Solve the triangle. ... Question content area top right Part 1 c 76° a=13.2 74° γ b

Answers

Answer 1

Answer:

The missing angle γ=17.97°.

Let's have detailed explanation:

Since the information given includes the angles of the triangle (76°, 74°, and γ), and the lengths of two sides (a=13.2 and b), we can use the Law of Cosines formula to solve for the missing side (b): b^2 = a^2 + c^2 − 2ac cos(γ).

Therefore, b = sqrt(13.2^2 + 76^2 - 2(13.2)(76) * cos(γ)).

To solve for the value of γ, we can use the Law of Cosines formula once again: cos(γ) = (a^2+b^2-c^2)/2ab.

Substituting in the values for a, b, and c then gives us:

cos(γ) = (13.2^2+sqrt(13.2^2 + 76^2 - 2(13.2)(76) * cos(γ))-76^2)/(2*13.2*sqrt(13.2^2 + 76^2 - 2(13.2)(76) * cos(γ))).

Using the cosine inverse function, we then find that

γ=17.97°.

To know more about Cosine refer here:

https://brainly.com/question/28355770#

#SPJ11

Answer 2

The possible solutions from the triangle are c = 25.6 units, b = 25.4 units and A = 30 degrees

How to determine the possible solutions from the triangle

From the question, we have the following parameters that can be used in our computation:

C = 76 degrees

a = 13.2 units

B = 74 degrees

The sum of angles in a triangle is 180 degrees

So, we have

A = 180 - 76 - 74

Evaluate

A = 30

Using the law of sines, the length b is calculated as

b/sin(B) = a/sin(A)

So, we have

b/sin(74) = 13.2/sin(30)

This gives

b = sin(74 deg) * 13.2/sin(30 deg)

Evaluate

b = 25.4

For segment c, we have

c = sin(76 deg) * 13.2/sin(30 deg)

Evaluate

c = 25.6

Hence, the length of the side c is 25.6 units

Read more about triangle at

brainly.com/question/4372174

#SPJ4

Question

Solve the triangle.

c = 76°

a = 13.2

b =  74°


Related Questions

A company can buy a machine for $95,000 that is expected to increase the company's net income by $20,000 each year for the 5-year life of the machine. The company also estimates that for the next 5 years, the money from this continuous income stream could be invested at 4%. The company calculates that the present value of the machine is $90,634.62 and the future value of the machine is $110,701.38. What is the best financial decision? (Choose one option below.) O a. Buy the machine because the cost of the machine is less than the future value. b. Do not buy the machine because the present value is less than the cost of the Machine. Instead look for a more worthwhile investment. c. Do not buy the machine and put your $95,000 under your mattress.
Previous question

Answers

A company can buy a machine for the best financial decision in this scenario is to buy the machine because the present value of the machine is greater than the cost, indicating a positive net present value (NPV).

Net present value (NPV) is a financial metric used to assess the profitability of an investment. It calculates the difference between the present value of cash inflows and the present value of cash outflows. In this case, the present value of the machine is given as $90,634.62, which is lower than the cost of the machine at $95,000. However, the future value of the machine is $110,701.38, indicating a positive return.

The NPV of an investment takes into account the time value of money, considering the discount rate at which future cash flows are discounted back to their present value. In this case, the company estimates that the money from the continuous income stream could be invested at 4% for the next 5 years.

Since the present value of the machine is greater than the cost, it implies that the expected net income from the machine's operation, when discounted at the company's estimated 4% rate, exceeds the initial investment cost. Therefore, the best financial decision would be to buy the machine because the positive NPV suggests that it is a profitable investment.

Learn more about present value here:

https://brainly.com/question/28304447

#SPJ11

What is 6(4y+7)-(2y-1)

Answers

Answer: The simplified expression 6(4y + 7) - (2y - 1) is : 22y + 43

PLS SOLVE NUMBER 6
51 ce is mea, 6. Suppose A = (3, -2, 4), B = (-5. 7. 2) and C = (4. 6. -1), find A B. A+B-C.

Answers

To find the vectors A • B and A + B - C, given A = (3, -2, 4), B = (-5, 7, 2), and C = (4, 6, -1), we perform the following calculations:

A • B is the dot product of A and B, which can be found by multiplying the corresponding components of the vectors and summing the results:

A • B = (3 * -5) + (-2 * 7) + (4 * 2) = -15 - 14 + 8 = -21.

A + B - C is the vector addition of A and B followed by the subtraction of C:

A + B - C = (3, -2, 4) + (-5, 7, 2) - (4, 6, -1) = (-5 + 3 - 4, 7 - 2 - 6, 2 + 4 + 1) = (-6, -1, 7).

Therefore, A • B = -21 and A + B - C = (-6, -1, 7).

learn more about vectors here:

https://brainly.com/question/12937011

#SPJ11

Use the second-order Runge-Kutta method with h - 0.1, find Solution: dy and >> for dx - xy'. 2) 1 A

Answers

The second-order Runge-Kutta method was used with a step size of h = 0.1 to find the solution of the differential equation dy/dx = xy'. The solution: y1 = y0 + h * k2.

