what would be the correct answer:
18x/ 18x = 2/ 18

Answers

Answer 1

Step-by-step explanation:

There is no answer to this    18x/18x = 1

so you have    1 = 2/18      not true


Related Questions


Please show all steps and use forst principles. TIA
Find F'(oc) by using first principles of differentation if: 4 10

Answers

To find F'(c) using first principles of differentiation, we start with the definition of the derivative. Let F(x) be a function, and we want to find the derivative at a specific point c. The derivative of F(x) at x=c is given by the limit:

F'(c) = lim┬(h→0)⁡〖(F(c+h) - F(c))/h〗

To apply this definition, we substitute x=c+h into the function F(x) and simplify:

F'(c) = lim┬(h→0)⁡〖(F(c+h) - F(c))/h〗

= lim┬(h→0)⁡〖(4(c+h)^2 + 10(c+h) - (4c^2 + 10c))/h〗

= lim┬(h→0)⁡〖(4c^2 + 8ch + 4h^2 + 10c + 10h - 4c^2 - 10c)/h〗

= lim┬(h→0)⁡〖(8ch + 4h^2 + 10h)/h〗

= lim┬(h→0)⁡〖8c + 4h + 10〗

= 8c + 10

Therefore, the derivative F'(c) of the given function is equal to 8c + 10. This result represents the slope of the tangent line to the graph of F(x) at the point x=c. The first principles of differentiation allow us to find the instantaneous rate of change or the slope at a specific point by taking the limit of the difference quotient as the interval approaches zero. In this case, we applied the definition to the given function, simplified the expression, and evaluated the limit. The final result is a constant expression, indicating that the derivative is a linear function with a slope of 8 and a y-intercept of 10.

Learn more about difference quotient here: brainly.com/question/28421241

#SPJ11

Let r(t) = (-5t +4, - 5e-t, 3 sin(3t)) Find the unit tangent vector T(t) at the point t = 0 T (0) =

Answers

The unit tangent vector T(t) at the point t = 0 is T(0) = (-5/sqrt(131), 5/sqrt(131), 9/sqrt(131)).

To find the unit tangent vector T(t) at the point t = 0 for the given vector function r(t) = (-5t + 4, -5e^(-t), 3sin(3t)), we first calculate the derivative of r(t) with respect to t, and then evaluate the derivative at t = 0. Finally, we normalize the resulting vector to obtain the unit tangent vector T(0).

The given vector function is r(t) = (-5t + 4, -5e^(-t), 3sin(3t)). To find the unit tangent vector T(t), we need to calculate the derivative of r(t) with respect to t, denoted as r'(t). Differentiating each component of r(t), we obtain r'(t) = (-5, 5e^(-t), 9cos(3t)).

Next, we evaluate r'(t) at t = 0 to find T(0). Substituting t = 0 into the components of r'(t), we get T(0) = (-5, 5, 9cos(0)), which simplifies to T(0) = (-5, 5, 9).

Finally, we normalize the vector T(0) to obtain the unit tangent vector T(t). The unit tangent vector is found by dividing T(0) by its magnitude. Calculating the magnitude of T(0), we have |T(0)| = sqrt((-5)^2 + 5^2 + 9^2) = sqrt(131). Dividing each component of T(0) by the magnitude, we get T(0) = (-5/sqrt(131), 5/sqrt(131), 9/sqrt(131)).

Therefore, the unit tangent vector T(t) at the point t = 0 is T(0) = (-5/sqrt(131), 5/sqrt(131), 9/sqrt(131)).

Learn more about tangent vector here:

https://brainly.com/question/31584616

#SPJ11

(2 points) Consider the function f(x) = −2x³ + 36x² − 162x + 7. For this function there are three important intervals: (–[infinity], A), (A, B), and (B, [infinity]) where A and B are the critical values. Fi

Answers

To find the critical values of the function f(x) = -2x³ + 36x² - 162x + 7, we need to find the values of x where the derivative f'(x) equals zero or is undefined.

First, let's find the derivative of f(x):

f'(x) = -6x² + 72x - 162

Next, we set f'(x) equal to zero and solve for x:

-6x² + 72x - 162 = 0

We can simplify this equation by dividing both sides by -6:

x² - 12x + 27 = 0

Now, let's factor the quadratic equation:

(x - 3)(x - 9) = 0

Setting each factor equal to zero gives us the critical values:

x - 3 = 0 --> x = 3

x - 9 = 0 --> x = 9

So, the critical values are x = 3 and x = 9.

Learn more about derivative here;  

https://brainly.com/question/29144258

#SPJ11

Question What are the critical points for the plane curve defined by the equations x(t) = ť+ 3t and y(t) = ť– 3t? Write your answer as a list of values oft, separated by commas. For example, if you found critical points at t = 1 and t=2, you would enter 1, 2. Provide your answer below:

Answers

The plane curve defined by the given equations does not have any critical points.

To get the critical points for the plane curve defined by the equations x(t) = t + 3t and y(t) = t - 3t, we need to obtain the values of t where the derivatives of x(t) and y(t) are equal to zero.

Let's differentiate x(t) and y(t) with respect to t:

x'(t) = 1 + 3

= 4

y'(t) = 1 - 3

= -2

Now, we set x'(t) = 0 and solve for t:

4 = 0

Since 4 is never equal to zero, there are no critical points for x(t).

Next, we set y'(t) = 0 and solve for t:

-2 = 0

Since -2 is never equal to zero, there are no critical points for y(t) either.

Therefore, the plane curve defined by the given equations does not have any critical points.

