The surface area of a sphere is increasing at a rate
of 5 cm/s. How fast is the volume changing when the radius is 20
cm?

Answers

Answer 1

The volume of the sphere is increasing at a rate of 50 cm³/s when the radius is 20 cm.

The surface area of a sphere is increasing at a rate of 5 cm/s.

Let's denote the radius of the sphere by r, the surface area of the sphere by S, and the volume of the sphere by V.

The surface area is increasing at a rate of 5 cm/s. This means that:

dS/dt = 5 cm/s

We need to find how fast is the volume changing when the radius is 20 cm. This means we need to find dV/dt when r = 20 cm.

We know that the surface area of a sphere is given by the formula:

S = 4πr²

Therefore, differentiating both sides with respect to time we get:

dS/dt = 8πr.dr/dt

And, we have

dS/dt = 5 cm/s

So, 5 = 8πr.dr/dt

On solving this, we get :

dr/dt = 5/(8πr) .................(i)

Next, we know that the volume of a sphere is given by the following formula:

V = (4/3)πr³

Therefore, differentiating both sides with respect to time:

dV/dt = 4πr².dr/dt

Now, substituting dr/dt from equation (i), we get:

dV/dt = 4πr² (5/(8πr))

dV/dt = 5/2 r

This gives us the rate at which the volume of the sphere is changing. Putting r = 20, we get:

dV/dt = 5/2 x 20dV/dt = 50 cm³/s

Therefore, the volume is increasing at a rate of 50 cm³/s.

To learn more about volume of the sphere visit : https://brainly.com/question/10171109

#SPJ11


Related Questions

A manufacturer has two sites, A and B, at which it can produce a product, and because of certain conditions, site A must produce three times as many units as site B. The total cost of producing the units is given by the function C(x, y) = 0.4x² - 140x - 700y + 150000 where a represents the number of units produced at site A and y represents the number of units produced at site B. Round all answers to 2 decimal places. How many units should be produced at each site to minimize the cost? units at site A and at site B What is the minimal cost? $ What's the value of the Lagrange multiplier? Get Help: eBook Points possible: 1 This is attempt 1 of 3

Answers

To minimize the cost, the manufacturer should produce 285 units at site A and 95 units at site B. The minimal cost will be $38,825, and the value of the Lagrange multiplier is 380.

To minimize the cost function [tex]\(C(x, y) = 0.4x^2 - 140x - 700y + 150,000\)[/tex] subject to the condition that site A produces three times as many units as site B, we can use the method of Lagrange multipliers.

Let [tex]\(f(x, y) = 0.4x^2 - 140x - 700y + 150,000\)[/tex] be the objective function, and let g(x, y) = x - 3y represent the constraint.

We define the Lagrangian function [tex]\(L(x, y, \lambda) = f(x, y) - \lambda g(x, y)\).[/tex]

Taking partial derivatives, we have:

[tex]\(\frac{\partial L}{\partial x} = 0.8x - 140 - \lambda = 0\)\(\frac{\partial L}{\partial y} = -700 - \lambda(-3) = 0\)\(\frac{\partial L}{\partial \lambda} = x - 3y = 0\)[/tex]

Solving these equations simultaneously, we find:

[tex]\(x = 285\) (units at site A)\\\(y = 95\) (units at site B)\\\(\lambda = 380\) (value of the Lagrange multiplier)[/tex]

To determine the minimal cost, we substitute the values of \(x\) and \(y\) into the cost function:

[tex]\(C(285, 95) = 0.4(285)^2 - 140(285) - 700(95) + 150,000\)[/tex]

Calculating this expression, we find the minimal cost to be $38,825.

Therefore, to minimize the cost, the manufacturer should produce 285 units at site A and 95 units at site B. The minimal cost will be $38,825, and the value of the Lagrange multiplier is 380.

To learn more about the Lagrange multiplier from the given link

https://brainly.com/question/4609414

#SPJ4

Find the tangential and normal components of acceleration for r(t) = < 7 cos(t), 5t?, 7 sin(t) >. Answer: ä(t) = arī + anſ where = at = and AN =

Answers

r(t) = <7cos(t), 5t², 7sin(t)>, The normal component can be obtained by finding the orthogonal projection of acceleration onto the normal vector. The resulting components are: ä(t) = atī + anſ, where at is the tangential component and an is the normal component.

First, we need to calculate the acceleration vector by taking the second derivative of the position vector r(t).

r(t) = <7cos(t), 5t², 7sin(t)>

v(t) = r'(t) = <-7sin(t), 10t, 7cos(t)> (velocity vector)

a(t) = v'(t) = <-7cos(t), 10, -7sin(t)> (acceleration vector)

To find the tangential component of acceleration, we need to determine the magnitude of acceleration (at) and the unit tangent vector (T).

|a(t)| = sqrt((-7cos(t))² + 10² + (-7sin(t))²) = sqrt(49cos²(t) + 100 + 49sin²(t)) = sqrt(149). T = a(t) / |a(t)| = <-7cos(t)/sqrt(149), 10/sqrt(149), -7sin(t)/sqrt(149)>

The tangential component of acceleration (at) is given by the scalar projection of acceleration onto the unit tangent vector (T):

at = a(t) · T = <-7cos(t), 10, -7sin(t)> · <-7cos(t)/sqrt(149), 10/sqrt(149), -7sin(t)/sqrt(149)> = (-49cos²(t) + 100 + 49sin²(t))/sqrt(149)

To find the normal component of acceleration (an), we use the vector projection of acceleration onto the unit normal vector (N). The unit normal vector can be obtained by taking the derivative of the unit tangent vector with respect to t. N = dT/dt = <(7sin(t))/sqrt(149), 0, (7cos(t))/sqrt(149)>

The normal component of acceleration (an) is given by the vector projection of acceleration (a(t)) onto the unit normal vector (N):

an = a(t) · N = <-7cos(t), 10, -7sin(t)> · <(7sin(t))/sqrt(149), 0, (7cos(t))/sqrt(149)> = 0. Therefore, the tangential component of acceleration (at) is (-49cos²(t) + 100 + 49sin²(t))/sqrt(149), and the normal component of acceleration (an) is 0.

to know more about orthogonal projection, click: brainly.com/question/30641916

#SPJ11

Evaluate the integral li e2-1 (x + 1) In(x + 1) dx. (Hint: Recall that In(1)=0.)

Answers

The integral ∫[ln(e^2-1) (x + 1) ln(x + 1)] dx evaluates to (x + 1) ln(x + 1) - (x + 1) + C, where C is the constant of integration.

To evaluate the integral, we can use the method of integration by parts. Let's choose u = ln(e^2-1) (x + 1) and dv = ln(x + 1) dx. Taking the derivatives and integrals, we have du = [ln(e^2-1) + 1] dx and v = (x + 1) ln(x + 1) - (x + 1).

