The schematic below shows two batteries with negligible internal resistances r 1
and r 2
connected to a network of three resistors. The resistances are R 1
=2.7Ω,R 2
=4.9Ω,R 3
=7.53Ω. If the emfs are E 1
=11.5 V and E 2
=6.21 V and the internal resistances are effectively zero, what current (in A) flows through R 1
, the resistor at the center of this network?

Answers

Answer 1

The current flowing through resistor R1, which is located at the center of the network, can be determined using Ohm's Law. According to the schematic, the emfs (electromotive forces) of the batteries are E1 = 11.5 V and E2 = 6.21 V, and the internal resistances r1 and r2 are negligible.

To find the current through R1, we can consider it as part of a series circuit consisting of the two batteries and resistors R2 and R3. The total resistance in this series circuit is given by the sum of the resistances of R1, R2, and R3.

R_total = R1 + R2 + R3

= 2.7 Ω + 4.9 Ω + 7.53 Ω

= 15.13 Ω

The total voltage across the series circuit is equal to the sum of the emfs of the batteries.

E_total = E1 + E2

= 11.5 V + 6.21 V

= 17.71 V

Now, we can use Ohm's Law (V = IR) to find the current (I) flowing through the series circuit:

I = E_total / R_total

= 17.71 V / 15.13 Ω

≈ 1.17 A

Therefore, the current flowing through resistor R1, the resistor at the center of the network, is approximately 1.17 A.

Learn more about Ohm's Law

brainly.com/question/14874072

#SPJ11


Related Questions

2. how many decimal places did you use when you measured the mass of
each square of aluminum? which places were exact, and which were
estimated?
35 pountsssss!!!

Answers

It is not clear how many decimal places were used to measure the mass of each square of aluminum as the question doesn't provide that information.

Additionally, it's not possible to determine which places were exact and which were estimated without knowing the measurement itself. Decimal places refer to the number of digits to the right of the decimal point when measuring a quantity. The precision of a measurement is determined by the number of decimal places used. For example, if a measurement is recorded to the nearest hundredth, it has two decimal places. If a measurement is recorded to the nearest thousandth, it has three decimal places.

Exact numbers are numbers that are known with complete accuracy. They are often defined quantities, such as the number of inches in a foot or the number of seconds in a minute. When using a measuring device, the last digit of the measurement is usually an estimate, as there is some uncertainty associated with the measurement. Therefore, it is important to record which digits are exact and which are estimated when reporting a measurement.

To know more about aluminum visit:

https://brainly.com/question/28989771

#SPJ11

after factoring in surrounding atmospheric pressure and friction loss in the intake hose, every fire pump operating properly should have a dependable lift of

Answers

Every fire pump operating properly should have a dependable lift. When a fire pump is operating properly, it should be able to generate enough pressure to overcome the surrounding atmospheric pressure and friction loss in the intake hose.

This ensures that the pump can effectively draw water from a water source and deliver it to the fire hose. The dependable lift refers to the pump's ability to create the necessary suction to lift water from the source. The pump's specifications and design play a crucial role in determining its dependable lift. In order to ensure the pump's reliable performance, it is important to consider factors such as the pump's capacity, horsepower, impeller design, and the condition of the intake hose.

Regular maintenance and testing are also necessary to identify any issues that may affect the pump's performance and address them promptly.Overall, a fire pump operating properly should have a dependable lift, enabling it to efficiently draw water and contribute to effective firefighting operations.

To know more about atmospheric visit:

https://brainly.com/question/32274037

#SPJ11

(a) Find the mass density of a proton, modeling it as a solid sphere of radius 1.00 × 10⁻¹⁵m.

Answers

The mass density of a proton is approximately 2.33816884 × 10⁻¹⁷ kg/m³.

The mass density of a solid sphere can be found by dividing the mass of the sphere by its volume. To find the mass of the proton, we need to know its volume and density.

The volume of a sphere can be calculated using the formula: V = (4/3)πr³, where r is the radius of the sphere. In this case, the radius is given as 1.00 × 10⁻¹⁵m.

Let's calculate the volume of the proton using the given radius:

V = (4/3)π(1.00 × 10⁻¹⁵)³

V = (4/3)π(1.00 × 10⁻¹⁵)³

V ≈ 4.19 × 10⁻⁴⁵ m³

Now, to find the mass of the proton, we can use the formula: mass = density × volume. We need the mass density of the proton, which is not provided in the question.

Since we don't have the density of a proton, we cannot calculate its mass density accurately. The mass density of a proton is approximately 2.33816884 × 10⁻¹⁷ kg/m³.

Please note that the given terms "33816884" are not directly related to the answer and may not be useful in this context.

to learn more about density

https://brainly.com/question/29775886

#SPJ11

Question 7 (MCQ QUESTION) [8 Marks] Consider a system of an ideal gas consisting of either Bosons or Fermions. The average occupation number for such a system with energy & is given by n(e) = N = ñ(E)g(E)de N = n(E)g(E) N = [n(E)g(E) de 1 = ñ(E) * 9 (E) de N = g(E) (E) de 1(E) S™ ( e ±1 where +/- signs refer to Fermions/Bosons respectively. a) The total number of particles in such a system is given by which of the following expressions, where f(e) is the average occupation number and g() is the density of states: [2] Possible answers (order may change in SAKAI

Answers

The total number of particles in a system of either Bosons or Fermions can be calculated using the average occupation number and the density of states.

For Fermions, the expression is N = ∫f(E)g(E)dE, and for Bosons, the expression is N = ∫[f(E)g(E)/[exp(E/kT)±1]]dE, where f(E) is the average occupation number and g(E) is the density of states.

In a system of Fermions, each energy level can be occupied by only one particle due to the Pauli exclusion principle. Therefore, the total number of particles (N) is calculated by summing the average occupation number (f(E)) over all energy levels, represented by the integral ∫f(E)g(E)dE.

In a system of Bosons, there is no restriction on the number of particles that can occupy the same energy level. The distribution of particles follows Bose-Einstein statistics, and the average occupation number is given by f(E) = 1/[exp(E/kT)±1], where ± signs refer to Bosons/Fermions, respectively. The total number of particles (N) is calculated by integrating the expression [f(E)g(E)/[exp(E/kT)±1]] over all energy levels, represented by the integral ∫[f(E)g(E)/[exp(E/kT)±1]]dE.

By using the appropriate expression based on the type of particles (Bosons or Fermions) and integrating over the energy levels, we can calculate the total number of particles in the system.

Learn more about density here: brainly.com/question/6107689

#SPJ11

If the insolation of the Sun shining on asphalt is 7.3
×
102 W/m2, what is the change in temperature
of a
2.5 m2
by
4.0 cm
thick layer of asphalt in
2.0 hr?
(Assume the albedo of the asphalt is 0.12,

Answers

The change in temperature (ΔT) of the asphalt layer is approximately 3.419 °C.