The second-order Runge-Kutta method, also known as the midpoint method, is a numerical technique used to approximate the solution of ordinary differential equations. In this method, the differential equation dy/dx = xy' is solved using discrete steps of size h = 0.1.

To apply the method, we start with an initial condition y(x0) = y0, where x0 is the initial value of x. Within each step, the intermediate values are calculated as follows:

Compute the slope at the starting point: k1 = x0 * y'(x0).

Calculate the midpoint values: x_mid = x0 + h/2 and y_mid = y0 + (h/2) * k1.

Compute the slope at the midpoint: k2 = x_mid * y'(y_mid).

Update the solution: y1 = y0 + h * k2.

Repeat this process for subsequent steps, updating x0 and y0 with the new values x1 and y1 obtained from the previous step. The process continues until the desired range is covered.

By utilizing the midpoint values and averaging the slopes at two points within each step, the second-order Runge-Kutta method provides a more accurate approximation of the solution compared to the simple Euler method. It offers better stability and reduces the error accumulation over multiple steps, making it a reliable technique for solving differential equations numerically.

Learn more about slope here:

https://brainly.com/question/3605446

#SPJ11

2 Question 17 Evaluate the integral by making the given substitution. 5x21?? +2 dx, u=x+2 ° - (x+2)"+C © } (x+2)"+c 0 }(x+2)*** (+2)"+c 03 (x + 2)2 + C +C

Answers

(5/3)(x + 2)^3 - 10(x + 2)^2 + 20(x + 2) + C  is the final answer obtained by integrating, substituting and applying the power rule.

To evaluate the integral ∫(5x^2 + 2) dx by making the substitution u = x + 2, we can rewrite the integral as follows: ∫(5x^2 + 2) dx = ∫5(x^2 + 2) dx

Now, let's substitute u = x + 2, which implies du = dx:

∫5(x^2 + 2) dx = ∫5(u^2 - 4u + 4) du

Expanding the expression, we have: ∫(5u^2 - 20u + 20) du

Integrating each term separately, we get:

∫5u^2 du - ∫20u du + ∫20 du

Now, applying the power rule of integration, we have:

(5/3)u^3 - 10u^2 + 20u + C

Substituting back u = x + 2, we obtain the final result:

(5/3)(x + 2)^3 - 10(x + 2)^2 + 20(x + 2) + C

Learn more about power rule here: https://brainly.com/question/30763507

#SPJ11

find the area of the region that lies inside the first curve and outside the second curve. r = 7 − 7 sin , r = 7

Answers

The area of the region that lies inside the first curve and outside the second curve can be found by calculating the difference between the areas enclosed by the two curves. The first curve, r = 7 - 7 sin θ, represents a cardioid shape, while the second curve, r = 7, represents a circle with a radius of 7 units.

In the first curve, r = 7 - 7 sin θ, the value of r changes as the angle θ varies. The curve resembles a heart shape, with its maximum distance from the origin being 7 units and its minimum distance being 0 units.

On the other hand, the second curve, r = 7, represents a perfect circle with a fixed radius of 7 units. It is centered at the origin and has a constant distance of 7 units from the origin at any given angle θ.

To find the area of the region that lies inside the first curve and outside the second curve, you would calculate the difference between the area enclosed by the cardioid shape and the area enclosed by the circle. This can be done by integrating the respective curves over the appropriate range of angles and then subtracting one from the other.

Learn more about circle here: https://brainly.com/question/12711347

#SPJ11




Determine the following indefinite integral. 2 5+° () 3t? | dt 2 + 3t 2 ) dt =

Answers

The solution is (5 + °) ((2 + 3t²)² / 12) + C for the indefinite integral.

A key idea in calculus is an indefinite integral, commonly referred to as an antiderivative. It symbolises a group of functions that, when distinguished, produce a certain function. The integral symbol () is used to represent the indefinite integral of a function, and it is usually followed by the constant of integration (C). By using integration techniques and principles, it is possible to find an endless integral by turning the differentiation process on its head.

The expression for the indefinite integral with the terms 2 5+°, ( ) 3t?, 2 + 3t 2, and dt is given by;[tex]∫ 2(5 + °) (3t² + 2) / (2 + 3t²) dt[/tex]

To solve the above indefinite integral, we shall use the substitution method as shown below:

Let y = 2 + [tex]3t^2[/tex] Then dy/dt = 6t, from this, we can find dt = dy / 6t

Substituting y and dt in the original expression, we have∫ (5 + °) (3t² + 2) / (2 + 3t²) dt= ∫ (5 + °) (1/6) (6t / (2 + 3t²)) (3t² + 2) dt= ∫ (5 + °) (1/6) (y-1) dy

Integrating the expression with respect to y we get,(5 + °) (1/6) * [y² / 2] + C = (5 + °) (y² / 12) + C

Substituting y = 2 +[tex]3t^2[/tex] back into the expression, we have(5 + °) ((2 + 3t²)² / 12) + C

The solution is (5 + °) ((2 + 3t²)² / 12) + C.


Learn more about indefinite integral here:

https://brainly.com/question/28036871

#SPJ11

X^2=-144

X=12?

X=-12?

X=-72?

This equation has no real solution?

Answers

None of the options x = 12, x = -12, or x = -72 are valid solutions to the equation x² = -144.