Applying the integration by parts formula ∫u dv = uv - ∫v du, we get:

∫[ln(e^2-1) (x + 1) ln(x + 1)] dx = (x + 1) ln(x + 1) - (x + 1) - ∫[(x + 1) [ln(e^2-1) + 1] dx

Simplifying the expression inside the integral, we have:

∫[ln(e^2-1) (x + 1) ln(x + 1)] dx = (x + 1) ln(x + 1) - (x + 1) - ∫[(x + 1) ln(e^2-1)] dx - ∫(x + 1) dx

Integrating the last two terms, we obtain:

∫[(x + 1) ln(e^2-1)] dx = ln(e^2-1) ∫(x + 1) dx = ln(e^2-1) [(x^2/2 + x) + C1]

∫(x + 1) dx = (x^2/2 + x) + C2

Combining all the terms, we get:

∫[ln(e^2-1) (x + 1) ln(x + 1)] dx = (x + 1) ln(x + 1) - (x + 1) - ln(e^2-1) [(x^2/2 + x) + C1] - (x^2/2 + x) - C2

Simplifying further, we obtain the final answer:

∫[ln(e^2-1) (x + 1) ln(x + 1)] dx = (x + 1) ln(x + 1) - (x + 1) - ln(e^2-1) (x^2/2 + x) - ln(e^2-1) C1 - (x^2/2 + x) - C2

Therefore, the integral evaluates to (x + 1) ln(x + 1) - (x + 1) - ln(e^2-1) (x^2/2 + x) - ln(e^2-1) C1 - (x^2/2 + x) - C2 + C, where C is the constant of integration.

Learn more about constant of integrationhere:

https://brainly.com/question/29166386

#SPJ11

find the length of the curve described by the parametric
equations: x=3t^2, y=2t^3, 0 a. 3V3 -1
b. 2(√3-1)
c. 14
d. no correct choices

Answers

The length of the curve described by the parametric

equations: x=3t², y=2t³ is  ∫[0, 0] 6t√(1 + t²) dt

Therefore option  D is correct.

How do we calculate?

We have the length formula for parametric curves to be :

L = ∫[a, b] √[(dx/dt)² + (dy/dt)²] dt

We have the parametric equation to be:  x = 3t^2 and y = 2t^3.

When x = 0:

3t² = 0

t² = 0

t = 0

When y = 0:

2t² = 0

t² = 0

t = 0

dx/dt = d/dt (3t²) = 6t

dy/dt = d/dt (2t³) = 6t²

We now substitute the derivatives into the arc length formula:

L = ∫[0, 0] √[(6t)² + (6t^2)²] dt

L = ∫[0, 0] √[36t² + 36t²] dt

L = ∫[0, 0] √[36t²(1 + t²)] dt

L = ∫[0, 0] 6t√(1 + t²) dt

In conclusion, the limits of integration are both 0.

Learn more about limits of integration at:

https://brainly.com/question/31315543

#SPJ4

Question 13 < > 5 Convert the point with Cartesian coordinates 2' for r and 0, with r > 0 and 0

Answers

The given point with Cartesian coordinates (2', 0) cannot be directly converted into polar coordinates because the value of r is not provided.

To convert a point from Cartesian coordinates to polar coordinates, we need both the radial distance (r) and the angle (θ). In this case, the point is given as (2', 0), where ' represents an unknown value for r. Without knowing the specific value of r, we cannot determine the polar coordinates.

In the Cartesian coordinate system, the x-axis represents the horizontal axis, and the y-axis represents the vertical axis. The point (2', 0) lies on the x-axis at a distance of 2 units from the origin.

However, to express this point in polar coordinates, we need to know the radial distance from the origin, which is represented by r. Without the value of r, we cannot determine the position of the point in the polar coordinate system.

In summary, without the value of r, it is not possible to convert the point (2', 0) into polar coordinates. The conversion requires both the radial distance (r) and the angle (θ) to locate the point accurately in the polar coordinate system.

Learn more Cartesian coordinates:

https://brainly.com/question/31327924

#SPJ11

3 Integrate f(x,y,z)= x + Vy - z2 over the path from (0,0,0) to (3,9,3) given by C1: r(t) = ti +t2j, osts3 C2: r(t) = 3i + 9j + tk, Osts3. S (x+ Vy -2°) ds = C (Type an exact answer.)

Answers

The integral is a bit complex. Therefore, the final answer for the integral will be the sum of the above two integrals. ∫S f(x, y, z) ds = ∫0³ (1 + V)i + (2t)Vj - 4t³k √(1 + 4t²V² + 4t⁶) dt + ∫0³ (27 + 81V - t⁴) √(1 + 4t²V² + 4t⁶) dt.

We are given the function f(x, y, z) = x + Vy - z².

We need to integrate this over the path given by C1 and C2 from (0,0,0) to (3,9,3).

The path is given by C1: r(t) = ti + t²j,

where 0 ≤ t ≤ 3 and C2: r(t) = 3i + 9j + tk,

where 0 ≤ t ≤ 3.Substituting these values in the function, we get:f(r(t)) = r(t)i + Vr(t)j - z²

= ti + t²j + V(ti + t²)k - (tk)²

= ti + t²j + Vti + Vt² - t²k²

= ti + t²j + Vti + Vt² - t⁴

Taking the derivative of the above function, we get:

∂f/∂t = i + 2tj + V(i + 2tk) - 4t³k

= (1 + V)i + (2t)Vj - 4t³k

The magnitude of dr/dt is given by:

|dr/dt| = √[∂x/∂t² + ∂y/∂t² + ∂z/∂t²]²

= √[1² + 4t²V² + 4t⁶]

We need to find ∫S f(x, y, z) ds over the path C1 and C2,

which is given by:

∫S f(x, y, z) ds

= ∫C1 f(r(t)) |dr/dt| dt + ∫C2 f(r(t)) |dr/dt| dt

Substituting the values in the above equation, we get:

∫S f(x, y, z) ds = ∫0³ (1 + V)i + (2t)Vj - 4t³k √(1 + 4t²V² + 4t⁶) dt + ∫0³ (27 + 81V - t⁴) √(1 + 4t²V² + 4t⁶) dt

The integral is a bit complex. Therefore, this cannot be solved here. The final answer for the integral will be the sum of the above two integrals.