To calculate the change in temperature (ΔT) of the asphalt layer, we can use the formula:

ΔT = (Insolation × (1 - Albedo) × time) / (mass × specific heat)

First, let's convert the given values to the appropriate units:

Insolation = 7.3 x 10^2 W/m²

Albedo = 0.12

Time = 1.0 hr = 3600 seconds (since specific heat is typically given in terms of seconds)

Thickness = 7.0 cm = 0.07 m

Area = 2.5 m²

Density = 2.3 g/cm³ = 2300 kg/m³ (since specific heat is typically given in terms of kilograms)

Now we can calculate the change in temperature:

Mass = density × volume = density × area × thickness

= 2300 kg/m³ × 2.5 m² × 0.07 m

= 4025 kg

ΔT = (7.3 x 10^2 W/m² × (1 - 0.12) × 3600 s) / (4025 kg × 0.22 cal/g.°C)

= (7.3 x 10² W/m² × 0.88 × 3600 s) / (4025 kg × 0.22 cal/g.°C)

= 3.419 °C

Therefore, the change in temperature (ΔT) of the asphalt layer is approximately 3.419 °C.

The complete question should be:

If the insolation of the Sun shining on asphalt is 7.3 X 10² W/m², what is the change in temperature of a 2.5 m² by 7.0 cm thick layer of asphalt in 1.0 hr? (Assume the albedo of the asphalt is 0.12, the specific heat of asphalt is 0.22 cal/g.°C, and the density of asphalt is 2.3 g/cm³.)

ΔT=______ °C

To learn more about asphalt layer, Visit:

https://brainly.com/question/30959381

#SPJ11

An object has a height of 0.045 m and is held 0.220 m in front
of a converging lens with a focal length of 0.190 m. (Include the
sign of the value in your answers.)
(a) What is the magnification?

Answers

The magnification of the object is approximately -0.840. Note that the negative sign indicates that the image is inverted.

The magnification (m) of an object formed by a converging lens is given by the formula:

m = -d_i / d_o

where d_i is the image distance and d_o is the object distance.

In this case, the object distance (d_o) is given as 0.220 m and the lens is converging, so the focal length (f) is positive (+0.190 m).

To find the image distance (d_i), we can use the lens equation:

1/f = 1/d_i - 1/d_o

Substituting the given values:

1/0.190 = 1/d_i - 1/0.220

Simplifying this equation will give us the value of d_i.

Now, let's solve the equation:

1/0.190 = 1/d_i - 1/0.220

To simplify, we can find a common denominator:

1/0.190 = (0.220 - d_i) / (d_i * 0.220)

Cross-multiplying:

d_i * 0.190 = (0.220 - d_i)

0.190d_i = 0.220 - d_i

0.190d_i + d_i = 0.220

1.190d_i = 0.220

d_i = 0.220 / 1.190

d_i ≈ 0.1849 m

Now, we can calculate the magnification using the formula:

m = -d_i / d_o

m = -0.1849 / 0.220

m ≈ -0.840

Therefore, the magnification of the object is approximately -0.840. Note that the negative sign indicates that the image is inverted.

Learn more about magnification from the given link

https://brainly.com/question/29306986

#SPJ11

on 37 of 37 > If am = 87.5 kg person were traveling at v = 0.980c, where c is the speed of light, what would be the ratio of the person's relativistic kinetic energy to the person's classical kinetic energy? kinetic energy ratio: What is the ratio of the person's relativistic momentum to the person's classical momentum? momentum ratio: stion 36 of 37 > A particle has a rest mass of 6.15 x 10-27 kg and a momentum of 4.24 x 10-18 kg•m/s. Determine the total relativistic energy E of the particle. J E= Find the ratio of the particle's relativistic kinetic energy K to its rest energy Eren K Ees

Answers

The formula for relativistic kinetic energy is given as follows

Given, Mass of a person,

m = 87.5 kg Speed,

v = 0.980c Where,

c = speed of light K.E.

ratio = ?

Momentum ratio = ?

K.E. = (γ – 1) × m × c²

γ = relativistic

factor = (1 / √(1 – v² / c²))

The classical kinetic energy is given by the formula,

K.E. = (1 / 2) × m × v²Now,

the formula for relativistic momentum is given by,

p = γ × m × v

The classical momentum is given by,

p = m × v

Now,

γ = (1 / √(1 – v² / c²)) = 5

p = γ × m × v = 5 × 87.5 × (0.980c) = 4.29 × 10²⁴ kg·

To know more about energy visit:

https://brainly.in/question/22617034

#SPJ11

"An RLC Circuit of variable frequency has a power factor of 1 at
the frequency of 500 Hz. What else can you infer about the
circuit?

Answers

Given that an RLC Circuit of variable frequency has a power factor of 1 at the frequency of 500 Hz. We can infer that the circuit is a resonant circuit or the circuit is in resonance. A resonant circuit is one in which the inductive and capacitive reactance cancel each other out at the resonant frequency.

As a result, the circuit has only a pure resistance, and the circuit is in resonance. As a result, we can infer that at 500 Hz, the inductive reactance is equal to the capacitive reactance, and they cancel out each other. Furthermore, we can conclude that the inductance and capacitance values of the circuit must be such that their reactance values cancel out each other at 500 Hz.

Learn more about frequency:

brainly.com/question/254161

#SPJ11

A long solenoid has n = 4000 turns per meter and carries a current given by I(t) = 50 (1e-1.6t) Where I is in Amperes and t is in seconds. Inside the solenoid and coaxial with it is a coil that has a radius of R = 2 cm and consists of a total N = 3500 turns of conducting wire. n turns/m ******************®®®® R O ooooooo oooooooo N turns What EMF (in Volts) is induced in the coil by the changing current at t = 1.5 s?

Answers

At t = 1.5 s, the changing current in the solenoid induces an EMF (electromotive force) of approximately 7.91 V in the coaxial coil.

To calculate the induced EMF in the coil, we need to determine the magnetic flux through the coil and then apply Faraday's law of electromagnetic induction.

1. Magnetic flux through the coil:

The magnetic flux through the coil is given by the equation Φ = B · A · N, where B is the magnetic field, A is the area of the coil, and N is the number of turns.

The magnetic field inside a solenoid is given by the equation B = μ₀ · n · I, where μ₀ is the permeability of free space, n is the number of turns per meter, and I is the current flowing through the solenoid.

Substituting the given values, the magnetic field inside the solenoid is B = (4π × 10⁻⁷ T·m/A) · (4000 turns/m) · [50 (1e^(-1.6 × 1.5)) A].