Learn more about critical points here, https://brainly.com/question/7805334

#SPJ11

Find the divergence of the vector field F < 7z cos(2), 6z sin(x), 3z > div F Question Help: 0 Video Submit Question Jump to Answer

Answers

The divergence (div) of a vector field F = <F1, F2, F3> is given by the following expression:

div F = (∂F1/∂x) + (∂F2/∂y) + (∂F3/∂z)

Now let's compute the partial derivatives:

∂F1/∂x = 0 (since F1 does not depend on x)

∂F2/∂y = 0 (since F2 does not depend on y)

∂F3/∂z = 3

Therefore, the divergence of the vector field F is:

div F = (∂F1/∂x) + (∂F2/∂y) + (∂F3/∂z) = 0 + 0 + 3 = 3

So, the divergence of the vector field F is 3.

Learn more about vector field: https://brainly.com/question/17177764

#SPJ11












Find equations of the normal plane and osculating plane of the curve at the given point. x = sin 2t, y = -cos 2t, z= 4t, (0, 1, 2π)

Answers

The equation of the osculating plane at the point (0, 1, 2π) is x = 01) Equation of the normal plane: y = 1. 2) Equation of the osculating plane:

To find the equations of the normal plane and osculating plane of the curve at the given point (0, 1, 2π), we need to determine the normal vector and tangent vector at that point.

Given the parametric equations x = sin(2t), y = -cos(2t), z = 4t, we can find the tangent vector by taking the derivative with respect to t:

r'(t) = (dx/dt, dy/dt, dz/dt)

      = (2cos(2t), 2sin(2t), 4).

Evaluating r'(t) at t = 2π, we get:

r'(2π) = (2cos(4π), 2sin(4π), 4)

       = (2, 0, 4).

Thus, the tangent vector at the point (0, 1, 2π) is T = (2, 0, 4).

To find the normal vector, we take the second derivative with respect to t:

r''(t) = (-4sin(2t), 4cos(2t), 0).

Evaluating r''(t) at t = 2π, we have:

r''(2π) = (-4sin(4π), 4cos(4π), 0)

        = (0, 4, 0).

Therefore, the normal vector at the point (0, 1, 2π) is N = (0, 4, 0).

Now we can use the point-normal form of a plane to find the equations of the normal plane and osculating plane.

1) Normal Plane:

The equation of the normal plane is given by:

N · (P - P0) = 0,

where N is the normal vector, P0 is the given point (0, 1, 2π), and P = (x, y, z) represents a point on the plane.

Substituting the values, we have:

(0, 4, 0) · (x - 0, y - 1, z - 2π) = 0.

Simplifying, we get:

4(y - 1) = 0,

y - 1 = 0,

y = 1.

Therefore, the equation of the normal plane at the point (0, 1, 2π) is y = 1.

2) Osculating Plane:

The equation of the osculating plane is given by:

(T × N) · (P - P0) = 0,

where T is the tangent vector, N is the normal vector, P0 is the given point (0, 1, 2π), and P = (x, y, z) represents a point on the plane.

Taking the cross product of T and N, we have:

T × N = (2, 0, 4) × (0, 4, 0)

      = (-16, 0, 0).

Substituting the values into the equation of the osculating plane, we get:

(-16, 0, 0) · (x - 0, y - 1, z - 2π) = 0.

Simplifying, we have:

-16(x - 0) = 0,

-16x = 0,

x = 0.

To learn more about plane click here:

brainly.com/question/30781925

#SPJ11

5. Evaluate the following
(a) (2 points)
∫1 −tan x
1 + tan x dx
(b) (2 points)
∫1
2x2 + 3x + 1 dx
(c) (2 points)
∫dx
(x + 1)√x2 + 2xarcsec(x + 1)
(d) (2 points)

tan5 x dx
(e) (2 points)

Answers

(a) The integral can be solved by using the substitution u = tan x + 1. The final answer is ln|tan x + 1| + C.

(b) The integral can be solved by using the substitution u = 2x + 1. The final answer is (1/4)ln|2x + 1| - (1/2)ln|2x + 3| + C.

(c) The integral can be solved by using the substitution u = x + 1. The final answer is 2sqrt(u^2 - 2u) - 2uarcsec(u) + C.

(d) The integral can be solved by using the substitution u = tan x. The final answer is (1/6)ln|cos x| - (1/2)tan^2 x + C.

(e) In summary, the given integrals can be solved by using different substitution techniques and the final answer can be obtained using integration rules.

To solve the integrals, one needs to understand which substitution to use and how to apply it. In this case, the substitution u = tan x + 1, u = 2x + 1, u = x + 1, and u = tan x were used respectively.

One also needs to know the integration rules such as the power rule, chain rule, product rule, and trigonometric rules.

These rules are used to simplify and solve the integral fully. The final answer includes the constant of integration, which can be added to any solution.

Learn more about substitution here.

https://brainly.com/questions/29383142

#SPJ11

Ms. Smith paid $274.44 for a
new television. She is paying in
6 monthly installments, with no
interest. What is each monthly
payment?

Answers

Step-by-step explanation:

1st Divide

$274.44 ÷ 6

Answer

$45.74

Find the following definite integral, round your answer to three decimal places. [₁ x√1-x² dx

Answers

The value of the definite integral [tex]\int [0, 1] x\sqrt{(1 - x^2)} dx[/tex] is 1. Rounded to three decimal places, the answer is 1.000. The integral is a mathematical operation that finds the area under a curve or function.

For the definite integral [tex]\int [0, 1] x\sqrt{(1 - x^2)} dx[/tex], we can use the substitution u = 1 - x².

First,
du/dx: du/dx = -2x.

Rearranging, we get dx = -du / (2x).

When x = 0, u = 1 - (0)² = 1.

When x = 1, u = 1 - (1)² = 0.

Now we can rewrite the integral in terms of u:

[tex]\int[/tex][0, 1] x√(1 - x²) dx = -[tex]\int[/tex][1, 0] (√u)(-du / (2x)).

Since x = √(1 - u), the integral becomes:

-[tex]\int[/tex][1, 0] (√u)(-du / (2√(1 - u))) = 1/2 [tex]\int[/tex][0, 1] √u / √(1 - u) du.