To know  more about integral

https://brainly.com/question/30094386

#SPJ11

Find the critical point(s) for f(x, y) = 4x² + 2y² − 8x - 8y-1. For each point determine whether it is a local maximum. a local minimum, a saddle point, or none of these. Use the methods of this class. (6 pts)

Answers

Answer:

(1,2) is a local minimum

Step-by-step explanation:

[tex]\displaystyle f(x,y)=4x^2+2y^2-8x-8y-1\\\\\frac{\partial f}{\partial x}=8x-8\rightarrow 8x-8=0\rightarrow x=1\\\\\frac{\partial f}{\partial y}=4y-8\rightarrow 4y-8=0\rightarrow y=2\\\\\\\frac{\partial^2 f}{\partial x^2}=8,\,\frac{\partial^2 f}{\partial y^2}=4,\,\frac{\partial^2 f}{\partial x\partial y}=0\\\\H=\biggr(\frac{\partial^2f}{\partial x^2}\biggr)\biggr(\frac{\partial^2 f}{\partial y^2}\biggr)-\biggr(\frac{\partial^2 f}{\partial x\partial y}\biggr)^2=(8)(4)-0^2=32 > 0[/tex]

Since the value of the Hessian Matrix is greater than 0, then (1,2) is either a local maximum or local minimum, which can be tested by observing the value of [tex]\displaystyle \frac{\partial^2 f}{\partial x^2}[/tex]. Since [tex]\displaystyle \frac{\partial^2 f}{\partial x^2}=8 > 0[/tex], then (1,2) is a local minimum

Evaluate the definite integral. 3 25) ja S (3x2 + x + 8) dx

Answers

The value of the definite integral ∫[3 to 25] (3x^2 + x + 8) dx is 16537.

To evaluate the definite integral ∫[a to b] (3x^2 + x + 8) dx, where a = 3 and b = 25, we can use the integral properties and techniques. First, we will find the antiderivative of the integrand, and then apply the limits of integration.

Let's integrate the function term by term:

∫(3x^2 + x + 8) dx = ∫3x^2 dx + ∫x dx + ∫8 dx

Integrating each term:

= (3/3) * ∫x^2 dx + (1/2) * ∫1 * x dx + 8 * ∫1 dx

= x^3 + (1/2) * x^2 + 8x + C

Now, we can evaluate the definite integral by substituting the limits of integration:

∫[3 to 25] (3x^2 + x + 8) dx = [(25)^3 + (1/2) * (25)^2 + 8 * 25] - [(3)^3 + (1/2) * (3)^2 + 8 * 3]

= [15625 + (1/2) * 625 + 200] - [27 + (1/2) * 9 + 24]

= [15625 + 312.5 + 200] - [27 + 4.5 + 24]

= 16225 + 312.5 - 55.5

= 16537

Therefore, the value of the definite integral ∫[3 to 25] (3x^2 + x + 8) dx is 16537.

To know more about definite integrals, visit the link : https://brainly.com/question/30094386

#SPJ11

Consider the following. (If an answer does not exist, enter DNE.) f(x) = 2x3 + 3x2 – 120x (a) Find the interval(s) on which f is increasing. (Enter your answe ( 1-00, 4) U (5, 00) x (b) Find the int

Answers

(a) The interval on which f is increasing is (1, 4) U (5, ∞).

To find the interval(s) on which f is increasing, we need to examine the sign of the derivative of f. Taking the derivative of f(x) gives

[tex]f'(x) = 6x^2 + 6x - 120. We set f'(x) > 0[/tex]

to find where the derivative is positive. Solving the inequality

[tex]6x^2 + 6x - 120 > 0, we find x ∈ (1, 4) U (5, ∞),[/tex]

which means that f is increasing on this interval.

(b) The interval(s) on which f is concave up is (-∞, 2).

To find the interval(s) on which f is concave up, we need to examine the sign of the second derivative of f. Taking the derivative of f'(x), which is [tex]f''(x) = 12x + 6, we set f''(x) > 0[/tex]

to find where the second derivative is positive. Solving the inequality 12x + 6 > 0, we find x ∈ (-∞, 2), which means that f is concave up on this interval.

learn more about interval here:

https://brainly.com/question/29126055

#SPJ11

Consider the function f(x) = 2x^3 + 3x^2 - 120x.

(a) Find the interval(s) on which f is increasing. Enter your answer in interval notation.

(b) Find the interval(s) on which f is concave up.

Find the average value of the function f(x, y) = x + y over the region R = [2, 6] x [1, 5].

Answers

To find the average value of a function f(x, y) over a region R, we need to calculate the double integral of the function over the region and divide it by the area of the region.

The given region R is defined as R = [2, 6] x [1, 5].

The average value of f(x, y) = x + y over R is given by:

Avg = (1/Area(R)) * ∬R f(x, y) dA

First, let's calculate the area of the region R. The width of the region in the x-direction is 6 - 2 = 4, and the height of the region in the y-direction is 5 - 1 = 4. Therefore, the area of R is 4 * 4 = 16.

Now, let's calculate the double integral of f(x, y) = x + y over R:

∬R f(x, y) dA = ∫[1, 5] ∫[2, 6] (x + y) dxdy

Integrating with respect to x first:

∫[2, 6] (x + y) dx = [x²/2 + xy] evaluated from x = 2 to x = 6

= [(6²/2 + 6y) - (4/2 + 2y)]

= (18 + 6y) - (2 + 2y)

= 16 + 4y

Now, integrating this expression with respect to y:

∫[1, 5] (16 + 4y) dy = [16y + 2y²/2] evaluated from y = 1 to y = 5

= (16(5) + 2(5²)/2) - (16(1) + 2(1^2)/2)

= 80 + 25 - 16 - 1

= 88

Now, we can calculate the average value:

Avg = (1/Area(R)) * ∬R f(x, y) dA

= (1/16) * 88

= 5.5

Therefore, the average value of the function f(x, y) = x + y over the region R = [2, 6] x [1, 5] is 5.5.

learn more about double integral here:

https://brainly.com/question/27360126

#SPJ11

Which of the following is true about similar figures? A. Similar figures have the same size but different shapes. B. Similar figures have the same size and shape. C. The corresponding angles of similar figures are proportional; not congruent. D. Similar figures have congruent corresponding angles.

Answers

The option that is true with regards to the lengths of the sides and the angles in similar figures is the option D;

D. Similar figures have congruent corresponding angles.

What are similar figures?

Similar figures are geometric figures that have the same shape but may have different sizes.

The corresponding sides of similar figures are proportional but my not be congruent. However;

The corresponding angles of similar figures are congruent

Therefore;

The statement that is true with regards to the properties of similar figures is the option D.

D. Similar figures have congruent corresponding angles.

Learn more on similar figures here: https://brainly.com/question/28921904

#SPJ1

4. Given if z =-1+ V3i, the principal argument Arg() is B. 35 D. - 21 A. 27 3 C. 3 E. None of them 5. The value of the integral Sc cos (2) dz.C is the unit circle clockwise. Z A. O Β. 2πί C. -2i D.

Answers

The principal argument of z = -1 + √3i is 60 degrees or π/3 radians. The value of the integral of cos(θ) dz along the unit circle clockwise is 0.