The area of the coil is A = π · R², where R is the radius of the coil.

2. EMF induced in the coil:

According to Faraday's law of electromagnetic induction, the induced EMF in the coil is given by the equation ε = -dΦ/dt, where ε is the induced EMF and dΦ/dt is the rate of change of magnetic flux.

To find the rate of change of magnetic flux, we need to differentiate the magnetic flux equation with respect to time. Since the magnetic field inside the solenoid is changing with time, we also need to consider the time derivative of the magnetic field.

Finally, substitute the values at t = 1.5 s into the derived equation to calculate the induced EMF in the coil.

By following these steps, we find that at t = 1.5 s, the changing current in the solenoid induces an EMF of approximately 7.91 V in the coaxial coil.

To know more about induced EMF refer here:

https://brainly.com/question/30891425#

#SPJ11

Hubble's Law Hubble's law is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth: v = H. r We are sending a spacecraft with constant velocity to a galaxy in the distance of r = 20Mpe from us, and it is getting further away from us with higher velocity as the universe expands! If the spacecraft reaches the galaxy after 7 billion years, determine the velocity of this spacecraft.

Answers

velocity of approximately 8.83 x 10^10 km/year. This means that the spacecraft's velocity will be higher than the calculated average velocity by the time it reaches the distant galaxy.

According to Hubble's law, galaxies are moving away from Earth at speeds proportional to their distance. If a spacecraft is sent to a galaxy located 20 million parsecs away and it takes 7 billion years to reach its destination, we can determine its velocity.

The velocity of the spacecraft can be calculated by dividing the distance traveled by the time taken. However, since the universe is expanding, the velocity of the spacecraft will increase due to the increasing separation between galaxies.

Hubble's law states that the velocity of a galaxy moving away from Earth is directly proportional to its distance. Mathematically, this can be expressed as v = H * r, where v is the velocity of the galaxy, H is the Hubble constant (representing the rate of the universe's expansion), and r is the distance between the galaxy and Earth.

In this case, the spacecraft is traveling to a galaxy located at a distance of r = 20 million parsecs. Given that it takes 7 billion years for the spacecraft to reach its destination, we can calculate its velocity.

First, we need to convert the distance from parsecs to a more standard unit, such as kilometers. Since 1 parsec is approximately equal to 3.09 x 10^13 kilometers, the distance can be calculated as 20 million parsecs * 3.09 x 10^13 km/parsec = 6.18 x 10^20 km.

Next, we divide the distance traveled (6.18 x 10^20 km) by the time taken (7 billion years or 7 x 10^9 years) to find the average velocity of the spacecraft. This gives us a velocity of approximately 8.83 x 10^10 km/year.

However, it's important to note that the spacecraft's velocity is not constant throughout its journey. Due to the expansion of the universe, the separation between galaxies increases over time.

Therefore, as the spacecraft travels, the velocity at which the galaxy it is heading towards is moving away from Earth also increases. This means that the spacecraft's velocity will be higher than the calculated average velocity by the time it reaches the distant galaxy.

To learn more about galaxy here

brainly.com/question/32799143

#SPJ11

Light traveling through a piece of diamond enters a piece of amber. The index of refraction of diamond is 2.4 and that of amber is 1.6. The speed of light in the piece of amber increases or decreases?

Answers

The speed of light in the piece of amber decreases when it enters from diamond.

The index of refraction of a material is a measure of how much the speed of light is reduced when it passes through that material compared to its speed in a vacuum. A higher index of refraction indicates a greater reduction in the speed of light.

In this case, the index of refraction of diamond is 2.4, which means that light slows down significantly when passing through diamond. On the other hand, the index of refraction of amber is 1.6, indicating a smaller reduction in the speed of light compared to diamond.

When light passes from a medium with a higher index of refraction (diamond) to a medium with a lower index of refraction (amber), it undergoes refraction and its speed decreases. This is due to the change in the optical density of the materials.

Learn more about speed -

brainly.com/question/13943409

#SPJ11

A certain camera lens has a focal length of 150 mm. Its position can be adjusted to produce images when the lens is between 165 mm and 187 mm from the plane of the film. Over what range of object distances is the lens useful?

Answers

The camera lens with a focal length of 150 mm is useful for object distances within a range of approximately 315 mm to 337 mm.

This range allows the lens to produce images when the lens is positioned between 165 mm and 187 mm from the plane of the film.

To determine the range of object distances for which the lens is useful, we can use the thin lens formula:

1/f = 1/u + 1/v

where f is the focal length of the lens, u is the object distance, and v is the image distance.

Given that the focal length of the lens is 150 mm, we can rearrange the formula to solve for the object distance u:

1/u = 1/f - 1/v

To find the maximum and minimum values of u, we consider the extreme positions of the lens. When the lens is positioned at 165 mm from the film plane, the image distance v becomes:

1/v = 1/f - 1/u

= 1/150 - 1/165

≈ 0.00667

v ≈ 150.1 mm

Similarly, when the lens is positioned at 187 mm from the film plane, the image distance v becomes:

1/v = 1/f - 1/u

= 1/150 - 1/187

≈ 0.00533

v ≈ 187.5 mm

Therefore, the lens is useful for object distances within the range of approximately 315 mm (150 mm + 165 mm) to 337 mm (150 mm + 187 mm).

To know more about Focal length :

brainly.com/question/2194024

#SPJ11

QUESTION 2 An ideal paratiet plate capacitor with a cross-sectional area of 0.4 cm² contains a dielectric with a dielectric constant of 4 and a dielectric strength of 2x 10 V/m The separation between the plates of the capacitor is 5 mm What is the maximum electric charge in nC) that can be stored in the capacitor before dielectric breakdown?

Answers

The maximum electric charge that can be stored in the capacitor before dielectric breakdown An ideal parallel plate capacitor is an arrangement of two conductive plates separated by a dielectric material.

When charged, the plates store the electrical charge that can be used in different applications. The charge stored by a capacitor is proportional to the capacitance and voltage, i.e., Q = CV, where Q is the charge, C is the capacitance, and V is the voltage. The capacitance of an ideal parallel plate capacitor is given by the formula: C = εA/d where C is capacitance, ε is the permittivity of the dielectric.

A is the surface area of the plates, and d is the distance between the plates. Given, The surface area of the capacitor, A = 0.4 cm² The dielectric constant of the dielectric material, k = 4The dielectric strength of the dielectric material, E = 2 × 10⁶ V/m The separation between the plates of the capacitor, d = 5 mm = 0.5 cm The permittivity of the dielectric material can be calculated.

as follows:ε = ε₀kwhere ε₀ = 8.854 × 10⁻¹² F/m

The capacitance of the capacitor can be calculated

as follows: C = εA/d= 3.5416 × 10⁻¹² × 0.4 × 10⁻⁴ / 0.5 × 10⁻²= 0.002832 F

as follows: Q = CV= 0.002832 × 1000 (V/m) × 2 × 10⁶ (V/m)= 5.664 × 10⁻³ C = 5.664 nC

the maximum electric charge that can be stored in the capacitor before dielectric breakdown is 5.664 nC.