To determine the solutions to the equation x² = -144, let's solve it step by step:

Taking the square root of both sides, we have:

√(x²) = √(-144)

Simplifying:

|x| = √(-144)

Now, we need to consider the square root of a negative number. The square root of a negative number is not a real number, so there are no real solutions to the equation x² = -144.

Therefore, none of the options x = 12, x = -12, or x = -72 are valid solutions to the equation x² = -144.

Learn more about Equation here:

https://brainly.com/question/29657983

#SPJ1

Find the vector equation for the line of intersection of the
planes x−2y+5z=−1x−2y+5z=−1 and x+5z=2x+5z=2
=〈r=〈 , ,0 〉+〈〉+t〈-10, , 〉〉.

Answers

To find the vector equation for the line of intersection of the planes x - 2y + [tex]5z = -1 and x + 5z = 2,[/tex]we can solve the system of equations formed by the two planes. Let's express z and x in terms of y:

From the second plane equation, we have[tex]x = 2 - 5z.[/tex]

Substituting this value of x into the first plane equation:

[tex](2 - 5z) - 2y + 5z = -1,2 - 2y = -1,-2y = -3,y = 3/2.[/tex]

Substituting this value of y back into the second plane equation, we get:x = 2 - 5z.

Therefore, the vector equation for the line of intersection is:

[tex]r = ⟨x, y, z⟩ = ⟨2 - 5z, 3/2, z⟩ = ⟨2, 3/2, 0⟩ + t⟨-5, 0, 1⟩.[/tex]

Hence, the vector equation for the line of intersection is[tex]r = ⟨2, 3/2, 0⟩ + t⟨-5, 0, 1⟩.[/tex]

To learn more about   vector  click on the link below:

brainly.com/question/32363400

#SPJ11

URGENT! HELP PLS :)
Question 3 (Essay Worth 4 points)

Two student clubs were selling t-shirts and school notebooks to raise money for an upcoming school event. In the first few minutes, club A sold 2 t-shirts and 3 notebooks, and made $20. Club B sold 2 t-shirts and 1 notebook, for a total of $8.

A matrix with 2 rows and 2 columns, where row 1 is 2 and 3 and row 2 is 2 and 1, is multiplied by matrix with 2 rows and 1 column, where row 1 is x and row 2 is y, equals a matrix with 2 rows and 1 column, where row 1 is 20 and row 2 is 8.

Use matrices to solve the equation and determine the cost of a t-shirt and the cost of a notebook. Show or explain all necessary steps.

Answers

Answer:

The given matrix equation can be written as:

[2 3; 2 1] * [x; y] = [20; 8]

Multiplying the matrices on the left side of the equation gives us the system of equations:

2x + 3y = 20 2x + y = 8

To solve for x and y using matrices, we can use the inverse matrix method. First, we need to find the inverse of the coefficient matrix [2 3; 2 1]. The inverse of a 2x2 matrix [a b; c d] can be calculated using the formula: (1/(ad-bc)) * [d -b; -c a].

Let’s apply this formula to our coefficient matrix:

The determinant of [2 3; 2 1] is (21) - (32) = -4. Since the determinant is not equal to zero, the inverse of the matrix exists and can be calculated as:

(1/(-4)) * [1 -3; -2 2] = [-1/4 3/4; 1/2 -1/2]

Now we can use this inverse matrix to solve for x and y. Multiplying both sides of our matrix equation by the inverse matrix gives us:

[-1/4 3/4; 1/2 -1/2] * [2x + 3y; 2x + y] = [-1/4 3/4; 1/2 -1/2] * [20; 8]

Solving this equation gives us:

[x; y] = [0; 20/3]

So, a t-shirt costs $0 and a notebook costs $20/3.

For the geometric sequence, 6, 18 54 162 5' 25' 125 What is the common ratio? What is the fifth term? What is the nth term?

Answers

The common ratio of the geometric sequence is 3. The fifth term is 125 and the nth term is 6 * 3^(n-1).

Geometric Sequence a_1 =6, a_2=18, a_3=54

To find the common ratio of a geometric sequence, we divide any term by its preceding term.

Let's take the second term, 18, and divide it by the first term, 6. This gives us a ratio of 3. We can repeat this process for subsequent terms to confirm that the common ratio is indeed 3.

To find the common ratio r, divide each term by the previous term.

                                                 r=a_2/a_1=18/6=3

To find the fifth term:

                                                  a_5=a_4*r

                                                        =162*3

                                                        =486

To find the nth term:

                                                  a_n=a_1*r^(n-1)

                                                         =6*3^(n-1)

To know more about Geometric Sequence refer here:

https://brainly.com/question/27852674#

#SPJ11

A company has found that the cost, in dollars per pound, of the coffee it roasts is related to C'(x): = -0.008x + 7.75, for x ≤ 300, where x is the number of pounds of coffee roasted. Find the total cost of roasting 250 lb of coffee.

Answers

The total cost of roasting 250 lb of coffee can be found by integrating the cost function C'(x) over the interval from 0 to 250.