The principal argument of a complex number z = x + yi is the angle between the positive real axis and the line connecting the origin and the complex number in the complex plane. In this case, z = -1 + √3i corresponds to the point (-1, √3) in the complex plane. By using trigonometry, we can determine the angle as arctan(√3/(-1)) = arctan(-√3) = -π/3 or -60 degrees. However, the principal argument is always taken between -π and π, so the principal argument is π - π/3 = 2π/3 or 120 degrees. Integral of cos(θ) dz:

When integrating a complex-valued function along a curve, we parametrize the curve and calculate the line integral. In this case, the curve is the unit circle traversed clockwise. Along the unit circle, the value of z can be written as z = e^(iθ), where θ is the angle parameter.

Learn more about Integral here:

https://brainly.com/question/31059545

#SPJ11

An object moves along a straight line in such a way that its position is s(t) = -5t3 + 17t2, in which t represents the time in seconds. What is the object's acceleration at 2.7 seconds? a) -47 b) –17.55 c) 17 d) -81 17. Find the unit vector of à = (-3,-7,4]. a) - [ -3, -7,4] b) Tal -3, -7,4] c) d) [* 1 -3 7 4 -7 4 2 74 V14 18. Derive y = -2(3-7x) a) –21n3(3-7x) b) -141n7(3-7x) c) 7ln2(3-7x) d) 141n3(3-7x)

Answers

The derivative of y = -2(3-7x) with respect to x is dy/dx = 14. The correct unit vector of a vector remains the same regardless of the units used for the vector components.

Let's go through each question one by one:

To find the object's acceleration at 2.7 seconds, we need to take the second derivative of the position function with respect to time. The position function is given as s(t) = -5t^3 + 17t^2.

First, let's find the velocity function by taking the derivative of s(t):

v(t) = s'(t) = d/dt (-5t^3 + 17t^2)

= -15t^2 + 34t

Now, let's find the acceleration function by taking the derivative of v(t):

a(t) = v'(t) = d/dt (-15t^2 + 34t)

= -30t + 34

To find the acceleration at 2.7 seconds, substitute t = 2.7 into the acceleration function:

a(2.7) = -30(2.7) + 34

= -81 + 34

= -47

Therefore, the object's acceleration at 2.7 seconds is -47. The correct answer is option (a).

To find the unit vector of a = (-3, -7, 4), we need to divide each component of the vector by its magnitude.

The magnitude of a vector (|a|) is calculated using the formula:

|a| = sqrt(a1^2 + a2^2 + a3^2)

In this case:

|a| = sqrt((-3)^2 + (-7)^2 + 4^2)

= sqrt(9 + 49 + 16)

= sqrt(74)

Now, divide each component of the vector by its magnitude to obtain the unit vector:

Unit vector of a = a / |a|

= (-3/sqrt(74), -7/sqrt(74), 4/sqrt(74))

Therefore, the unit vector of a = (-3, -7, 4) is (-3/sqrt(74), -7/sqrt(74), 4/sqrt(74)). The correct answer is option (b).

To derive y = -2(3-7x), we need to find the derivative of y with respect to x. Since there is only one variable (x), we can treat the other constant (-2) as a coefficient.

Using the power rule for differentiation, we differentiate each term:

dy/dx = d/dx [-2(3-7x)]

= -2 * d/dx (3-7x)

= -2 * (-7)

= 14

Learn more about the unit here:

https://brainly.com/question/18558508

#SPJ11








Find The volume of The sold obtained by rotating The region bounded by the graphs of y = 16-xi y = 3x + 12,x=-1 about The x-axis

Answers

The volume of the solid obtained is (960π/7) cubic units.

What is the volume of the solid formed?

The given region is bounded by the graphs of y = 16 - x² and y = 3x + 12, along with the line x = -1. To find the volume of the solid obtained by rotating this region about the x-axis, we can use the method of cylindrical shells.

We integrate along the x-axis from the point of intersection between the two curves (which can be found by setting them equal to each other) to x = -1.

For each infinitesimally thin strip of width dx, the circumference of the shell is given by 2πx, and the height is the difference between the two curves, (16 - x²) - (3x + 12).

The integral for the volume is:

V=∫-4−1 2πx[(16−x² )−(3x+12)]dx

Simplifying and evaluating the integral gives the volume V = (960π/7) cubic units.

Learn more about volume of the solid

brainly.com/question/29159668

#SPJ11

Answer all parts. i will rate your answer only if you answer all
correctly.
Consider the definite integral. 3 LUX (18x – 1)ex dx Let u = 9x2 – x. Use the substitution method to rewrite the function in the integrand, (18x – 1)e9x?-*, in terms of u. integrand in terms of

Answers

To rewrite the function (18x - 1)e^(9x^2 - x) in terms of u using the substitution method, we let u = 9x^2 - x. By finding the derivative of u with respect to x, we can express the integrand in terms of u.

To rewrite the function (18x - 1)e^(9x^2 - x) in terms of u, we let u = 9x^2 - x. Differentiating both sides of this equation with respect to x, we get du/dx = 18x - 1. Solving for dx, we have dx = (1/(18x - 1)) du.

Substituting the expression for dx into the original function, we have:

(18x - 1)e^(9x^2 - x) dx = (18x - 1)e^(u) (1/(18x - 1)) du.

Simplifying, we cancel out the (18x - 1) terms:

(18x - 1)e^(u) (1/(18x - 1)) du = e^u du.

We have successfully rewritten the integrand in terms of u. The function (18x - 1)e^(9x^2 - x) is now expressed as e^u. We can now proceed with the integration using the new expression.

In conclusion, by letting u = 9x^2 - x and finding the derivative du/dx, we can rewrite the function (18x - 1)e^(9x^2 - x) in terms of u as e^u. This substitution simplifies the integration process.

Learn more about function  here:

https://brainly.com/question/30721594

#SPJ11

Let L be the straight line that passes through (1,2,1) and has as its direction vector the tangent vector to the curve:
C =
´y² + x²z=z+4

G = zh+zzx
in the same point (1,2,1). Find the points where the line L intersects the surface z2=x+y.
Hint: You must first find the explicit equation of L.

Answers

The points where the line L intersects the surface z² = x + y are (-3, -6, -3) and (5, 10, 3).

Given the straight line L that passes through the point (1, 2, 1) and has as its direction vector the tangent vector to the curve:C:

y² + x²z = z + 4

G: zh + zzx

We can obtain the explicit equation of the straight line L as follows:

Let the point (1, 2, 1) be P and the direction vector of the tangent to the curve be a.

Therefore, the equation of the straight line L can be given by:

L = P + ta where t is a parameter.