Next, we can simplify the integral:

1/2 [tex]\int[/tex] [0, 1] √u / √(1 - u) du = 1/2 [tex]\int[/tex][0, 1] √(u / (1 - u)) du.

While evaluating this integral, we can use the trigonometric substitution u = sin²θ:

du = 2sinθcosθ dθ,

√(u / (1 - u)) = √(sin²θ / cos²θ) = tanθ.

When u = 0, θ = 0.

When u = 1, θ = π/2.

The integral becomes:

[tex]1/2 \int [0, \pi /2] tan\theta (2sin\theta \,cos\theta \,d\theta) = \int[0, \pi /2] sin\theta d\theta[/tex].

Integrating sinθ with respect to θ gives us:

cosθ ∣[0, π/2] = -cos(π/2) - (-cos(0)) = -0 - (-1) = 1.

Therefore, the value of the definite integral [tex]\int [0, 1] x\sqrt{(1 - x^2)} dx[/tex] is 1. Rounded to three decimal places, the answer is 1.000.

To know more about integral refer here:

https://brainly.com/question/31433890#

#SPJ11

Complete Question:

Find the following definite integral, round your answer to three decimal places.

[tex]\int\limits_{0}^{1} x \sqrt{1-x^{2} } dx[/tex]

(1 point) Approximate the value of the series to within an error of at most 10-4 00 (-1)+1 (n+76)(n+ 75) n According to Equation (2): \Sn - SI San+1 what is the smallest value of N that approximates S to within an error of at most 10-47 NE = S

Answers

The smallest value of N that approximates S to within an error of at most 10-47 NE = S is |(-1)^(N+1) / ((N+76)(N+75))| <= 10^(-4)

To approximate the value of the series within an error of at most 10^(-4), we can use the formula for the error bound of a convergent series. The formula states that the error, E, between the partial sum Sn and the exact sum S is given by:

E = |S - Sn| <= |a(n+1)|,

where a(n+1) is the absolute value of the (n+1)th term of the series.

In this case, the series is given by:

Σ (-1)^(n+1) / ((n+76)(n+75))

To get the smallest value of N that approximates S to within an error of at most 10^(-4), we need to determine the value of N such that the error |a(N+1)| is less than or equal to 10^(-4).

Therefore, we have:

|(-1)^(N+1) / ((N+76)(N+75))| <= 10^(-4)

Solving this inequality for N will give us the smallest value that satisfies the condition.

Please note that solving this inequality analytically may be quite involved and may require numerical methods or specialized techniques.

Learn more about absolute value here, https://brainly.com/question/24368848

#SPJ11

Q.2 Ow Use an appropriate form of chain rule to find ди aw है| and at (u. v) = (1.-2) if w=x*y? -x +2y, x-vu, y=w X- [ 2 Marks ]

Answers

The value of the partial derivatives at the point (1,-2) are ∂w/∂u = (-3y² + 3) and ∂w/∂v = (-3y² + 3).

To find the partial derivatives of w with respect to u and v using the chain rule, we can proceed as follows:

w = x*y² - x + 2y

x = v*u

y = w*x - 2

We want to find ∂w/∂u and ∂w/∂v at the point (u,v) = (1,-2).

First, let's find ∂w/∂u:

Using the chain rule, we have:

∂w/∂u = (∂w/∂x) * (∂x/∂u) + (∂w/∂y) * (∂y/∂u)

∂w/∂x = y² - 1

∂x/∂u = v

∂w/∂y = 2xy + 2

∂y/∂u = (∂w/∂u) * (∂x/∂u) = (∂w/∂u) * v = v*(y² - 1)

Substituting these values, we get:

∂w/∂u = (y² - 1) * v + (2xy + 2) * v*(y² - 1)

Now, let's find ∂w/∂v:

Using the chain rule again, we have:

∂w/∂v = (∂w/∂x) * (∂x/∂v) + (∂w/∂y) * (∂y/∂v)

∂x/∂v = u

∂y/∂v = (∂w/∂v) * (∂x/∂v) = (∂w/∂v) * u = u*(y² - 1)

Substituting these values, we get:

∂w/∂v = (y² - 1) * u + (2xy + 2) * u*(y² - 1)

Finally, we can evaluate ∂w/∂u and ∂w/∂v at the given point (u,v) = (1,-2) by substituting the values of u and v into the respective expressions.

So, ∂w/∂u = (-3y² + 3) and

∂w/∂v = (-3y² + 3).

The complete question is:

"Use an appropriate form of chain rule to find ∂w/∂u and ∂w/∂v at the point (u,v) = (1,-2) if w = x*y² - x + 2y, x = v*u, y = w*x - 2."

Learn more about partial derivatives:

https://brainly.com/question/31399205

#SPJ11

Suppose the lengths of the pregnancies of a certain animal ane ascrormately normaly dishbuted with mean um 274 days and standid deviation a m 17 days
complete parts (a) through (1) below
What is the probabity that a randomy selected oregnancy lasts less than 268 daw?

Answers

Answer:

0.3632

Step-by-step explanation:

[tex]\displaystyle P(X < 268)\\\\=P\biggr(Z < \frac{268-274}{17}\biggr)\\\\=P(Z < -0.35)\\\\\approx0.3632[/tex]

Therefore, the probability that a randomly selected pregnancy lasts less than 268 days is 0.3632

The probability of a randomly selected pregnancy lasting less than 268 days is about 36.21%.

We need to use the normal distribution formula. We know that the mean (μ) is 274 days and the standard deviation (σ) is 17 days. We want to find the probability of a pregnancy lasting less than 268 days.

First, we need to standardize the value using the formula z = (x - μ) / σ, where x is the value we are interested in. In this case, x = 268.

z = (268 - 274) / 17 = -0.35

Next, we look up the probability of z being less than -0.35 in the standard normal distribution table or use a calculator. The probability is 0.3632.