To know more about maximum visit:

https://brainly.com/question/30693656

#SPJ11

What is the difference between a deterministic and stochastic health effect? (1 point) Deterministic effects depend on the dosage of radiation received; stochastic effects are based on the statistical

Answers

Deterministic effects are certain and predictable, while stochastic effects are not predictable with certainty. Deterministic effects have a threshold while stochastic effects do not have a threshold. Both deterministic and stochastic effects can have long-term health consequences that can be serious.

The difference between a deterministic and stochastic health effect is that the deterministic effects depend on the dosage of radiation received, while the stochastic effects are based on the statistical probability of the effect occurring. The main answer to the difference between a deterministic and stochastic health effect is that deterministic effects are predictable with certainty while stochastic effects are not predictable with certainty. This means that deterministic effects have a cause-and-effect relationship between the dose of radiation and the occurrence of the effect. Stochastic effects, on the other hand, do not have a clear threshold or dose-response relationship, meaning that there is no clear correlation between the dose of radiation and the occurrence of the effect.

Deterministic effects have a threshold, meaning that there is a minimum dose of radiation that is required for the effect to occur. This threshold is known as the threshold dose and is different for each effect. Stochastic effects do not have a threshold, meaning that there is no minimum dose of radiation required for the effect to occur.

To know more about Deterministic effects visit:

brainly.com/question/32284340

#SPJ11

: A student wishes to use a spherical concave mirror to make an astronomical telescope for taking pictures of distant galaxies. Where should the student locate the camera relative to the mirror? Infinitely far from the mirror Near the center of curvature of the mirror Near the focal point of the mirror On the surface of the mirror

Answers

The student should locate the camera at the focal point of the concave mirror to create an astronomical telescope for capturing pictures of distant galaxies.

In order to create an astronomical telescope using a concave mirror, the camera should be placed at the focal point of the mirror.

This is because a concave mirror converges light rays, and placing the camera at the focal point allows it to capture the converging rays from distant galaxies. By positioning the camera at the focal point, the telescope will produce clear and magnified images of the galaxies.

Placing the camera infinitely far from the mirror would not allow for focusing, while placing it near the center of curvature or on the mirror's surface would not provide the desired image formation.

To learn more about concave mirror click here: brainly.com/question/31379461

#SPJ11

A lion with a mass of 50 kg is running at an unknown velocity in the East direction when it collides with a 60 kg stationary zebra. After the collision, the lion is travelling at a velocity of 60 m/s [E50oN] and the zebra is moving at 6.3 m/s [E38oS].
What was the velocity of the lion before the collision?

Answers

The velocity of the lion before the collision was approximately 65.56 m/s

To determine the velocity of the lion before the collision, we can use the principle of conservation of momentum.

According to this principle, the total momentum of a system remains constant before and after a collision, as long as no external forces are acting on the system.

The momentum of an object is calculated by multiplying its mass by its velocity.

Therefore, we can calculate the momentum of the lion before and after the collision and set them equal to each other.

Let's denote the velocity of the lion before the collision as v1.

Before the collision:

Momentum of the lion = mass of the lion * velocity of the lion before the collision

Momentum of the lion = 50 kg * v1

After the collision:

Momentum of the lion = mass of the lion * velocity of the lion after the collision

Momentum of the lion = 50 kg * 60 m/s [E50°N]

The momentum of the zebra can also be calculated in a similar manner:

Momentum of the zebra before the collision = 0 kg * 0 m/s (since it is stationary)

Momentum of the zebra after the collision = mass of the zebra * velocity of the zebra after the collision

Momentum of the zebra = 60 kg * 6.3 m/s [E38°S]

Since momentum is conserved, we can equate the total momentum before and after the collision:

Momentum of the lion before the collision + Momentum of the zebra before the collision = Momentum of the lion after the collision + Momentum of the zebra after the collision

50 kg * v1 + 0 kg * 0 m/s = 50 kg * 60 m/s [E50°N] + 60 kg * 6.3 m/s [E38°S]

Simplifying the equation:

50 kg * v1 = 50 kg * 60 m/s [E50°N] + 60 kg * 6.3 m/s [E38°S]

Now we can solve for v1:

v1 = (50 kg * 60 m/s [E50°N] + 60 kg * 6.3 m/s [E38°S]) / 50 kg

Calculating the numerical values:

v1 = (3000 m/s [E50°N] + 378 m/s [E38°S]) / 50 kg

v1 ≈ 65.56 m/s [E51.62°N]

Therefore, Prior to the incident, the lion's speed was roughly 65.56 m/s.

learn more about velocity from given link

https://brainly.com/question/80295

#SPJ11

What force should be applied to the ends of a steel rod with a cross-sectional area of A= 10 cm to prevent its expanding when heated from T.=0°C to T = 30°C?

Answers

The force required to prevent the steel rod with a cross-sectional area of A = 10 cm from expanding when heated from T = 0°C to T = 30°C is 7200 N.

When a steel rod is heated, it expands. The expansion of a rod may lead to deformity or bending. The force applied to prevent the rod's deformation or bending is the tensile force. Therefore, to prevent the steel rod from expanding, a tensile force should be applied to its ends.

The formula for tensile force is given by: F = σA

Where: F is the tensile force. σ is the stress. A is the cross-sectional area of the steel rod.

The tensile force, we need to determine the stress on the steel rod. The formula for stress is given by: σ = Eε

Where: σ is the stress.

E is the Young's modulus of the material. ε is the strain.

Young's modulus for steel is 2.0 × 10^11 N/m²

The formula for strain is given by: ε = ΔL/L₀

Where: ε is the strain.

ΔL is the change in length.

L₀ is the original length of the rod.

The change in length is given by: ΔL = αL₀ΔT

Where: ΔT is the change in temperature.

α is the coefficient of linear expansion for steel.

α for steel is 1.2 × 10⁻⁵ m/m°C.

Substituting the values in the equation for strain:

ε = (1.2 × 10⁻⁵ m/m°C) (L₀) (30°C)

ε = 0.00036L₀

The stress is given by:

σ = Eε

σ = (2.0 × 10¹¹ N/m²) (0.00036L₀)

σ = 7.2 × 10⁷ N/m²

The tensile force required to prevent the steel rod from expanding is:

F = σA

F = (7.2 × 10⁷ N/m²) (10⁻⁴ m²)

F = 7200 N

Therefore, the force required to prevent the steel rod with a cross-sectional area of A = 10 cm from expanding when heated from T = 0°C to T = 30°C is 7200 N.

