point) solve the initial value problem dxdt 5x=cos(3t) with x(0)=5. x(t)= QuestionWhich statement is true based on the information presenting in the graph below Brown Corporation had average days of sales outstanding of 22 days in the most recent fiscal year. Brown wants to improve its credit policies and collection practices and decrease its collection period in the next fiscal year to match the industry average of 14 days. Credit sales in the most recent fiscal year were $473 million, and Brown expects credit sales to increase to $550 million in the next fiscal year. To achieve Brown's goal of decreasing the collection period, what is the change in the average accounts receivable balance that must occur? Find the local maxima and local minima of the function shown below. f(x,y)=x2 + y2 - 18x+10y - 3 What are the local maxima? Select the correct choice below and, if necessary, fill in the answer box to Your client saving account has a stated annual interest rate of5.71 percent, compounded monthly. However, your client wants tomake payments quarterly, rather than monthly, all other factorsremainin When the government attempts to stabilize the economy by changing taxes or government expenditures, it is using fiscal policy.TrueFalse Organization's use Porter's competitive forces model to design ________ strategies; they use the value chain model to identify ________ activities to make the greatest impact.a. specific; specificb. general; generalc. specific; generald. general; specific Evaluate.mkm + kfor m= 6 and k = 2Options are.6.2.3.1.5 (1) Company training centers first started investing money in computers to meet employees' needs to become preparedfor the information age. (2) Experts were hired and time was allotted to train workers to use the computers. (3) Much ofthe early computer usage in companies was concentrated in data entry activities. (4) Later, managers realized that thecomputers were valuable tools to help retrain workers in many subject areas.Select the correct answer.Based on the structure and characteristics of the paragraph, choose the best topic sentence for it.A. Computers are used widely in business.B. The use of computers in business has changed through time.C. Businesses have resisted the use of computers. find the second taylor polynomial t2(x) for the function f(x)=ln(x) based at b=1. t2(x) = fof and give the set Dfofgo g and give the set Dgog Bromomethane is converted to methanol in an alkaline solution. The reaction is first order in each reactant.CH3Br(aq)+OH(aq)CH3OH(aq)+Br(aq)Rate=k[CH3Br][OH]How does the reaction rate change if the OH concentration is decreased by a factor of 7? I need help with my thesis sentence and topic sentences for anargumentative essay. I am having trouble with it. The essay is on:Why we should ban field burning because it affects the youth inhealth How can a marketer overcome the negative effects of commoditization?A) convince target consumers that the firm's products are as good as those of competitorsB) convince target consumers that price is irrelevant in determining qualityC) convince target consumers that the firm's products are different from those of competitorsD) convince target customers that buying the highest-priced product is no guarantee of qualityE) convince target customers that all the products in the market are equivalent Which of the following amino acids has an ionizable R-group with a pKa near neutral pH? A) histidine B) serine C) aspartic acid D) lysine E) tyrosine