Therefore, the probability that a randomly selected pregnancy lasts less than 268 days is 0.3632 or approximately 36.32%.
However, I'll keep my response concise and to-the-point as per my guidelines.

Given that the lengths of pregnancies for this animal are normally distributed, we have a mean (μ) of 274 days and a standard deviation (σ) of 17 days.

(a) To find the probability of a randomly selected pregnancy lasting less than 268 days, we'll first convert the length of 268 days to a z-score:

z = (X - μ) / σ
z = (268 - 274) / 17
z = -6 / 17
z ≈ -0.353

Now, we'll use a z-table or calculator to find the probability associated with this z-score. The probability of a z-score of -0.353 is approximately 0.3621.

So, the probability of a randomly selected pregnancy lasting less than 268 days is about 36.21%.

To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11

Please answer the following two questions. Thank you.
1.
2.
A region, in the first quadrant, is enclosed by. - x² + 2 = Y = Find the volume of the solid obtained by rotating the region about the line x 6.
A region, in the first quadrant, is enclosed by. y =

Answers

The volume of the solid obtained by rotating the region about the line x=6 is −64π/3 cubic units.

What is volume?

A volume is simply defined as the amount of space occupied by any three-dimensional solid. These solids can be a cube, a cuboid, a cone, a cylinder, or a sphere. Different shapes have different volumes.

To find the volume of the solid obtained by rotating the region enclosed by the curves y = −x² + 2 and y=0 in the first quadrant about the line x=6, we can use the method of cylindrical shells.

First, let's plot the two curves to visualize the region:

To set up the integral for calculating the volume, we need to express the differential volume element as a function of y.

The radius of each cylindrical shell will be the distance from the line of rotation (x=6) to the curve y =−x² + 2, which is given by r = 6−x. We can express x in terms of y by rearranging the equation y=−x² +2 as x= √2−y.

The height of each cylindrical shell will be the difference between the two curves: ℎ = y−0 = y

The differential volume element can be expressed as = 2ℎ dV=2πrh dy.

Now, let's set up the integral for the volume:

[tex]V=\int\limits^0_2 2\pi(6- 2-y)ydy[/tex]

We integrate with respect to y from 0 to 2 because the region is bounded by the curve y=−x² +2 and the x-axis (where y=0).

To solve this integral, we need to split it into two parts:

[tex]V= 2\pi\int\limits^0_2 6ydy - 2\pi\int\limits^0_2y\sqrt{2-y}dy[/tex]

Integrating the first part:

[tex]V=2\pi[6y^2/2]^0_2 - 2\pi \int\limits^0_2 y \sqrt{2-y} dy[/tex]

[tex]V=2\pi(12) - 2\pi \int\limits^0_2 y \sqrt{2-y} dy[/tex]

V = -64π/3

Therefore, the volume of the solid obtained by rotating the region about the line x=6 is −64π/3 cubic units.

To learn more about the volume visit:

https://brainly.com/question/14197390

#SPJ4

1) When sampling with replacement, the standard error depends on the sample size, but not on the size of the population.
Group of answer choices
True
False
2) When sampling with replacement, the standard error depends on the sample size, but not on the size of the population.
Group of answer choices
True
False
3) When sampling either with or without replacement, the SE of a sample proportion as an estimate of a population proportion will tend to be higher for more heterogeneous populations, and lower for more homogeneous populations.
Group of answer choices
True
False

Answers

In the given statements 1 and 2 are false and the statement 3 is true.

1) False: When sampling with replacement, the standard error does not depend solely on the sample size. It also depends on the size of the population. Sampling with replacement means that each individual in the population has an equal chance of being selected more than once in the sample. This introduces additional variability and affects the standard error calculation.

2) False: Similar to the first statement, when sampling with replacement, the standard error does depend on both the sample size and the size of the population. The act of sampling with replacement introduces additional variability into the sample, impacting the calculation of the standard error.

3) True: When sampling either with or without replacement, the standard error (SE) of a sample proportion as an estimate of a population proportion tends to be higher for more heterogeneous populations and lower for more homogeneous populations. Heterogeneity refers to the variability or differences within the population. In a more heterogeneous population, the sample proportions are likely to be more spread out, resulting in a higher standard error. Conversely, in a more homogeneous population, the sample proportions are expected to be closer together, leading to a lower standard error.

learn more about standard error. here:

https://brainly.com/question/30401388

#SPJ4








The marginal cost (in dollars per square foot) of installing x square feet of kitchen countertop is given by C'(x)=x* a) Find the cost of installing 50 % of countertop. b) Find the cost of installing

Answers

The cost of installing 50% of the countertop is 0.125 times the square of the total countertop area (0.125X²).

To find the cost of installing 50% of the countertop, we need to integrate the marginal cost function, C'(x), from 0 to 50% of the total countertop area.

Let's denote the total countertop area as X (in square feet). Then, we need to find the integral of C'(x) with respect to x from 0 to 0.5X.

∫[0 to 0.5X] C'(x) dx

Integrate the function C'(x) = x with respect to x gives us:

∫[0 to 0.5X] x dx = [1/2 * x²] evaluated from 0 to 0.5X

Plugging in the limits:

[1/2 * (0.5X)²] - [1/2 * 0²] = 1/2 * (0.25X²) = 0.125X²

Therefore, the cost of installing 50% of the countertop is 0.125 times the square of the total countertop area (0.125X²).

To know more about integrate check the below link:

https://brainly.com/question/27419605

#SPJ4

Homework: Section 7.7 Enhanced Assignment Question Use the description of the region R to evaluate the indicated integral. ex+y dA; R = {(x,y)| -xsysx, 45x37} =| , } +y R S Sex+vdA=0 + + = R (Type an

Answers

The integral ∬R e^(x+y) dA, where R is the region described as -x ≤ y ≤ x and 4 ≤ x ≤ 7, can be evaluated as e^(14) - e^(-14).