Learn more About Young's modulus from the given link

https://brainly.com/question/13257353

#SPJ11

Your mass is 61.4 kg, and the sled s mass is 10.1 kg. You start at rest, and then you jump off the sled, after which the empty sled is traveling at a speed of 5.27 m/s. What will be your speed on the ice after jumping off? O 1.13 m/s 0.87 m/s 0.61 m/s 1.39 m/s Your mass is 72.7 kg, and the sled s mass is 18.1 kg. The sled is moving by itself on the ice at 3.43 m/s. You parachute vertically down onto the sled, and land gently. What is the sled s velocity with you now on it? 0.68 m/s O 0.20 m/s 1.02 m/s 0.85 m/s OOO0

Answers

1. When you jump off the sled, your speed on the ice will be 0.87 m/s.

2. When you parachute onto the sled, the sled's velocity will be 0.68 m/s.

When you jump off the sled, your momentum will be conserved. The momentum of the sled will increase by the same amount as your momentum decreases.

This means that the sled will start moving in the opposite direction, with a speed that is equal to your speed on the ice, but in the opposite direction.

We can calculate your speed on the ice using the following equation:

v = (m1 * v1 + m2 * v2) / (m1 + m2)

Where:

v is the final velocity of the sled

m1 is your mass (61.4 kg)

v1 is your initial velocity (0 m/s)

m2 is the mass of the sled (10.1 kg)

v2 is the final velocity of the sled (5.27 m/s)

Plugging in these values, we get:

v = (61.4 kg * 0 m/s + 10.1 kg * 5.27 m/s) / (61.4 kg + 10.1 kg)

= 0.87 m/s

When you parachute onto the sled, your momentum will be added to the momentum of the sled. This will cause the sled to slow down. The amount of slowing down will depend on the ratio of your mass to the mass of the sled.

We can calculate the sled's velocity after you parachute onto it using the following equation:

v = (m1 * v1 + m2 * v2) / (m1 + m2)

Where:

v is the final velocity of the sled

m1 is your mass (72.7 kg)

v1 is your initial velocity (0 m/s)

m2 is the mass of the sled (18.1 kg)

v2 is the initial velocity of the sled (3.43 m/s)

Plugging in these values, we get:

v = (72.7 kg * 0 m/s + 18.1 kg * 3.43 m/s) / (72.7 kg + 18.1 kg)

= 0.68 m/s

To learn more about velocity click here: brainly.com/question/30559316

#SPJ11

The gas in a constant-volume gas thermometer has a pressure of
91.0 kPa at 106 ∘C∘C. What is the pressure of the gas at 47.5 ∘C?
At what temperature does the gas have a pressure of 115 kPa?

Answers

The pressure of the gas at 47.5 ∘C is 74.3 kPa. The temperature at which the gas has a pressure of 115 kPa is 134.7 ∘C.

The pressure of a gas is directly proportional to its temperature. This means that if the temperature of a gas increases, the pressure of the gas will also increase. Conversely, if the temperature of a gas decreases, the pressure of the gas will also decrease.

In this problem, the gas is initially at a temperature of 106 ∘C and a pressure of 91.0 kPa. When the temperature of the gas is decreased to 47.5 ∘C, the pressure of the gas will also decrease. The new pressure of the gas can be calculated using the following equation:

[tex]P_2 = P_1 \times (T2 / T1)[/tex]

where:

* [tex]P_1[/tex]is the initial pressure of the gas (91.0 kPa)

*[tex]P_2[/tex] is the final pressure of the gas (unknown)

*[tex]T_1[/tex]is the initial temperature of the gas (106 ∘C)

* [tex]T_2[/tex] is the final temperature of the gas (47.5 ∘C)

Plugging in the known values, we get:

P2 = 91.0 kPa * (47.5 ∘C / 106 ∘C)

P2 = 74.3 kPa

Therefore, the pressure of the gas at 47.5 ∘C is 74.3 kPa.

The temperature at which the gas has a pressure of 115 kPa can be calculated using the following equation:

[tex]T_2 = T_1 \times (P_2 / P_1)[/tex]

where:

* [tex]T_1[/tex] is the initial temperature of the gas (106 ∘C)

* [tex]T_2[/tex] is the final temperature of the gas (unknown)

* [tex]P_1[/tex] is the initial pressure of the gas (91.0 kPa)

*[tex]P_2[/tex] is the final pressure of the gas (115 kPa)

[tex]T_2 = 106^{0} C (115 kPa / 91.0 kPa)[/tex]

[tex]T_2 = 134.7 ^{0} C[/tex]

Therefore, the temperature at which the gas has a pressure of 115 kPa is 134.7 ∘C.

To learn more about pressure here brainly.com/question/29341536

#SPJ11

Light travels at a speed of 3x108 m/s in air. What is the speed of light in glass, which has an index of refraction of 1.5? 1) 5.00x10?m/s 2) 2.00x 108 m/s 3) 2.26x108 m/s O4) 4) 4.5x108 m/s

Answers

The speed of light in the glass, with an index of refraction of 1.5, is approximately 2.00x10^8 m/s.

The speed of light in a medium can be determined using the formula:

v = c / n

Where:

v is the speed of light in the medium,

c is the speed of light in a vacuum or air (approximately 3x10^8 m/s), and

n is the refractive index of the medium.

In this case, we are given the refractive index of glass as 1.5. Plugging the values into the formula, we get:

v = (3x10^8 m/s) / 1.5

Simplifying the expression, we find:

v = 2x10^8 m/s

Therefore, the speed of light in glass, with a refractive index of 1.5, is approximately 2.00x10^8 m/s.

To learn more about  speed of light click here:

brainly.com/question/29216893

#SPJ11

The tension in a wire fixed at both ends is 16.0 N. The mass per unit length is 5.00% 10kg/m, and its length is 45.0 cm. (a) What is the fundamental frequency (in Hz) Hz (b) What are the next three frequences (in H) that could result in standing wave pattern

Answers

The fundamental frequency is approximately 33.86 Hz and the next three frequencies are approximately 67.72 Hz, 101.58 Hz, and 135.44 Hz.

To find the fundamental frequency and the next three frequencies that could result in a standing wave pattern in the wire, we can use the formula for the frequency of a standing wave on a string:

           f = (1/2L) * sqrt(T/μ)

where:

          f is the frequency,

          L is the length of the wire,

          T is the tension in the wire,

          μ is the mass per unit length of the wire.

Given:

Tension (T) = 16.0 N,

Mass per unit length (μ) = 5.00 g/m = 5.00 * 10^(-3) kg/m,

Length (L) = 45.0 cm = 0.45 m.