L = (1, 2, 1) + t[∂C/∂x, ∂C/∂y, ∂C/∂z] at (1, 2, 1)[∂C/∂x, ∂C/∂y, ∂C/∂z] = [2xz, 2y, x²] at (1, 2, 1)L = (1, 2, 1) + t[2, 4, 1]

Thus, the equation of the straight line L is given by:

L = (1 + 2t, 2 + 4t, 1 + t)

Now, to find the points where the line L intersects the surface z² = x + y.

Substituting for x, y, and z in terms of t in the above equation, we get:

(1 + t)² = (1 + 2t) + (2 + 4t)⇒ t² + 4t - 4 = 0⇒ (t + 2)(t - 2) = 0

Thus, the points where the line L intersects the surface z² = x + y are obtained when t = -2 and t = 2. Therefore, the two points are:

When t = -2, (1 + 2t, 2 + 4t, 1 + t) = (-3, -6, -3)

When t = 2, (1 + 2t, 2 + 4t, 1 + t) = (5, 10, 3)

Thus, the points where the line L intersects the surface z² = x + y are (-3, -6, -3) and (5, 10, 3).

Learn more about vector :

https://brainly.com/question/24256726

#SPJ11

Find the interval the power series. n SW n=o of convergence of 2n+1

Answers

The power series [tex]\sum{(2n+1)}[/tex] converges for values of x within the interval (-1, 1). This means that if we plug in any value of x between -1 and 1 into the series, the series will converge to a finite value.

To find the interval of convergence for the power series [tex]\sum{(2n+1)}[/tex], we can use the ratio test. The ratio test states that a power series [tex]\sum{an(x-a)^n}[/tex] converges if the limit of [tex]|an+1(x-a)^{(n+1)} / (an(x-a)^n)|[/tex]  as n approaches infinity is less than 1.

For the given power series [tex]\sum{(2n+1)}[/tex], we can rewrite it as [tex]\sum{(2n)x^n}[/tex]. Applying the ratio test, we have [tex]|(2(n+1))x^{(n+1)} / (2n)x^n|[/tex] . Simplifying this expression, we get [tex]|2x / (1 - x)|[/tex].

For the series to converge, the absolute value of the ratio should be less than 1. Therefore, we have  [tex]|2x / (1 - x)| < 1[/tex] . Solving this inequality, we find that [tex]-1 < x < 1[/tex] .

Thus, the interval of convergence for the power series  [tex]\sum(2n+1)[/tex]  is (-1, 1), which means the series converges for all x-values within this interval.

Learn more about power series here:

https://brainly.com/question/31776977

#SPJ11

If the particular solution of this equation is , then what is a + b2
+ c = ?
(D2 – 4D + 5) y = eqt sin(br) ° bx = e91 [A cos(bx) + B sin(bar):22 ac .

Answers

the value of a + b² + c in the equation (D² – 4D + 5) y = eqᵗ sin(br) + c, we need more information about the particular solution and the equation itself.

The given equation is a second-order linear homogeneous differential equation with constant coefficients. The term (D² – 4D + 5) represents the characteristic polynomial of the differential operator, where D denotes the derivative operator.

To determine the particular solution, we would need additional information such as initial conditions or boundary conditions. Without this information, we cannot determine the specific values of a, b, and c.

If you can provide more context or specific details about the particular solution or the equation, I would be able to assist you further in finding the value of a + b² + c.

Learn more about linear here:

https://brainly.com/question/31510530

#SPJ11

Find the derivative of f(x, y) = x² + xy + y2 at the point ( – 1, 2) in the direction towards the point (3, – 3).

Answers

To find the derivative of f(x, y) = x² + xy + y² at the point (-1, 2) in the direction towards the point (3, -3), we need to compute the directional derivative.

The directional derivative of a function f(x, y) in the direction of a vector v = <a, b> is given by the dot product of the gradient of f and the unit vector in the direction of v.

First, let's compute the gradient of f(x, y):

∇f(x, y) = <∂f/∂x, ∂f/∂y> = <2x + y, x + 2y>

Next, we need to find the unit vector in the direction from (-1, 2) to (3, -3). The direction vector is given by v = <3 - (-1), -3 - 2> = <4, -5>.

To find the unit vector, we divide v by its magnitude:

|v| = √(4² + (-5)²) = √(16 + 25) = √41

So, the unit vector in the direction of v is u = <4/√41, -5/√41>.

Now, we can compute the directional derivative:

D_v f(-1, 2) = ∇f(-1, 2) · u = <2(-1) + 2, (-1) + 2(2)> · <4/√41, -5/√41> = (-2 + 2, -1 + 4) · <4/√41, -5/√41> = (0, 3) · <4/√41, -5/√41> = 0 + 3(4/√41) = 12/√41.

Therefore, the derivative of f(x, y) at the point (-1, 2) in the direction towards the point (3, -3) is 12/√41.

To learn more about derivatives click here:  brainly.com/question/25324584

#SPJ11

S4.3 Curve Length in Parametric = 14 cos(5t) and y(t) = 6t12 for 9

Answers

The length of the curve defined by the parametric equations x(t) = 14 cos(5t) and y(t) = 6t^12 for t in the interval [9, 9] is 0.

To find the length of the curve defined by the parametric equations x(t) = 14 cos(5t) and y(t) = 6t^12 for t in the interval [9, b], we can use the arc length formula for parametric curves:

L = ∫[a,b] √[ (dx/dt)^2 + (dy/dt)^2 ] dt

First, let's find the derivatives dx/dt and dy/dt:

dx/dt = -14 * 5 sin(5t) = -70sin(5t)

dy/dt = 6 * 12t^11 = 72t^11

Now, let's calculate the integrand:

√[ (dx/dt)^2 + (dy/dt)^2 ] = √[ (-70sin(5t))^2 + (72t^11)^2 ]

                            = √[ 4900sin^2(5t) + 5184t^22 ]

The length of the curve can be obtained by integrating this expression from t = 9 to t = b:

L = ∫[9,b] √[ 4900sin^2(5t) + 5184t^22 ] dt

Now, substituting b = 9 into the integral, we get:

L = ∫[9,9] √[ 4900sin^2(5t) + 5184t^22 ] dt

Since the lower and upper limits of integration are the same, the integral evaluates to 0:

Therefore, L = ∫[9,9] √[ 4900sin^2(5t) + 5184t^22 ] dt = 0

To know more about parametric equations refer here:

https://brainly.com/question/29145287#

#SPJ11

dy What is the particular solution to the differential equation de with the initial condition y(6) 2 cos(x)(y +1) Answer: Y = Submit Answer ✓

Answers

The particular solution to the differential equation is: [tex]\[\ln|y + 1| = 2 \sin(x) + \ln(3) - 2 \sin(6)\][/tex] or in exponential form: [tex]\[|y + 1| = e^{2 \sin(x) + \ln(3) - 2 \sin(6)}\][/tex]

To find the particular solution to the differential equation dy with the initial condition [tex]\(y(6) = 2 \cos(x)(y + 1)\)[/tex], we can solve the differential equation using the separation of variables.