To evaluate the given integral, we need to integrate the function e^(x+y) over the region R defined by the inequalities -x ≤ y ≤ x and 4 ≤ x ≤ 7.

First, let's visualize the region R. The region R is a triangular region in the xy-plane bounded by the lines y = -x, y = x, and the vertical lines x = 4 and x = 7. It extends from x = 4 to x = 7 and within that range, the values of y are bounded by -x and x.

To evaluate the integral, we need to set up the limits of integration for both x and y. Since the region R is described by -x ≤ y ≤ x and 4 ≤ x ≤ 7, we integrate with respect to y first and then with respect to x.

For each value of x within the interval [4, 7], the limits of integration for y are -x and x. Thus, the integral becomes:

∬R e^(x+y) dA = ∫[4 to 7] ∫[-x to x] e^(x+y) dy dx.

Evaluating the inner integral with respect to y, we get:

∫[-x to x] e^(x+y) dy = e^(x+y) evaluated from -x to x.

Simplifying this, we have:

e^(x+x) - e^(x+(-x)) = e^(2x) - e^0 = e^(2x) - 1.

Now, we can integrate this expression with respect to x over the interval [4, 7]:

∫[4 to 7] (e^(2x) - 1) dx.

Evaluating this integral, we get:

(e^(14) - e^(8))/2 - (e^(8) - 1)/2 = e^(14) - e^(-14).

Therefore, the value of the integral ∬R e^(x+y) dA over the region R is e^(14) - e^(-14).

To learn more about integral, click here: brainly.com/question/22008756

#SPJ11


how
do you find this taylor polynomial
(1 point) Find the third degree Taylor Polynomial for the function f(x) = cos x at a = -1/6.

Answers

The third-degree Taylor polynomial for f(x) = cos x at a = -1/6 is [tex]\[P_3(x) = \cos(-1/6) - \sin(-1/6)(x + 1/6) - \frac{{\cos(-1/6)}}{{2}}(x + 1/6)^2 + \frac{{\sin(-1/6)}}{{6}}(x + 1/6)^3\][/tex]

To find the third-degree Taylor polynomial for the function f(x) = cos x at a = -1/6., we can use the formula for the Taylor polynomial, which is given by:

[tex]\[P_n(x) = f(a) + f'(a)(x-a) + \frac{{f''(a)}}{{2!}}(x-a)^2 + \frac{{f'''(a)}}{{3!}}(x-a)^3 + \ldots + \frac{{f^{(n)}(a)}}{{n!}}(x-a)^n\][/tex]

First, let's calculate the values of [tex]$f(a)$, $f'(a)$, $f''(a)$, and $f'''(a)$ at $a = -1/6$:[/tex]

[tex]\[f(-1/6) = \cos(-1/6)\]\[f'(-1/6) = -\sin(-1/6)\]\[f''(-1/6) = -\cos(-1/6)\]\[f'''(-1/6) = \sin(-1/6)\][/tex]

Now, we can substitute these values into the Taylor polynomial formula:

[tex]\[P_3(x) = \cos(-1/6) + (-\sin(-1/6))(x-(-1/6)) + \frac{{-\cos(-1/6)}}{{2!}}(x-(-1/6))^2 + \frac{{\sin(-1/6)}}{{3!}}(x-(-1/6))^3\][/tex]

Simplifying and using the properties of trigonometric functions:

[tex]\[P_3(x) = \cos(-1/6) - \sin(-1/6)(x + 1/6) - \frac{{\cos(-1/6)}}{{2}}(x + 1/6)^2 + \frac{{\sin(-1/6)}}{{6}}(x + 1/6)^3\][/tex]

The third-degree Taylor polynomial for f(x) = cos x at a = -1/6 is given by the above expression.

To learn more about polynomial from the given link

https://brainly.com/question/4142886

#SPJ4

Correct answer gets brainliest!!!

Answers

The correct statements about a line segment are; they connect two endpoints and they are one dimensional.

option C and D.

What is a line segment?

A line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints.

The following are characteristics of line segments;

A line segment has two definite endpoints in a line. The length of the line segment is fixed.The measure of a line segment is its lengthThe have one unit of measure, either meters, or centimeters etc.

From the given options we can see that the following options are correct about a line segment;

They connect two endpoints

They are one dimensional

Learn more about line segments here: https://brainly.com/question/2437195

#SPJ1

an event a will occur with probability 0.7. an event b will occur with probability 0.4. the probability that both a and b will occur is 0.2. which of the following is true regarding independence between events a and b? a. performance matters resource
b. performance matters resource c. performance matters resource d. performance matters resource

Answers

Events a and b are not independent. The probability of both events occurring is 0.2, which is less than the product of their individual probabilities (0.7 x 0.4 = 0.28).

If events a and b were independent, the probability of both events occurring would be the product of their individual probabilities (P(a) x P(b)). However, in this scenario, the probability of both events occurring is 0.2, which is less than the product of their individual probabilities (0.7 x 0.4 = 0.28). This suggests that the occurrence of one event affects the occurrence of the other, indicating that they are dependent events.

Independence between events a and b refers to the idea that the occurrence of one event does not affect the probability of the other event occurring. In other words, if events a and b are independent, the probability of both events occurring is equal to the product of their individual probabilities. However, in this scenario, we are given that the probability of event a occurring is 0.7, the probability of event b occurring is 0.4, and the probability of both events occurring is 0.2. To determine whether events a and b are independent, we can compare the probability of both events occurring to the product of their individual probabilities. If the probability of both events occurring is equal to the product of their individual probabilities, then events a and b are independent. However, if the probability of both events occurring is less than the product of their individual probabilities, then events a and b are dependent.