To do this, we integrate the cost function C'(x) with respect to x:

∫ (-0.008x + 7.75) dx

Integrating the first term, we get:

[tex]-0.004x^2[/tex] + 7.75x

Now we can evaluate the definite integral from 0 to 250:

∫ (-0.008x + 7.75) dx = [[tex]-0.004x^2[/tex] + 7.75x] evaluated from 0 to 250

Plugging in the upper limit, we have:

[[tex]-0.004(250)^2[/tex] + 7.75(250)] - [[tex]-0.004(0)^2[/tex] + 7.75(0)]

Simplifying further:

[-0.004(62500) + 1937.5] - [0 + 0]

Finally, we can compute the total cost of roasting 250 lb of coffee:

-250 + 1937.5 = 1687.5

Therefore, the total cost of roasting 250 lb of coffee is $1687.50.

Learn more about cost function here:

https://brainly.com/question/29583181

#SPJ11

Prove that sin e csc cose + sec tan coto is an identity.

Answers

To prove that the expression sin(e) csc(cose) + sec(tan(coto)) is an identity, we need to simplify it using trigonometric identities. Let's start:

Recall the definitions of trigonometric functions:

  - cosec(x) = 1/sin(x)

  - sec(x) = 1/cos(x)

  - tan(x) = sin(x)/cos(x)

Substituting these definitions into the expression, we have:

  sin(e) * (1/sin(cose)) + (1/cos(tan(coto)))

Since sin(e) / sin(cose) = 1 (the sine of any angle divided by the sine of its complementary angle is always 1), the expression simplifies to:

  1 + (1/cos(tan(coto)))

Now, we need to simplify cos(tan(coto)). Using the identity:

  tan(x) = sin(x)/cos(x)

  We can rewrite cos(tan(coto)) as cos(sin(coto)/cos(coto)).

Applying the identity:

  cos(A/B) = sqrt((1 + cos(2A))/(1 + cos(2B)))

  We can rewrite cos(sin(coto)/cos(coto)) as:

  sqrt((1 + cos(2sin(coto)))/(1 + cos(2cos(coto))))

Finally, substituting this back into our expression, we have:

  1 + (1/sqrt((1 + cos(2sin(coto)))/(1 + cos(2cos(coto)))))

  This is the simplified form of the expression.

By simplifying the given expression using trigonometric identities, we have shown that sin(e) csc(cose) + sec(tan(coto)) is indeed an identity.

To  learn more about trigonometric function click here brainly.com/question/31540769

#SPJ11

a) Under what conditions prime and irreducible elements are same? Justify your answers. b)Under what conditions prime and maximal ideals are same? Justify your answers. c) (5 p.) Determ"

Answers

a) Prime and irreducible elements are the same in domains where every irreducible element is also prime, such as in unique factorization domains (UFDs) or principal ideal domains (PIDs).

b) Prime and maximal ideals can be the same in  certain special rings called local rings.

a) In a ring, an irreducible element is one that cannot be factored further into non-unit elements. A prime element, on the other hand, satisfies the property that if it divides a product of elements, it must divide at least one of the factors. In some rings, these two notions coincide. For example, in a unique factorization domain (UFD) or a principal ideal domain (PID), every irreducible element is prime. This is because in these domains, every element can be uniquely factored into irreducible elements, and the irreducible elements cannot be further factored. Therefore, in UFDs and PIDs, prime and irreducible elements are the same.

b) In a commutative ring, prime ideals are always contained within maximal ideals. This is a general property that holds for any commutative ring. However, in certain special rings called local rings, where there is a unique maximal ideal, the maximal ideal is also a prime ideal. This is because in local rings, every non-unit element is contained within the unique maximal ideal. Since prime ideals are defined as ideals where if it divides a product, it divides at least one factor, the maximal ideal satisfies this condition. Therefore, in local rings, the maximal ideal and the prime ideal coincide.

In summary, prime and irreducible elements are the same in domains where every irreducible element is also prime, such as in unique factorization domains (UFDs) or principal ideal domains (PIDs). Prime and maximal ideals can be the same in certain special rings called local rings, where the unique maximal ideal is also a prime ideal. These results are justified based on the properties and definitions of prime and irreducible elements, as well as prime and maximal ideals in different types of rings.

Learn more about prime ideals here:

https://brainly.com/question/30968517

#SPJ11

Find the measures of the angles of the triangle whose vertices are A=(-2,0), B=(2,2), and C=(2,-2). The measure of ZABC is (Round to the nearest thousandth.)

Answers

To find the measures of the angles of the triangle ABC with vertices A=(-2,0), B=(2,2), and C=(2,-2), we can use the distance formula and the dot product.

First, let's find the lengths of the sides of the triangle:

AB = √[(x₂ - x₁)² + (y₂ - y₁)²]

= √[(2 - (-2))² + (2 - 0)²]

= √[4² + 2²]

= √(16 + 4)

= √20

= 2√5

BC = √[(x₂ - x₁)² + (y₂ - y₁)²]

= √[(2 - 2)² + (-2 - 2)²]

= √[0² + (-4)²]

= √(0 + 16)

= √16

= 4

AC = √[(x₂ - x₁)² + (y₂ - y₁)²]

= √[(2 - (-2))² + (-2 - 0)²]

= √[4² + (-2)²]

= √(16 + 4)

= √20

= 2√5

Now, let's use the dot product to find the measure of angle ZABC (angle at vertex B):

cos(ZABC) = (AB·BC) / (|AB| |BC|)

= (ABx * BCx + ABy * BCy) / (|AB| |BC|)

where ABx, ABy are the components of vector AB, and BCx, BCy are the components of vector BC.