The differential equation can be written as:

[tex]\[\frac{dy}{dx} = 2 \cos(x)(y + 1)\][/tex]

To solve this, we separate the variables and integrate them:

[tex]\[\frac{dy}{y + 1} = 2 \cos(x) dx\][/tex]

Integrating both sides:

[tex]\[\ln|y + 1| = 2 \sin(x) + C\][/tex]

where C is the constant of integration.

To find the particular solution, we can use the initial condition y(6) = 2. Substituting this into the equation, we have:

[tex]\[\ln|2 + 1| = 2 \sin(6) + C\][/tex]

Simplifying:

[tex]\[\ln(3) = 2 \sin(6) + C\][/tex]

Now, solving for C:

[tex]\[C = \ln(3) - 2 \sin(6)\][/tex]

Therefore, the particular solution to the differential equation is:

[tex]\[\ln|y + 1| = 2 \sin(x) + \ln(3) - 2 \sin(6)\][/tex]

or in exponential form:

[tex]\[|y + 1| = e^{2 \sin(x) + \ln(3) - 2 \sin(6)}\][/tex]

Please note that the absolute value is used in the logarithmic expression to account for both positive and negative values of y + 1.

To learn more about differential equation from the given link

https://brainly.com/question/1164377

#SPJ4

( Let C be the curve which is the union of two line segments, the first going from (0,0) to (-2,-1) and the second going from (-2,-1) to (-4, 0). Compute the line integral ∫ C –2dy+ 1dx .

Answers

The line integral ∫C -2dy + 1dx is equal to 0 for C1 and -4 for C2.

To compute the line integral ∫C -2dy + 1dx, we need to parameterize the curve C and then evaluate the integral along that parameterization.

The curve C consists of two line segments. Let's denote the first line segment as C1 and the second line segment as C2.

C1 goes from (0, 0) to (-2, -1), and C2 goes from (-2, -1) to (-4, 0).

Let's parameterize C1 using t ranging from 0 to 1:

x(t) = (1 - t) * 0 + t * (-2) = -2t

y(t) = (1 - t) * 0 + t * (-1) = -t

Now, let's parameterize C2 using s ranging from 0 to 1:

x(s) = -2 + s * (-4 - (-2)) = -2 - 2s

y(s) = -1 + s * (0 - (-1)) = -1 + s

We can now compute the line integral ∫C -2dy + 1dx by splitting it into two integrals corresponding to C1 and C2:

∫C -2dy + 1dx = ∫C1 -2dy + 1dx + ∫C2 -2dy + 1dx

For C1, we have:

∫C1 -2dy + 1dx = ∫[0,1] -2(-dt) + 1(-2dt) = ∫[0,1] 2dt - 2dt = ∫[0,1] (2 - 2) dt = 0

For C2, we have:

∫C2 -2dy + 1dx = ∫[0,1] -2(ds) + 1(-2ds) = ∫[0,1] (-2 - 2ds) = ∫[0,1] (-2 - 4s)ds = -2s - 2s^2 evaluated from s = 0 to s = 1 = -2 - 2 = -4.

For more such questions on integral visit:

https://brainly.com/question/30094386

#SPJ8

Juanita has rectangular cards that are inches by inches. How can she arrange the​ cards, without​ overlapping, to make one larger polygon with the smallest possible​ perimeter? How will the area of the polygon compare to the combined area of the ​cards?
The perimeter of the polygon is

Answers

Answer:

Perimeter = 2*(na) + 2b

                 = 2na + 2*b

The area of the polygon would be equal to the combined area of the cards.

Step-by-step explanation:

To arrange the rectangular cards without overlapping to form one larger polygon with the smallest possible perimeter, Juanita should align the cards in a way that their sides form the perimeter of the polygon.

If each rectangular card has dimensions "a" inches by "b" inches, Juanita can arrange them by aligning the sides of the cards in a continuous manner. Let's assume she arranges "n" cards in a row. The resulting polygon will have a length of n*a inches and a width of b inches.

The perimeter of the polygon can be calculated by adding the lengths of all sides. In this case, since we have n cards aligned horizontally, the perimeter would be the sum of the lengths of the top and bottom sides, as well as the sum of the lengths of the left and right sides.

Perimeter = 2*(na) + 2b

= 2na + 2*b

The area of the resulting polygon can be calculated by multiplying its length by its width.

Area = (na) * b

= na*b

Now, let's compare the area of the polygon to the combined area of the individual cards. Assuming Juanita has "n" cards, the combined area of the cards would be n*(ab), as each card has an area of ab.

The ratio of the area of the polygon to the combined area of the cards can be calculated as:

Area of the polygon / Combined area of the cards

= (nab) / (n*(a*b))

= 1

Therefore, the area of the polygon would be equal to the combined area of the cards.

To summarize, to form the smallest possible perimeter, Juanita should align the rectangular cards in a continuous manner, and the resulting polygon's perimeter would be 2na + 2*b. The area of the polygon would be equal to the combined area of the cards.

he number of people employed in some country as medical assistants was 369 thousand in 2008. By the year 2018, this number is expected to rise to 577 thousand. Loty be the number of medical assistants (in thousands) employed in the country in the year x where x = 0 represents 2008 a. Write a linear equation that models the number of people in thousands) employed as medical assistants in the year

Answers

To model the number of people employed as medical assistants in a country over time, a linear equation can be used. In this case, the equation will represent the relationship between the year (x) and the number of medical assistants (y) in thousands.

Let y represent the number of medical assistants employed in thousands, and x represent the year. We are given that in the year 2008 (represented by x = 0), the number of medical assistants employed was 369 thousand. In the year 2018 (represented by x = 10), the number of medical assistants employed is expected to be 577 thousand.

To create a linear equation that models this relationship, we can use the slope-intercept form of a linear equation, which is y = mx + b, where m is the slope and b is the y-intercept.

We can calculate the slope using the two given points (0, 369) and (10, 577). The slope (m) is determined by (y2 - y1) / (x2 - x1).

Substituting the calculated slope and one of the points into the slope-intercept form, we can find the equation that models the number of medical assistants employed in the country over time.

Learn more about  linear equation here:

https://brainly.com/question/29111179

#SPJ11

Annie and Alvie have agreed to meet for lunch between noon (0:00 p.m.) and 1:00 p.m. Denote Annie's arrival time by X, Alvie's by Y, and suppose X and Y are independent with the following pdf's.
fX(x) =
5x4 0 ≤ x ≤ 1
0 otherwise
fY(y) =
2y 0 ≤ y ≤ 1
0 otherwise
What is the expected amount of time that the one who arrives first must wait for the other person, in minutes?