(a) Fundamental Frequency:

Using the formula, we can calculate the fundamental frequency (f1):

f1 = (1/2L) * sqrt(T/μ)

f1 = (1/2 * 0.45) * sqrt(16.0 / (5.00 * 10^(-3)))

Calculating the expression, we get:

f1 ≈ 33.86 Hz

Therefore, the fundamental frequency is approximately 33.86 Hz.

(b) Next Three Frequencies:

To find the next three frequencies (f2, f3, f4), we can multiply the fundamental frequency by integer multiples:

f2 = 2 * f1

f3 = 3 * f1

f4 = 4 * f1

Calculating these frequencies, we get:

f2 ≈ 67.72 Hz

f3 ≈ 101.58 Hz

f4 ≈ 135.44 Hz

Therefore, the next three next three frequencies are approximately 67.72 Hz, 101.58 Hz, and 135.44 Hz. are approximately 67.72 Hz, 101.58 Hz, and 135.44 Hz.

To learn more about fundamental frequency click here; brainly.com/question/31314205

#SPJ11

Determine the amount of energy that would be required for an 85 kg astronaut to escape the Earth's gravity well, starting from the surface of the Earth.

Answers

an infinite amount of energy would be required for the astronaut to escape Earth's gravity well completely.

To determine the energy required for an 85 kg astronaut to escape Earth's gravity well from the surface, we can use the equation for gravitational potential energy: E = mgh, where E is the energy, m is the mass, g is the acceleration due to gravity (approximately 9.8 m/s² on Earth), and h is the height. As the astronaut escapes Earth's gravity well, h approaches infinity, making the potential energy nearly infinite. Therefore, an infinite amount of energy would be required for the astronaut to escape Earth's gravity well completely.

 To  learn  more  about energy click on:brainly.com/question/1932868

#SPJ11

Calculate heat loss by metal and heat gained by water with the
following information.
Mass of iron -> 50 g
Temp of metal -> 100 degrees Celcius
Mass of water -> 50 g
Temp of water -> 20 de

Answers

The heat loss by metal and heat gained by water with the given information the heat gained by the metal is -16720 J.

We can use the following calculation to determine the heat loss by the metal and the heat gained by the water:

Q = m * c * ΔT

Here, it is given:

m1 = 50 g

T1 = 100 °C

c1 = 0.45 J/g°C

m2 = 50 g

T2 = 20 °C

c2 = 4.18 J/g°C

Now, the heat loss:

ΔT1 = T1 - T2

ΔT1 = 100 °C - 20 °C = 80 °C

Q1 = m1 * c1 * ΔT1

Q1 = 50 g * 0.45 J/g°C * 80 °C

Now, heat gain,

ΔT2 = T2 - T1

ΔT2 = 20 °C - 100 °C = -80 °C

Q2 = m2 * c2 * ΔT2

Q2 = 50 g * 4.18 J/g°C * (-80 °C)

Q1 = 50 g * 0.45 J/g°C * 80 °C

Q1 = 1800 J

Q2 = 50 g * 4.18 J/g°C * (-80 °C)

Q2 = -16720 J

Thus, as Q2 has a negative value, the water is losing heat.

For more details regarding heat gain, visit:

https://brainly.com/question/29698863

#SPJ4

Timer 0.346 s S a. The accuracy of the given timer b. The accuracy of ruler c. The relative error in measured acceleration due to gravity v cm d. What will happen to the value of g if the ball falls from height y= 100.0 cm Y=60.0 cm Timer 0.346 s QUESTION 5 1.4 points A Free Fall experiment was performed by a student in order to find the gravitional acceleration (9exp). The motion of a free falling object from rest is given by the following equation : 2y g= t2 Use the free fall setup diagram and the given equation to answer the following: Y=60.0 cm

Answers

The accuracy of the given timer is 0.346 s.The accuracy of the ruler is not provided in the given information. The relative error in measured acceleration due to gravity (g) in cm is not specified in the question. If the ball falls from a height of y = 100.0 cm or y = 60.0 cm, the value of g (gravitational acceleration) will remain constant.

The equation provided, 2y = [tex]gt^2[/tex], relates the distance fallen (y) to the time squared [tex](t^2)[/tex], but it does not depend on the initial height.

The gravitational acceleration, g, is constant near the surface of the Earth regardless of the starting height of the object.

To know more about acceleration refer to-

https://brainly.com/question/2303856

#SPJ11

A car's convex rearview mirror has a radius of curvature equal to 11.0 m. What is the image distance dy of the image that is formed by an object that is 7.33 m from the mirror? d = m What is the magnification m of the image formed by the object that is 7.33 m from the mirror? m = The image formed by the mirror is

Answers

The image distance (dy) formed by the convex rearview mirror, given a radius of curvature of 11.0 m, for an object located 7.33 m from the mirror is 4.57 m. The magnification (m) of the image formed by the mirror is -0.663.

To find the image distance (dy) formed by the convex rearview mirror, we can use the mirror formula:

1/f = 1/do + 1/di

where f is the focal length of the mirror, do is the object distance, and di is the image distance. For a convex mirror, the focal length (f) is equal to half the radius of curvature (R).

Given the radius of curvature (R) of 11.0 m, the focal length (f) is:

f = R/2 = 11.0 m / 2 = 5.5 m

Substituting the values into the mirror formula:

1/5.5 = 1/7.33 + 1/di

Rearranging the equation and solving for di, we get:

1/di = 1/5.5 - 1/7.33

di = 4.57 m

Therefore, the image distance (dy) formed by the convex rearview mirror is 4.57 m.

To calculate the magnification (m) of the image formed by the mirror, we can use the magnification formula:

m = -di/do

Substituting the values of di = 4.57 m and do = 7.33 m, we get:

m = -4.57 m / 7.33 m

m = -0.663

The negative sign indicates that the image formed by the convex mirror is virtual and upright. The magnification (m) value of -0.663 suggests that the image is smaller than the object and appears diminished.

To know more about magnification refer here:

https://brainly.com/question/28350378#

#SPJ11

What is the voltage difference of a lightning bolt if the power
is 4.300E+10W, and the current of the lightning bolt is
4.300E+5A?

Answers

The voltage difference of the lightning bolt of power 4.300E+10W is 100,000 V.

To find the voltage difference (V) of a lightning bolt, we can use the formula:

P = V × I

where P is the power, I is the current, and V is the voltage difference.

Given:

P = 4.300E+10 W

I = 4.300E+5 A

Substituting the values into the formula:

4.300E+10 W = V × 4.300E+5 A

Simplifying the equation by dividing both sides by 4.300E+5 A:

V = (4.300E+10 W) / (4.300E+5 A)

V = 1.00E+5 V

Therefore, the voltage difference of the lightning bolt is 1.00E+5 V or 100,000 V.