To know more about probability  visit :-

https://brainly.com/question/31828911

#SPJ11

3 Consider the series nẻ tr n=1 a. The general formula for the sum of the first n terms is S₂ = Your answer should be in terms of n. b. The sum of a series is defined as the limit of the sequence

Answers

The series given is represented as ∑(nẻ tr) from n=1. To find the general formula for the sum of the first n terms (S₂) in terms of n, and the sum of the series (limit of the sequence).

a) To find the general formula for the sum of the first n terms (S₂) in terms of n, we can examine the pattern in the series. The series ∑(nẻ tr) represents the sum of the terms (n times ẻ tr) from n=1 to n=2. For each term, the value of ẻ tr depends on the specific sequence or function defined in the problem. To find the general formula, we need to determine the pattern of the terms and how they change with respect to n.

b) The sum of a series is defined as the limit of the sequence. In this case, the series given is ∑(nẻ tr) from n=1. To find the sum of the series, we need to evaluate the limit as n approaches infinity. This limit represents the sum of an infinite number of terms in the series. The value of the sum will depend on the behavior of the terms as n increases. If the terms converge to a specific value as n approaches infinity, then the sum of the series exists and can be calculated as the limit of the sequence

Learn more about series here:

https://brainly.com/question/11346378

#SPJ11

A thick spherical shell (inner radius a, outer radius b) is made of dielectric material with a "frozen-in" polarization
P ( r )=\frac{k}{r} \hat{ r }P(r)= r
k

r
^
,
where k is a constant and r is the distance from the center (Fig. 4.18). (There is no free charge in the problem.) Find the electric field in all three regions by two different methods:

Answers

1.Inside the shell (r < a): Electric field = 0

2.Between the inner and outer radii (a < r < b): Electric field = [tex]\frac{Pa}{\epsilon_{0}r^2}[/tex]

3.Outside the shell (r > b): Electric field = 0

What is the dielectric material?

dielectric materials are non-conductive materials that exhibit electric polarization when exposed to an electric field. These materials have high resistivity and are commonly used as insulators in various electrical and electronic applications.

    Dielectric materials can include a wide range of substances, such as plastics, ceramics, glass, rubber, and certain types of polymers.

To find the electric field in all three regions of the thick spherical shell made of dielectric material with the given polarization, we can use two different methods:

(1) Gauss's Law and

(2) the method of image charges.

Method 1: Gauss's Law

We can use Gauss's Law to find the electric field in each region by considering a Gaussian surface within the shell.

Region 1: Inside the shell (r < a) As there is no free charge, the electric field is purely due to polarization. By Gauss's Law, the electric flux through a Gaussian surface enclosing the inner region is zero.

Therefore, inside the shell(r<a) the electric field is zero.

Region 2: Between the inner and outer radii (a < r < b) Consider a Gaussian surface within this region, concentric with the shell. The electric field inside the shell is zero, so the only contribution comes from the polarization charge on the inner surface of the shell.

The Gaussian surface  enclosing the charge is [tex]Q = 4\pi \epsilon_{0} Pa[/tex], where [tex]\epsilon_{0}[/tex] is the vacuum permittivity.

By Gauss's Law, the electric field is [tex]E =\frac{Q}{4\pi\epsilon_{0}r^2}[/tex] in the radial direction, where r is the distance from the center. Substituting [tex]Q[/tex], we have [tex]E =\frac{Pa}{\epsilon_{0}r^2}[/tex].

Region 3: Outside the shell (r > b) The polarization charge is enclosed within the shell, so it does not contribute to the electric field in this region. By Gauss's Law, [tex]E =\frac{Q}{4\pi\epsilon_{0}r^2}[/tex], where [tex]Q[/tex] is the total charge enclosed within the Gaussian surface.

As there is no free charge, the total charge is enclosed zero.

Therefore, the electric field outside the shell(r>b) is zero.

Method 2: Method of Image Charges

Region 1: Inside the shell (r < a) Again, the electric field is zero inside the shell due to the absence of free charge.

Region 2: Between the inner and outer radii (a < r < b) We can treat the polarized shell as if it had a surface charge density σ = -P(a). To cancel out the effect of this surface charge, we can introduce an imaginary surface charge density -σ' = P(a).

This imaginary surface charge is located at r = -a inside the shell, forming an image charge.

By symmetry, the electric field due to the imaginary charge will cancel the electric field due to the polarized shell charge.

Therefore, the electric field in this region is zero.

Region 3: Outside the shell (r > b) We can treat the polarized shell as if it had a surface charge density σ = -P(a). To cancel out the effect of this surface charge, we can introduce an imaginary surface charge density -σ' = P(a).

This imaginary surface charge is located at r = b inside the shell, forming another image charge.

By symmetry, the electric field due to the imaginary charge will cancel the electric field due to the polarized shell charge.

Thus, the electric field in this region is zero.

Therefore,

Inside the shell (r < a): Electric field = 0Between the inner and outer radii (a < r < b): Electric field = [tex]\frac{Pa}{\epsilon_{0}r^2}[/tex]Outside the shell (r > b): Electric field = 0

Both methods yield the same results for the electric field in each region.

To learn more about the dielectric material from the given link

brainly.com/question/17090590

#SPJ4

only 53 and 55
Evaluating a Line Integral in Differential Form In Exercises 53-56, evaluate the line integral along the path C given by x = 2t, y = 4t, where 0 ≤ t ≤ 1. 53. [(x + 3y²) dy 54. (x³ + 2y) dx 55. x

Answers

The value of the line integral along the path C given by x = 2t, y = 4t, where 0 ≤ t ≤ 1 for (x + 3y²) dy is 25.33.

Given, x = 2t, y = 4t, 0 ≤ t ≤ 1. To evaluate the line integral along the path C, we use the differential form of line integral.

This form is given as ∫CF(x,y)ds=∫CF(x,y).(dx cosθ + dy sinθ)                   Where s = path length and θ is the angle the line tangent to the path makes with positive x-axis.(x + 3y²) dy. Thus, we have to evaluate ∫CF(x + 3y²) dy.