AB·BC = ABx * BCx + ABy * BCy

= (2 - (-2)) * (2 - 2) + (2 - 0) * (-2 - 2)

= 4 * 0 + 2 * (-4)

= -8

|AB| |BC| = (2√5) * 4

= 8√5

cos(ZABC) = (-8) / (8√5)

= -1 / √5

= -√5 / 5

Using the inverse cosine function, we can find the measure of angle ZABC:

ZABC = arccos(-√5 / 5)

≈ 128.189° (rounded to the nearest thousandth)

Therefore, the measure of angle ZABC is approximately 128.189 degrees.

Learn more about triangle here:

https://brainly.com/question/2773823

#SPJ11








Find the absolute maximum and absolute minimum value of f(x) = -12x +1 on the interval [1 , 3] (8 pts)

Answers

The absolute maximum value of f(x) = -12x + 1 on the interval [1, 3] is -11, and the absolute minimum value is -35.

To find the absolute maximum and minimum values of the function f(x)=-12x + 1 on the interval [1, 3], we need to evaluate the function at the critical points and the endpoints of the interval.

Step 1: Finding the critical points by taking the derivative of f(x) and setting it to zero:

f'(x) = -12

Setting f'(x) = 0, we find that there are no critical points since the derivative is a constant.

Step 2: Evaluating f(x) at the endpoints and the critical points (if any) within the interval [1, 3]:

f(1) = -12(1) + 1 = -11

f(3) = -12(3) + 1 = -35

Step 3: After comparing the values obtained in Step 2 to find the absolute maximum and minimum:

The absolute maximum value is -11, which occurs at x = 1.

The absolute minimum value is -35, which occurs at x = 3.

Therefore, the absolute maximum value of f(x) = -12x + 1 on the interval [1, 3] is -11, and the absolute minimum value is -35.

Learn more about derivatives at:

https://brainly.com/question/28376218

#SPJ4

for each x and n, find the multiplicative inverse mod n of x. your answer should be an integer s in the range 0 through n - 1. check your solution by verifying that sx mod n = 1. (a) x = 52, n = 77

Answers

The multiplicative inverse mod 77 of 52 is 23. When multiplied by 52 and then taken modulo 77, the result is 1.

To find the multiplicative inverse of x mod n, we need to find an integer s such that (x * s) mod n = 1. In this case, x = 52 and n = 77. We can use the Extended Euclidean Algorithm to solve for s.

Step 1: Apply the Extended Euclidean Algorithm:

77 = 1 * 52 + 25

52 = 2 * 25 + 2

25 = 12 * 2 + 1

Step 2: Back-substitute to find s:

1 = 25 - 12 * 2

 = 25 - 12 * (52 - 2 * 25)

 = 25 * 25 - 12 * 52

Step 3: Simplify s modulo 77:

s = (-12) mod 77

 = 65 (since -12 + 77 = 65)

Therefore, the multiplicative inverse mod 77 of 52 is 23 (or equivalently, 65). We can verify this by calculating (52 * 23) mod 77, which should equal 1. Indeed, (52 * 23) mod 77 = 1.

Learn more about modulo here:

https://brainly.com/question/30636701

#SPJ11

If you have rolled two dice, what is the probability that you would roll a sum of 7?

Answers

Step-by-step explanation:

36 possible rolls

 ways to get a 7

     1 6      6 1      5 2     2 5      3 4     4 3        6 out of 36 is  1/ 6

a local meteorologist announces to the town that there is a 68% chance there will be a blizzard tonight. what are the odds there will not be a blizzard tonight?

Answers

If the meteorologist announces a 68% chance of a blizzard tonight, then the odds of there not being a blizzard tonight would be expressed as 32 to 68. Therefore, the odds of there not being a blizzard tonight would be 8 to 17, meaning there is an 8 in 17 chance of no blizzard.

The probability of an event occurring is often expressed as a percentage, while the odds are typically expressed as a ratio or fraction. To calculate the odds of an event not occurring, we subtract the probability of the event occurring from 100% (or 1 in fractional form).

In this case, the meteorologist announces a 68% chance of a blizzard, which means there is a 32% chance of no blizzard. To express this as odds, we can write it as a ratio:

Odds of not having a blizzard = 32 : 68

Simplifying the ratio, we divide both numbers by their greatest common divisor, which in this case is 4:

Odds of not having a blizzard = 8 : 17

Therefore, the odds of there not being a blizzard tonight would be 8 to 17, meaning there is an 8 in 17 chance of no blizzard.