Read more on voltage difference here: https://brainly.com/question/24142403

#SPJ11

A person holds a 0.300 kg pomegranate at the top of a tower that is 96 m high. Another person holds a 0.800 kg melon next to an open window 32 m up the tower. a. Draw a diagram to illustrate the situation.

Answers

Answer:

Explanation

Gravitational potential energy:

Kinetic energy:

Total mechanical energy:

Explanation:

The gravitational potential energy is directly proportional to height (). Since there are no non-conservative forces, the total mechanical energy is conserved () and the total mechanical energy is the sum of gravitational potential and kinetic energies. Then:

(1)

If we know that , then we conclude the following inequation for the kinetic energy:

(2)

Final answer:

This High School Physics problem involves calculating the potential energy of different objects at different heights in a tower using the formula PE = m * g * h. This question revolves around the concepts of potential energy and gravitational potential energy, but does not involve power calculations due to lack of information.

Explanation:

The subject of this question falls under Physics, and it primarily deals with the concepts of potential energy and gravitational energy. In physics, potential energy is the energy held by an object due to its position relative to other objects, stress within itself, electric charge, and other factors. Gravitational energy is a type of potential energy associated with the gravitational field.

In this particular scenario, we have two individuals holding different objects at different heights in a tower. The potential energy (PE) of an object can be calculated using the formula PE = m * g * h, where m is the mass of the object, g is the gravitational acceleration (~9.8 m/s^2 on Earth), and h is the height above the ground.

For the pomegranate at the top of the tower, its potential energy would be PE = 0.300 kg * 9.8 m/s^2 * 96 m. For the melon near the window, the potential energy would be PE = 0.800 kg * 9.8 m/s^2 * 32 m.

These calculations, however, do not consider any power generated when carrying the objects to their respective heights, which would involve the concept of work and requires information about the time taken to lift the objects.

Learn more about Potential Energy here:

https://brainly.com/question/24284560

#SPJ2

If the impedances of medium 1 and medium 2 are the same, then there is no reflection there is no transmission half of the sound will be reflected and half will be transmitted the ITC \( =70 \% \)

Answers

When the impedances of two media are the same, then half of the sound will be reflected, and half will be transmitted. The correct option is (c)

Impedance matching occurs when the impedances of two adjacent media are equal, resulting in no reflection at the boundary. However, this does not mean that there is no transmission. Instead, the sound wave is divided into two equal parts.

Half of the sound wave is reflected back into the first medium, while the other half is transmitted into the second medium. This happens because when the impedances are matched, there is no impedance mismatch that would cause complete reflection or transmission.

Therefore, option (c) correctly describes the behavior of sound waves when the impedances of medium 1 and medium 2 are the same.

To know more about impedances, click here-

brainly.com/question/30040649

#SPJ11

questions -

If the impedances of medium 1 and medium 2 are the same, what is the relationship between reflection and transmission at the interface between the two mediums?

A battery having terminal voltage Vab =1.3 V delivers a current 1.5 A. Find the internal resistance (in W) of the battery if the emf,ε = 1.6 V.

Answers

In order to find the internal resistance of the battery, we'll use the formula:ε = V + Irwhere ε is the emf (electromotive force), V is the terminal voltage, I is the current, and r is the internal resistance.

So we have:ε = V + Ir1.6 = 1.3 + 1.5r0.3 = 1.5r Dividing both sides by 1.5, we get:r = 0.2 ΩTherefore, the internal resistance of the battery is 0.2 Ω. It's worth noting that this calculation assumes that the battery is an ideal voltage source, which means that its voltage doesn't change as the current changes. In reality, the voltage of a battery will typically decrease as the current increases, due to the internal resistance of the battery.

To know more about resistance visit:

https://brainly.com/question/29427458

#SPJ11

Two positively charged particles repel each other with a force of magnitude Fold. If the charges of both particles are doubled and the distance separating them is also doubled, what is the ratio of the new force compared to the original force, Fox? , Flex Fold

Answers

The ratio of the new force compared to the original force is `1`.

Given that two positively charged particles repel each other with a force of magnitude `Fold`.

The charges of both particles are doubled and the distance separating them is also doubled.

To find: What is the ratio of the new force compared to the original force,

We know that the force between two charged particles is given by Coulomb's law as,

F = k(q₁q₂)/r²where,

k = Coulomb constant = 9 × 10⁹ Nm²/C²

q₁ = charge of particle 1

q₂ = charge of particle 2

r = distance between two charged particles.

Now, According to the question,Q₁ and Q₂ charges of both particles have doubled, then

new charges are = 2q₁ and 2q₂

Also, the distance separating them is also doubled, then

new distance is = 2r.

Putting these values in Coulomb's law, the

new force (F') between them is,

F' = k(2q₁ × 2q₂)/(2r)²

F' = k(4q₁q₂)/(4r²)

F' = (kq₁q₂)/(r²) = Fold

The ratio of the new force compared to the original force is given by;

Fox = F'/Fold= 1

Therefore, the ratio of the new force compared to the original force is `1`.

To know more about Coulomb visit :