Now, to substitute x and y in terms of t, we use the given equations as: x = 2ty = 4t Now, we have to express dy in terms of dt. So, dy/dt = 4 => dy = 4 dt Now, putting the values of x, y and dy in the given equation of line integral, we get ∫CF(x + 3y²) dy = ∫C(2t + 3(4t)²) 4 dt

Now, on simplifying, we get ∫C(2t + 48t²) 4 dt= 8∫C(2t + 48t²) dt Limits of t are from 0 to 1.So,∫C(2t + 48t²) dt = [(2t²)/2] + [(48t³)/3] between the limits t=0 and t=1= (2/2 + 48/3) - (0/2 + 0/3)= 25.33. Hence, the value of the line integral along the path C given by x = 2t, y = 4t, where 0 ≤ t ≤ 1 for (x + 3y²) dy is 25.33.

Learn more about line intregal: https://brainly.com/question/30094386

#SPJ11

classify the variable as qualitative or quantitative. the number of seats in a school auditorium

Answers

The variable "the number of seats in a school auditorium" is classified as a quantitative variable.

To classify the variable "the number of seats in a school auditorium" as qualitative or quantitative, please follow these steps:

Step 1: Understand the two types of variables
- Qualitative variables are descriptive and non-numerical, such as colors, feelings, or categories.
- Quantitative variables are numerical and can be measured or counted, such as age, height, or weight.

Step 2: Analyze the variable in question
In this case, the variable is "the number of seats in a school auditorium."

Step 3: Determine the type of variable
The number of seats can be counted or measured, which makes it a numerical variable.

Therefore, the variable "the number of seats in a school auditorium" is classified as a quantitative variable.

Know more about the variable  here:

https://brainly.com/question/28248724

#SPJ11

In 1994, the moose population in a park was measured to be 3130. By 1997, the population was measured again to be 2890. If the population continues to change linearly: Find a formula for the moose population, P, in terms of t, the years since 1990. P(t): What does your model predict the moose population to be in 2009?

Answers

By fitting a line to the given data points, we can determine a formula for the moose population, P, in terms of t, the years since 1990. Using this formula, we can predict the moose population in 2009.

We are given two data points: (1994, 3130) and (1997, 2890). To find the formula for the moose population in terms of t, we can use the slope-intercept form of a linear equation, y = mx + b, where y represents the population, x represents the years since 1990, m represents the slope, and b represents the y-intercept.

First, we calculate the slope (m) using the formula: m = (y2 - y1) / (x2 - x1), where (x1, y1) = (1994, 3130) and (x2, y2) = (1997, 2890). Substituting the values, we find m = -80.

Next, we need to find the y-intercept (b). We can choose any data point and substitute the values into the equation y = mx + b to solve for b. Let's use the point (1994, 3130):

3130 = -80 * 4 + b

b = 3210

Therefore, the formula for the moose population, P, in terms of t, is P(t) = -80t + 3210.

To predict the moose population in 2009 (t = 19), we substitute t = 19 into the formula:

P(19) = -80 * 19 + 3210 = 1610.

According to our model, the predicted moose population in 2009 would be 1610.

Learn more about linear equation here:

https://brainly.com/question/12974594

#SPJ11

3. The function yı = 2+1 is a solution of the differential equation (1 - 2x - ²)y+ 2(1+)y – 2y = 0 The method of Reduction of order produces the second solution y2 = (correct) (a) (b) (c) (d) (e) m2 + +2 2.2 - 1+1 22 - +3 x²+x+3 x²+2 O - 32°C .

Answers

The method of Reduction of order produces the second solution y2 = y1(x)· ∫ [exp (-∫p(x) dx) / y1²(x)] dx. The given differential equation is (1 - 2x - x²)y' + 2(1+x)y – 2y = 0, which is a second-order linear differential equation.

Let's find the homogeneous equation first as follows: (1 - 2x - x²)y' + 2(1+x)y – 2y = 0     ...(i)

Using the given function y1 = 2 + x, let's assume the second solution y2 as y2 = v(x) y1(x).

Substituting this in equation (i), we have y1(x) [(1 - 2x - x²)v' + (2 - 2x)v] + y1'(x) [2v] = 0 ⇒ (1 - 2x - x²)v' + (2 - 2x)v = 0.

Dividing both sides by v y' /v + (-2x-1) / (x² + x - 2) + 2 / (x + 1) = 0...[∵Integrating factor, I.F = 1 / (y1(x))² = 1 / (2 + x)²].

Integrating the above equation, we get v(x) = C / (2 + x)² + x + 1/2C is the constant of integration.

Substituting this in y2 = v(x) y1(x), we get:y2 = (C / (2 + x)² + x + 1/2)(2 + x) ...[∵ y1 = 2 + x]y2 = C (2 + x) + x(2 + x) + 1/2(2 + x) ...(ii)

Therefore, the required second solution is y2 = C (2 + x) + x(2 + x) + 1/2(2 + x) ...[from (ii)].

Hence, the correct option is (d) C (2 + x) + x(2 + x) + 1/2(2 + x).

Learn more about homogeneous equation here ;

https://brainly.com/question/30624850

#SPJ11

An avid runner starts from home at t=0, and runs back and forth along a straight east-west road. The velocity of the runner, v(t) (given in km/hour) is a function of time t (given in hours). The graibh of the runner's velocity is given by v(t) = 10 sin(t) with t counted in radians. a. How far is the runner from home after 3 hours? b. What is the total running distance after 5 hours? c. What is the farthest distance the runner can be away from home? Explain. d. If the runner keeps running, how many times will the runner pass by home? Explain.