Learn more about probability  here:

https://brainly.com/question/31828911

#SPJ11

Let h be the function defined by the equation below. h(x) = x3 - x2 + x + 8 Find the following. h(-4) h(0) = h(a) = = h(-a) =

Answers

their corresponding values by substituting To find the values of the function [tex]h(x) = x^3 - x^2 + x + 8:[/tex]

[tex]h(-4) = (-4)^3 - (-4)^2 + (-4) + 8 = -64 - 16 - 4 + 8 = -76[/tex]

[tex]h(0) = (0)^3 - (0)^2 + (0) + 8 = 8[/tex]

[tex]h(a) = (a)^3 - (a)^2 + (a) + 8 = a^3 - a^2 + a + 8[/tex]

[tex]h(-a) = (-a)^3 - (-a)^2 + (-a) + 8 = -a^3 - a^2 - a + 8[/tex]

For h(-4), we substitute -4 into the function and perform the calculations. Similarly, for h(0), we substitute 0 into the function. For h(a) and h(-a), we use the variable a and its negative counterpart -a, respectively.

The given values allow us to evaluate the function h(x) at specific points and obtain their corresponding values by substituting the given values into the function expression.

Learn more about  corresponding values here:

https://brainly.com/question/32123119

#SPJ11

Write an equivalent double integral with the order of integration reversed. 9 2y/9 SS dx dy 0 0 O A. 2 2x/9 B. 29 s dy dx SS dy dx OTT o 0 0 0 9x/2 O C. x 972 OD. 2x/9 S S dy dx s S S dy dx 0 0 оо

Answers

The equivalent double integral with the order of integration reversed is B. 2x/9 S S dy dx.

To reverse the order of integration, we need to change the limits of integration accordingly. In the given integral, the limits are from 0 to 9 for x and from 0 to 2y/9 for y. Reversing the order, we integrate with respect to y first, and the limits for y will be from 0 to 9x/2. Then we integrate with respect to x, and the limits for x will be from 0 to 9. The resulting integral is 2x/9 S S dy dx.

In this reversed integral, we integrate with respect to y first and then with respect to x. The limits for y are determined by the equation y = 2x/9, which represents the upper boundary of the region. Integrating with respect to y in this range gives us the contribution from each y-value. Finally, integrating with respect to x over the interval [0, 9] accumulates the contributions from all x-values, resulting in the equivalent double integral with the order of integration reversed.

learn more about double integral  here

brainly.com/question/2289273

#SPJ11

Urgent!! please help me out

Answers

Answer:

[tex]\frac{1}{3}[/tex] mile

Step-by-step explanation:

Fairfax → Springdale + Springdale → Livingstone = [tex]\frac{1}{2}[/tex]

Fairfax → Springdale + [tex]\frac{1}{6}[/tex] = [tex]\frac{1}{2}[/tex] ( subtract [tex]\frac{1}{6}[/tex] from both sides )

Fairfax → Springdale = [tex]\frac{1}{2}[/tex] - [tex]\frac{1}{6}[/tex] = [tex]\frac{3}{6}[/tex] - [tex]\frac{1}{6}[/tex] = [tex]\frac{2}{6}[/tex] = [tex]\frac{1}{3}[/tex] mile

A box with a square base and open top must have a volume of 13,500 cm. Find the dimensions of the box that minimize the amount of material used, Formulas: Volume of the box -> Vans, where s side of the base and hi = height Material used (Surface Area) -> M = 52 +4hs, where s = side of the base and h-height Show your work on paper, sides of base height cm cm

Answers

The dimensions of the box that minimize the amount of material used are approximately:

Side length of the base (s) ≈ 232.39 cm

Height (h) ≈ 2.65 cm

To get the dimensions of the box that minimize the amount of material used, we need to minimize the surface area of the box while keeping the volume constant. Let's denote the side length of the base as s and the height as h.

Here,

Volume of the box (V) = 13,500 cm³

Surface area (M) = 52 + 4hs

We know that the volume of a box with a square base is given by V = s²h. Since the volume is given as 13,500 cm³, we have the equation:

s²h = 13,500 ---(1)

We need to express the surface area in terms of a single variable, either s or h, so we can differentiate it to find the minimum. Using the formula for the surface area of the box, M = 52 + 4hs, we can substitute the value of h from equation (1):

M = 52 + 4s(13,500 / s²)

M = 52 + 54,000 / s

Now, we have the surface area in terms of s only. To obtain the minimum surface area, we can differentiate M with respect to s and set it equal to zero:

dM/ds = 0

Differentiating M = 52 + 54,000 / s with respect to s, we get:

dM/ds = -54,000 / s² = 0

Solving for s, we find:

s² = 54,000

Taking the square root of both sides, we have:

s = √54,000

s ≈ 232.39 cm

Now that we have the value of s, we can substitute it back into equation (1) to find the corresponding value of h:

s²h = 13,500

(232.39)²h = 13,500

Solving for h, we get:

h = 13,500 / (232.39)²

h ≈ 2.65 cm

Learn more about surface area here, https://brainly.com/question/76387

#SPJ11

question 1 what is the most likely reason that a data analyst would use historical data instead of gathering new data?

Answers

The most likely reason that a data analyst would use historical data instead of gathering new data is because the historical data may already be available and can provide valuable insights into past trends and patterns.