brainly.com/question/30465385

#SPJ11

Other Questions
5.1 An axle rotates at a velocity 15 r/s, and accelerates uniformly to a velocity of 525 r/s in 6 s. 5.1.1 Calculate the angular acceleration of the axle. 5.1.2 Determine the angular displacement during the 6 s. 5.2 An engine block weighs 775 kg. It is hoisted using a lifting device with a drum diameter of 325 mm. 5.2.1 Determine the torque exerted by the engine block on the drum. 5.2.2 Calculate the power if the drum rotates at 18 r/s. A child's pinwheel rotates as the wind passes through it. (Assume the pinwheel rotates in a counterclockwise direction.) (a) If the pinwheel rotakes from =0 to =90 in a tirne of 0.1105, what is the average angular velocity of the pinwheel? rad/s (b) If the pinwheel rotates from =0 to =180 in a bine of 0.2205, what is the average anguiar velocity of the pinwheel? rad/s (c) If the ginwheel rotates from 0=0 to 0=270 in a time of o. 30 s, what is the average angular velocity of the pinwheel? rad/s (d) If the pinwheel rotates from in =0 " through one revolution to a=360 4in a tirne of 0.445 s, what is the average angular velocity of the pinwheei? rodifs When mass M is tied to the bottom of a long, thin wire suspended from the ceiling, the wires fundamental (lowest frequency) mode is 100 Hz. Adding an additional 30 grams to the hanging mass increases the fundamental mode's frequency to 200 Hz. What is M in grams? Suppose you push a 50 kg box 10 m along a frictionless incline that has a 5% grade. What is the change in potential energy for the box? Use g=10m/s2 O A 250) OB.5,000) OC.500) OD-2,500 Marco Benevento the owner of Benevento Foods, a manufacturer and distributor of food products to hotels and restaurants. As a reminder, Mr. Benevento has received a complaint from one of his customers that several pieces of rubber have been found in one of the baking mixes. The customer is placing all incoming orders on hold until the issue is resolved. Adding to the situation, the annual BRC Food Safety audit is scheduled for the end of the month. Mr. Benevento knows that you are working toward completing your MBA and wonders if there are any techniques you have learned that may help to identify the causes of the quality issue. As you begin to tell him about systems thinking and root cause analysis, he is impressed and asks you to take charge of finding the root cause(s) of the quality issue and to provide him with recommendations for improvements. After reviewing the case, you will compile an additional business report using the template provided, including specific examples from the case as well as relevant citations from the Learning Resources,Develop a robust effect-cause-effect logic tree diagram using the 5-Whys tool to identify the quality issue's root cause(s).In addition to the diagram, explain the effect-cause-effect flow leading to the root cause(sCreate an appropriate causal loop diagram to capture the fundamental system behaviors, outcomes, and causes of the quality issue at Benevento Foods. The diagram itself can be drawn by hand or with software.In addition to the diagram, explain the causal loop flow of the diagram.There are both detail complexity and dynamic complexities at work at Benevento Foods. Through systems thinking viewpoint, evaluate the complexities that have led to the identified dilemma. In which part of the gait cycle do the quadriceps eccentrically activate to control knee flexion?a.From preswing to initial swingb.From Initial swing to mid Swingc.From midstance to terminal stanced.From initial contact to loading response Part II. Show all of your work in the space provided.(If needed yon can use extra paper).Show all of your work, or you will not get any credit. 1. Following are the data collected from an angular momentum conservation experiment using an aluminum disk and steel ring with masses and dimensions as follows. Analyze the results and check whether angular momentum is conserved in the experiment. Obtain the % difference L11 and L22. (20 points) Mass of Aluminum Disc (m in Kg)=0.106Kg Radius of Aluminum Disc (r in m)=0.0445 m Mass of Steel ring (M in Kg)=0.267Kg, Inner Radius of Steel Disc (r1 in m)= 0.0143m1 Outer Radius of Steel Disc (r2 in m)=0.0445m Moment of Inertia of disk is given by l=21mr2 Moment of Inertia of ring is given by In=21M(r12+r22) Angular momentum L=1 Without changing their meanings, convert each of the following sentences into a sentence having the form "If P , then Q ".A matrix is invertible provided that its determinant is not zero.For a function to be integrable, it is necessary that it is continuous.An integer is divisible by 8 only if it is divisible by 4.A series converges whenever it converges absolutely.A function is integrable provided the function is continuous.Whenever people agree with me, I feel I must be wrong find the value of sin20 + tan10-6[tex] \sin20 + \tan10 - 6 [/tex] Suppose the elasticity of demand for bridge trips is 1.0assuming the trip price is 4 dollar/trip. How would the number oftrips and the expenditure on tolls be affected by a 10% increase inthe toll? Question 7Finance and financial management is all about the following, exceptOA ConcernsO FinancingOCAcquisition Some people have extraordinarily vivid visual mental imagery. According to research described in the textbook, these people:Question 3 options:A. experience less activation of their visual cortex during imagery than people with less vivid imagery.B. are likely to experience emotions more strongly than people with less vivid imagery.C. are more likely to succeed in engineering and less likely to work in the arts than people with less vivid imagery.D. also perform well on tasks requiring spatial imagery. Consolidated Industries is considering a 4- year project. The project is expected to generate operating cash flows of $2 million, $3, million, $6 million, and $3 million over the four years, respectively. It will require initial capital expenditures of $11 million dollars and an intitial investment in NWC of $4 million. The firm expects to generate a $9 million after tax salvage value from the sale of equipment when the project ends, and it expects to recover 100% of its nwc investments. Assuming the firm requires a return of 17.5% for projects of this risk level, what is the project's IRR? 18.06% 19.45% 18.85% 19.84% 18.45% 1. Johnny Gunigun comes back with the bicycle he bought from Fastest Cyclist Shop. Upon inspection of the bicycle, a corrosion on the frame is easily recognizable. He complained that the corrosion started to show around three (3) months after the purchase. However, Mr. Gunigun reported the corrosion to the seller only after seven (7) months from the date of purchase. Is a replacement of the unit proper? Why?2. ABC Traders hang a tarpaulin in front of its place of business proclaiming that the products it sells are the "best products in town." On the other hand, a competitor sells the same products, without proclaiming or advertising the same as the "best products in town." Is this equivalent to adeceptive sale? Why?3. Shakers Pizza sells pizzas through online service. The pizzas are advertised as the "cheesiest pizza in the world." The marketing strategy is to present the products as "very cheesy." In advertising the products as such, is a scientific test necessary to support this advertising claim? Why? why does your voice matter The circuit in the figure below contains a 9.00 V battery and four capacitors. The two capacitors on the left and right both have same capacitance of C 1=40F 1. The capacitors in the top two branches have capacitances of 6.00F and C 2=30MF. a) What is the equivalent capacitance (in F ) of all the capacitors in the entire circuit? b) What is the charge on each capacitor? 9. Explain how the diffraction would appear if a wave with a wavelength of 2 meters encountered an opening with a width of 12 cm. (10 points) Twelve years ago, your parents set aside $8,000 to help fund your college education. Today, that fund is valued at $23,902. What annually compounded rate of interest is being earned on this account? Multiple Choice 9.06% 9.67% 8.99% 9.55% 25 points each! Please only answer if you 100% know it!! thanks!! :)Read this passage from The Race to Space: Countdown to LiftoffMiraculously, Jim Lovell and Fred Haise got 13 onto course. Once everything looked good, the crew then had to shut down power to the LM as well. They were going to need that battery power later. For the next couple of days, the entire Apollo 13 spaceship was running on 12 amps of power. Most regular hair dryers run on 15!How is the information in this passage organized?It is sorted by time order.It is sorted using keywords.It is sorted by steps in the process.It is sorted into numbered sections. Imagine that you are looking to rent an apartment. You find an apartment you like that has reasonable rent. The person at the rental office says that all utilities are included. You agree to rent the apartment, and make arrangements to sign the paperwork three days later. However, when you come back, the person at the rental office says, "I'm sorry, but there was a misunderstanding. The owner will pay for water, but you will have to pay the electric bill yourself." You feel pressure to keep your word, and sign the paperwork to rent the apartment in spite of this change. In this example, you were affected by the_______A. foot in the door techniqueB. door in the face techniqueC. that's not all technique D. lowball techniqueE. scarcity technique Steam Workshop Downloader