Answers

The expected amount of time that the one who arrives first must wait for the other person is 15 minutes.

To explain, let's calculate the expected waiting time. We know that Annie's arrival time, X, follows a probability density function (pdf) of fX(x) = 5x^4 for 0 ≤ x ≤ 10, and Alvie's arrival time, Y, follows a pdf of fY(y) = 2y for 0 ≤ y ≤ 10. Both X and Y are independent.

To find the expected waiting time, we need to calculate the expected value of the maximum of X and Y, minus the minimum of X and Y. In this case, since the one who arrives first must wait for the other person, we are interested in the waiting time of the person who arrives second.

Let W denote the waiting time. We can express it as W = max(X, Y) - min(X, Y). To find the expected waiting time, we need to calculate E(W).

E(W) = E(max(X, Y) - min(X, Y))

    = E(max(X, Y)) - E(min(X, Y))

The expected value of the maximum and minimum can be calculated using the cumulative distribution functions (CDFs). However, since the CDFs for X and Y involve complicated calculations, we can simplify the problem by using symmetry.

Since the PDFs for X and Y are both symmetric around the midpoint of their intervals (5), the expected waiting time is symmetric as well. This means that both Annie and Alvie have an equal chance of waiting for the other person.

Thus, the expected waiting time for either Annie or Alvie is half of the total waiting time, which is (10 - 0) = 10 minutes. Therefore, the expected amount of time that the one who arrives first must wait for the other person is (1/2) * 10 = 5 minutes.

In conclusion, the expected waiting time for the person who arrives first to wait for the other person is 5 minutes.

Learn more about probability here: https://brainly.com/question/32117953

#SPJ11








Estimate the instantaneous rate of change at x = 1 for fx) = x+1. a) -2 Ob) -0.5 c) 0.5 d) 2

Answers

The instantaneous rate of change at x = 1  is 2. Option D

How to determine the value

The instantaneous rate of change is the change in the rate at a particular instant, and it is same as the change in the derivative value at a specific point.

For a graph, the instantaneous rate of change at a specific point is the same as the tangent line slope. That is, it is a curve slope.

From the information given, we have the function is given as;

f(x) = x + 1

For change at the rate of 1

Substitute the value, we have;

f(1) = 1 + 1/1

add the values

f(1) = 2/1

f(1) = 2

Learn more about instantaneous rate at: https://brainly.com/question/27775971

#SPJ1

Identify any points at which the Folium of Descartes x = 120312 answer to two decimal places, if necessary. + 1 + not smooth when t = 0.67,-0.67 smooth everywhere not smooth when t= -1.00 not smooth when t=0 not smooth when t = 0.67

Answers

The Folium of Descartes is defined by the equation x = 12t/(t^3 + 1).

To determine the points where the curve is not smooth, we need to examine the values of t that cause the derivative of x with respect to t to be undefined or discontinuous.

At points where the derivative is undefined or discontinuous, the curve is not smooth.Looking at the given values, we can analyze them one by one:1. When t = 0.67: The derivative dx/dt is defined at this point, so the curve is smooth.2. When t = -0.67: The derivative dx/dt is defined at this point, so the curve is smooth.

3. When t = -1.00: The derivative dx/dt is defined at this point, so the curve is smooth.

learn more about undefined here :

https://brainly.com/question/10969140

#SPJ11

Use the Integral Test to determine the convergence or divergence of the following series, or state that the test does not apply Σ k=3 5 6k Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

Answers

To determine the convergence or divergence of the series Σ(k=3 to 5) 6k, we can use the Integral Test.

The Integral Test states that if f(x) is a positive, continuous, and decreasing function on the interval [a, ∞), and if the series Σf(k) is given by Σ(k=a to ∞) f(k), then the series Σf(k) converges if and only if the improper integral ∫(a to ∞) f(x) dx converges.

In this case, we have the series Σ(k=3 to 5) 6k. Notice that this is a finite series with only three terms. The Integral Test is not applicable to finite series because it requires the series to have infinitely many terms.

Therefore, we cannot determine the convergence or divergence of the series using the Integral Test because it does not apply to finite series.To determine the convergence or divergence of the series Σ(k=3 to 5) 6k, we can use the Integral Test.

The Integral Test states that if f(x) is a positive, continuous, and decreasing function on the interval [a, ∞), and if the series Σf(k) is given by Σ(k=a to ∞) f(k), then the series Σf(k) converges if and only if the improper integral ∫(a to ∞) f(x) dx converges.

In this case, we have the series Σ(k=3 to 5) 6k. Notice that this is a finite series with only three terms. The Integral Test is not applicable to finite series because it requires the series to have infinitely many terms.

Therefore, we cannot determine the convergence or divergence of the series using the Integral Test because it does not apply to finite series.

learn more about Integral Test here:

https://brainly.com/question/32197461

#SPJ11








11. Find the radius of convergence and the interval of convergence of the series: Eno n!(x+1)" 5.00 3" mha erval of

Answers

To find the radius of convergence and the interval of convergence of the series Σ(n!) / (x + 1)^n, we can use the ratio test.  The ratio test states that if the limit of the absolute value of the ratio of consecutive terms is less than 1, then the series converges.

If the limit is greater than 1, the series diverges. If the limit is exactly 1, the test is inconclusive. Applying the ratio test to our series, we have:

lim(n→∞) |(n+1)! / ((x + 1)^(n+1))| / (n! / (x + 1)^n)

= lim(n→∞) |(n+1)! / n!| / |(x + 1)^(n+1) / (x + 1)^n|

= lim(n→∞) |n+1| / |x + 1|

= |x + 1|

Since the limit is |x + 1|, we can conclude that the series converges when |x + 1| < 1, and diverges when |x + 1| > 1.  Therefore, the radius of convergence is 1, and the interval of convergence is (-2, 0) U (0, 2). This means that the series converges for x values between -2 and 0, and between 0 and 2 (excluding -2 and 2).

Learn more about series converges here: brainly.com/question/31586544

#SPJ11

Express the given product as a sum or difference containing only sines or cosines sin (4x) cos (2x)

Answers

The given product sin(4x)cos(2x) can be expressed as a sum or difference containing only sines or cosines. By using the trigonometric identity for the sine of the sum or difference of angles.

To express sin(4x)cos(2x) as a sum or difference containing only sines or cosines, we can utilize the trigonometric identity:

sin(A + B) = sin(A)cos(B) + cos(A)sin(B).

In this case, we can rewrite sin(4x)cos(2x) as:

sin(4x)cos(2x) = (sin(2x + 2x) + sin(2x - 2x)) / 2.

Simplifying further, we have:

sin(4x)cos(2x) = (sin(4x) + sin(0)) / 2.

Since sin(0) is equal to 0, we can simplify the expression to:

sin(4x)cos(2x) = sin(4x) / 2.