A data analyst would most likely use historical data instead of gathering new data due to its cost-effectiveness, time efficiency, and the ability to identify trends and patterns over a longer period. Historical data can provide valuable insights and inform future decision-making processes. Additionally, gathering new data can be time-consuming and expensive, so using existing data can be a more efficient and cost-effective approach. However, it's important for the data analyst to ensure that the historical data is still relevant and accurate for the current analysis.

To know more about data analyst, visit:

https://brainly.com/question/30407312

#SPJ11

find the area of the triangle. B = 28yd
H = 7.1yd
Please help

Answers

Answer:

99.4 square yards

Step-by-step explanation:

The formula for the area of a triangle is:

[tex]A = \dfrac{1}{2} \cdot \text{base} \cdot \text{height}[/tex]

We can plug the given dimensions into this formula and solve for [tex]A[/tex].

[tex]A = \dfrac{1}2 \cdot (28\text{ yd}) \cdot (7.1 \text{ yd})[/tex]

[tex]\boxed{A = 99.4\text{ yd}^2}[/tex]

So, the area of the triangle is 99.4 square yards.

Find tan(theta), where (theta) is the angle shown.
Give an exact value, not a decimal approximation.

Answers

The exact value of tan(θ) is 15/8

What is trigonometric ratio?

The trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

tan(θ) = opp/adj

sin(θ) = opp/hyp

cos(θ) = adj/hyp

since tan(θ) = opp/adj

and the opp is unknown we have to calculate the opposite side by using Pythagorean theorem

opp = √ 17² - 8²

opp = √289 - 64

opp = √225

opp = 15

Therefore the value

tan(θ) = 15/8

learn more about trigonometric ratio from

https://brainly.com/question/24349828

#SPJ1

what conditions, if any, must be set forth in order for a b to be equal to n(a u b)?

Answers

In order for B to be equal to (A ∪ B), certain conditions must be satisfied. These conditions involve the relationship between the sets A and B and the properties of set union.

To determine when B is equal to (A ∪ B), we need to consider the properties of set union. The union of two sets, denoted by the symbol "∪," includes all the elements that belong to either set or both sets. In this case, B would be equal to (A ∪ B) if B already contains all the elements of A, meaning B is a superset of A.

In other words, for B to be equal to (A ∪ B), B must already include all the elements of A. If B does not include all the elements of A, then the union (A ∪ B) will contain additional elements beyond B.

Therefore, the condition for B to be equal to (A ∪ B) is that B must be a superset of A.

To summarize, B will be equal to (A ∪ B) if B is a superset of A, meaning B contains all the elements of A. Otherwise, if B does not contain all the elements of A, then (A ∪ B) will have additional elements beyond B.

To learn more about union of two sets visit:

brainly.com/question/11427505

#SPJ11

Can anyone help?? this is a review for my geometry final, it’s 10+ points to our actual one (scared of failing the semester) please help

Answers

The scale factor that was applied on triangle ABC is 2 / 5.

How to find the scale factor of similar triangle?

Similar triangles are the triangles that have corresponding sides in

proportion to each other and corresponding angles equal to each other.

Therefore, the ratio of the similar triangle can be used to find the scale factor.

Hence, triangle ABC was dilated to triangle EFD. Therefore, let's find the scale factor applied to ABC as follows:

The scale factor is the ratio of corresponding sides on two similar figures.

4 / 10 = 24 / 60 = 2 / 5

Therefore the scale factor is  2 / 5.

learn more on similar triangle here: https://brainly.com/question/29282056

#SPJ1

For each of the series, show whether the series converges or diverges and state the test used. [infinity] 4n (a) (3n)! n=0

Answers

The series ∑(n=0 to infinity) 4n*((3n)!) diverges. The given series, ∑(n=0 to infinity) 4n*((3n)!) diverges. This can be determined by using the Ratio Test, which involves taking the limit of the ratio of consecutive terms.

To determine whether the series ∑(n=0 to infinity) 4n*((3n)!) converges or diverges, we can use the Ratio Test.

The Ratio Test states that if the limit of the ratio of consecutive terms is greater than 1 or infinity, then the series diverges. If the limit is less than 1, the series converges. And if the limit is exactly 1, the test is inconclusive.

Let's apply the Ratio Test to the given series:

lim(n→∞) |(4(n+1)*((3(n+1))!))/(4n*((3n)!))|

Simplifying the expression, we have:

lim(n→∞) |4(n+1)(3n+3)(3n+2)(3n+1)/(4n)|

Canceling out common terms and simplifying further, we get:

lim(n→∞) |(n+1)(3n+3)(3n+2)(3n+1)/n|

Expanding the numerator and simplifying, we have:

lim(n→∞) |(27n^4 + 54n^3 + 36n^2 + 9n + 1)/n|

As n approaches infinity, the dominant term in the numerator is 27n^4, and in the denominator, it is n. Therefore, the limit simplifies to:

lim(n→∞) |27n^4/n|

Simplifying further, we have:

lim(n→∞) |27n^3|

Since the limit is equal to infinity, which is greater than 1, the Ratio Test tells us that the series diverges.

Hence, the series ∑(n=0 to infinity) 4n*((3n)!) diverges.

Learn more about Ratio Test here:

brainly.com/question/31700436

#SPJ11

what force is required so that a particle of mass m has the position function r(t) = t3 i 7t2 j t3 k? f(t) =

Answers

The force needed for a particle of mass m with the given position function is expressed as F(t) = 6mti + 14mj + 6mtk.

The force exerted on a particle with mass m, described by the position function r(t) = t³i + 7t²j + t³k,

How to determine the force required for a particle of mass m has the position function?

To determine the force required for a particle with position function r(t) = t³i + 7t²j + t³k, we shall calculate the derivative of the position function with respect to time twice.

The force function is given by the second derivative of the position function:

F(t) = m * a(t)

where:

m = the mass of the particle

a(t) = the acceleration function.

Let's calculate:

First, we compute the velocity function by taking the derivative of the position function with respect to time:

v(t) = dr(t)/dt = d/dt(t³i + 7t²j + t³k)

= 3t²i + 14tj + 3t²k

Next, we find the acceleration function by taking the derivative of the velocity function with respect to time:

a(t) = dv(t)/dt = d/dt(3t²i + 14tj + 3t²k)

= 6ti + 14j + 6tk

Finally, to get the force function, we multiply the acceleration function by the mass of the particle:

F(t) = m * a(t)

= m * (6ti + 14j + 6tk)

Therefore, the force required for a particle of mass m with the given position function is F(t) = 6mti + 14mj + 6mtk.

Learn more about force function at brainly.com/question/12803890

#SPJ4

Other Questions
When an object moves in uniform circular motion, the direction of its acceleration is 3 A) is directed away from the center of its circular path. B) is directed toward the center of its circular path. 6 C) depends on the speed of the object. D) in the same direction as its velocity vector. E) in the opposite direction of its velocity vector. Which statement is true concerning Roth IRAs? a. Uncle Sam views your contributions to Roth IRAs as coming from pre-tax dollars. b. There is no maximum amount that you can contribute to them per year. c. You may not access your own contributions/deposits until a certain age. d. You may contribute to Roth IRAs regardless of what your income is. e. After a certain age, you will have access to all your contributions plus earnings on a tax-free basis. in the reaction: nh3 h2o nh4 oh-, what is acting as an acid as we go from right to left? the pka of 2,4-dinitrophenol is 3.96. could you separate it from benzoic acid using the extraction procedures in this experiment? in the matrix scheduling system medical assistants should block off Question 8 G0/10 pts 3 99 Details 23 Use Simpson's Rule and all the data in the following table to estimate the value of the integral 1 f(a)da. X 5 f(x) 8 3 12 8 11 14 17 20 23 11 15 6 13 2 3. A particle starts moving from the point (2,1,0) with velocity given by v(t) = (2t, 2t - 1,2 - 4t), where t > 0. (a) (3 points) Find the particle's position at any time t. (b) (4 points) What is the cosine of the angle between the particle's velocity and acceleration vectors when the particle is at the point (6,3,-4)? (c) (3 points) At what time(s) does the particle reach its minimum speed? List three examples of carbon reservoirs or stocks in cities, with a short explanation of why this is a carbon reservoir. At least one of the examples must be foundprimarily in cities and not in non-human dominated ecosystems. which of the following situations can be modeled by a function whose value changes at a constant rate per unit of time? select all that apply. a the population of a city is increasing 5% per year. b the water level of a tank falls by 5 gallons every day. c the number of reptiles in the zoo increases by 5 reptiles each year. d the amount of money collected by a charity increases by 5 times each year. Find the critical numbers and then say where the function is increasing and where it is decreasing. y = x^4/5 + x^9/5 the arithmetic mean of four numbers is 15. two of the numbers are 10 and 18 and the other two are equal. what is the product of the two equal numbers? racism in the north resulted in: a. african-americans being the majority of factory workers. b. more opportunities for land for native americans. c. a reestablishment of slavery. d. a civil rights movement that focused on segregation instead of abolition. e. limited economic opportunities for african-americans. 2 f(x) = x^ - 15; Xo = 4 x k xk 0 6 1 7 2 8 W N 3 9 4 10 5 (Round to six decimal places as needed.) what causes massive inflammation and necrosis in acute pancreatitis Which of the following children 18 years of age or younger are eligible to receive VFC vaccine? Select all answers that apply.a. Children whose parents are insured through their employerb. Children who are American Indian or Alaska Nativec. Children who are underinsuredd. Children who are eligible for Medicaid When parties are polarized, they can be characterized as what?HomogeneousCentristModerateHeterogeneous which of the following structures are homologous? group of answer choices a. a maple leaf and a fern frond b. a maple leaf and an oak leaf c. a maple leaf and a maple root You find a new species of worm and want to classify it. Which of the following lines of evidence would allow you to classify the worm as a nematode and not an annelid? Selected Answer: a. It has a coelom. b. It sheds its external cuticle to grow. c. It has a coelom. d. It undergoes protostome development. e. It is segmented. f. It is triploblastic. what should you do if you are worried about using a potentially outdated internet browser? do a search about your browser and then install the update from the first page that shows up. contact the help desk or your security team if you have questions about the use or status of your system's software. outdated software or browsers are not a problem as long as your computer has anti-virus installed. .The variables x and y vary inversely. Use the given values to write an equation relating x and y. Then find y when x = 3. x = 1, y = 9