Therefore, the given product sin(4x)cos(2x) can be expressed as a sum or difference containing only sines or cosines as sin(4x) / 2.

To learn more about sines or cosines click here : brainly.com/question/23428798

#SPJ11

Other Questions
there are no known motor proteins that move on intermediate filaments. suggest an explanation for this observation suppose a student repeats the experiment, but adds 25 g of sodium bicarbonate to the 6 m hcl solution instead of adding 1 m naoh. what observations indicate that a reaction took place? Maria is selling chips and candy bars. If she wants to sell each bag of chips, c, for $1.50 and eachcandy bar, b, for $1.20, which equation would represent her possible sales, S(c,b)? S(c, b) = c+bO S(c, b) = 0.30cbO S(c, b) = 0.30(c+b)O S(c, b) = 1.50c + 1.206 What is the difference in climate between temperate rain forests and temperate deciduous forests? One critique of determining the effectiveness of the psychodynamic perspective is that its theories are too vague to test.a) Trueb) False 5. the theory of efficiency wages why might some firms choose to pay workers a wage above the market equilibrium, even with a surplus of labor in the market? check all that apply. paying higher wages increases worker turnover. paying higher wages encourages workers to be more productive. paying higher wages enhances workers to adopt healthier lifestyles, enhancing their productivity. paying higher wages can reduce a firm's training costs. urgent!!Select the form of the partial fraction decomposition of B A + x- 4 (x+3) A B C + x- 4 x + 3 (x+3) Bx + C (x+3) O A - B 4 + + 1 (x-4) (x+3)Select the form of the partial fraction decompositi In cell C5, enter a formula to calculate the future value of this investment. Use cell references wherever possible. The interest rate is stored in cell C4, the number of payments in cell C2, and the monthly investment amount in cell C3. Remember to use a negative value for the Pmt argument. The JM Partnership was formed to acquire land and subdivide it as residential housing lots. On March 1, 2016, Jessica contributed land valued at $600,000 to the partnership, in exchange for a 50% interest in JM. She had purchased the land in 2008 for $420,000 and held it for investment purposes (capital asset), The partnership holds the land as inventory.On the same date, Matt contributes land valued at $600,000 that he has purchase in 2006 for $720,000. He also became a 50% owner. Matt is a real estate developer, but this land was held personally for investment purpose. The partnership holds this land as inventory.In 2017, the partnership sells the land contributed by Jessica for $620,000. In 2018, the partnership sells the real estate contributed by Matt for $580,00.What is each partners initial basis in his or her partnership interest?What is the amount of gain or loss recognized on the sale of the land contributed by Jessica?What is the character of this gain or loss?What is the amount of gain or loss recognized on the sale of the land contributed by Matt?What is the character of this gain or loss?How would your answer in part c, change if the property was sold in 2023? Find the volume of the solid that lies under the hyperbolic paraboloidz = 3y^2 x^2 + 5and above the rectangleR = [1, 1] [1, 2].Find the average value of f over the given rectangle.f(x, y) = 2x^2y, R has vertices (4, 0), (4, 5), (4, 5), (4, 0). "Evaluate definite integrals using Part 2 of the Fundamental Theorem of Calculus combined with Substitution.+ 1 Evaluate the definite integral 1x8 dx. 01 + x Give an exact, completely simplified answer and then an approximate answer, rounded to 4 decimal places. Note: It works best to start by separating this into two different integrals. Dora Company declared and distributed a 25% small stock dividend on 23,000 shares of issued and outstanding $5 par value common stock. The market price per share was $12 on the declaration date. Which of the following correctly describes the effect of accounting for the declaration and distribution of the stock dividend?A) Retained earnings decreased $74,750.B) Common stock increased $69,000.C) Retained earnings decreased $69,000.D) Additional paid-in capital increased $46,000. the application of scientific or other organized knowledge to solve problems, expand experiences, or alter the conditions of reality is known as Which of the following properties can be styled using CSS? Select all that apply. A font sizeB body C font family D background color Simplify: 8 sin 37 cos 37 Answer in a single trigonometric function," Find the position vector for a particle with acceleration, initial velocity, and initial position given below. a(t) = (5t, 4 sin(t), cos(5t)) 7(0) = (-1,5,2) 7(0) = (3,5, - 1) = F(t) = > 1. The Real Estate Law is found in thea. Licensing Codeb. Business and Professions Codec. Health and Safety Coded. Corporations Code2. The Real Estate Commissioner reports to thea. California Bureau of Real Estateb. governorc. Real Estate Advisory Commissiond. legislature3. Salesperson Sam owns 25% of the outstanding shares of Rollo Realty, Inc., and broker Barbara Rollo owns the remaining shares. This division of ownership is?a. acceptableb. mandatedc. discouragedd. prohibited4. Salesperson Sam is part owner of Rollo Realty, Inc. In the broker's absence, Sam frequently reviews the work of sales associates. This is?a. acceptableb. mandatedc. discouragedd. prohibited5. A real estate business that is a partnership can have more than one office location, provideda. a broker partner obtains an additional license for each locationb. all partners are real estate licenseesc. there is a designated broker-officerd. there is at least one partner at each location 1-Make up derivative questions which meet the following criteria. Then take the derivative. Do not simplify your answers.a)An equation which uses quotient rule involving a trig ratio and exponential (not base e) and the chain rule used exactly twice.b)An equation which uses product rule involving a trig ratio and an exponential (base e permitted). The chain rule must be used for each of the trig ratio and exponential.c) An equation with a trig ratio as both the 'outside' and 'inside' operation.d) An equation with a trig ratio as the 'inside' operation, and the chain rule used exactly once.e) An equation with three terms; the first term has base e, the second has an exponential base (not e) and the last is a trig ratio. Each of the terms should have a chain application. Assume that Caterpillar's pays 3.25% per annum to its lenders for the next four years. Next, suppose that Caterpillar and UBS (a financial institution) enter the following four year interest rate swap: Catepillar receives X% per annum fixed from UBS and pays LIBOR to UBS. All payments are made annually. Catepillar's net interest paid after it enters the swap is LIBOR+0.20% per annum. In this case, Catepillar transforms into and X equals to a. Floating Rate Investment; Fixed Rate Investment; 3.45% b. Fixed Rate Liability; Floating Rate Liability; 3.05% c. Floating Rate Liability; Fixed Rate Liabslity; 3.25% d. Fixed Rate Investment; Floating Rate Investment; 3.05\% e. Fixed Rate Liability; Floating Rate Liability; 3.45% Company has forecast purchases to be $31.000 in June 537.000 in 5314.000 in August, and 1276.000 in September. Purses average condicionaron creditede purchases are padow in the month of purchase.25 during the month following and the second month following the purchase. Cash payants in September would be 30.010 1264.760 5291,510 $112410