Answers

a. After 3 hours, the runner is approximately -10cos(3) + 10 km away from home. b. After 5 hours, the total running distance is approximately -10cos(5) + 10 km. c. The farthest distance from home is 10 km, reached when sin(t) = 1. d. The runner passes by home every time t is a multiple of π radians.

a. To find the distance the runner is from home after 3 hours, we need to integrate the runner's velocity function, v(t), from t=0 to t=3. The integral of v(t) with respect to t gives us the displacement.

Using the given velocity function v(t) = 10sin(t), the integral of v(t) from t=0 to t=3 is

[tex]\int\limits^0_3[/tex]10sin(t) dt

This can be evaluated as follows

[tex]\int\limits^0_3[/tex]10sin(t) dt = [-10cos(t)] [0 to 3] = -10cos(3) - (-10cos(0)) = -10cos(3) + 10

So, the runner is approximately -10cos(3) + 10 km away from home after 3 hours.

b. To find the total running distance after 5 hours, we need to find the integral of the absolute value of the velocity function, v(t), from t=0 to t=5. This will give us the total distance traveled.

Using the given velocity function v(t) = 10sin(t), the integral of |v(t)| from t=0 to t=5 is

[tex]\int\limits^0_5[/tex] |10sin(t)| dt

Since |sin(t)| is positive for all values of t, we can simplify the integral as follows:

[tex]\int\limits^0_5[/tex] 10sin(t) dt = [-10cos(t)] [0 to 5] = -10cos(5) - (-10cos(0)) = -10cos(5) + 10

So, the total running distance after 5 hours is approximately -10cos(5) + 10 km.

c. The farthest distance the runner can be away from home is determined by finding the maximum value of the absolute value of the velocity function, |v(t)|. In this case, |v(t)| = |10sin(t)|.

The maximum value of |v(t)| occurs when sin(t) is at its maximum value, which is 1. Therefore, the farthest distance the runner can be away from home is |10sin(t)| = 10 * 1 = 10 km.

d. The runner will pass by home each time the velocity function, v(t), changes sign. Since v(t) = 10sin(t), the sign of v(t) changes each time sin(t) changes sign, which occurs at each multiple of π radians.

Therefore, the runner will pass by home every time t is a multiple of π radians. In other words, the runner will pass by home an infinite number of times as t continues to increase.

To know more about distance:

https://brainly.com/question/15172156

#SPJ4

Evaluate the indefinite integral solve for two cases - csc220 cot 20 de first case Using u = cot 20"

Answers

To evaluate the indefinite integral of csc^2(20°) using the substitution u = cot(20°), we can follow these steps:

Let's rewrite the expression using trigonometric identities:

csc^2(20°) = (1 + cot^2(20°))/sin^2(20°)

Now, substitute u = cot(20°), then du = -csc^2(20°) dx:

-∫(1 + u^2)/sin^2(20°) du

Next, simplify the integrand:

-∫(1 + u^2)/sin^2(20°) du = -∫csc^2(20°) du - ∫u^2/sin^2(20°) du

The integral of csc^2(20°) du can be expressed as -cot(20°) + C1, where C1 is the constant of integration.

The integral of u^2/sin^2(20°) du can be evaluated using the power rule for integrals, resulting in u^3/(3sin^2(20°)) + C2, where C2 is the constant of integration.

Thus, the indefinite integral of csc^2(20°) can be written as -cot(20°) - u^3/(3sin^2(20°)) + C.

To learn more about indefinite integral click here: brainly.com/question/28036871

#SPJ11.

Given the function g(x) = 8x + 72x2 + 1922, find the first derivative, g'(x). 9'() Notice that g'(x) = 0 when = - 4, that is, g'(- 4) = 0. Now, we want to know whether there is a local minimum or loca

Answers

The first derivative, g'(x), of the function g(x) = 8x + 72x^2 + 1922 is obtained by differentiating the function with respect to x. By evaluating g'(-4) and examining its sign, we can determine whether there is a local minimum or local maximum at x = -4.

To find the first derivative, g'(x), we differentiate the function g(x) = 8x + 72x^2 + 1922 with respect to x. The derivative of 8x is 8, and the derivative of 72x^2 is 144x. Since the constant term 1922 does not involve x, its derivative is zero. Therefore, g'(x) = 8 + 144x.

To determine whether there is a local minimum or local maximum at x = -4, we evaluate g'(-4) by substituting x = -4 into the expression for g'(x): g'(-4) = 8 + 144(-4) = 8 - 576 = -568.

If g'(-4) = 0, it indicates that there is a critical point at x = -4. However, since g'(-4) = -568, we can conclude that there is no local minimum or local maximum at x = -4.

The sign of g'(-4) (-568 in this case) indicates the direction of the function's slope at that point. A negative value suggests a decreasing slope, while a positive value suggests an increasing slope. In this case, g'(-4) = -568 suggests a decreasing slope at x = -4, but it does not imply the presence of a local minimum or local maximum. Further analysis or evaluation of higher-order derivatives is necessary to determine the nature of critical points and extrema in the function.

Learn more about derivative here:

https://brainly.com/question/28144387

#SPJ11

Evaluate the indefinite integral by using the given substitution to reduce the integral to standard form. 121° dr S u=6-14 16-4

Answers

The indefinite integral evaluates to:

[tex](1/14)(7r^2 + 140r - 20 + C)[/tex]

To evaluate the indefinite integral ∫121° dr, using the given substitution u = 6 - 14r - 4, we need to find the derivative of u with respect to r, and then substitute u and du into the integral.

Given: u = 6 - 14r - 4

Differentiating u with respect to r:

du/dr = -14

Now, we can substitute u and du into the integral:

∫121° dr = ∫(u/du) dr

Substituting u = 6 - 14r - 4 and du = -14 dr:

∫(6 - 14r - 4)/(-14) du

Simplifying the integral:

-1/14 ∫10 - 14r du

Integrating each term:

[tex]-1/14 [10u - (14/2)r^2 + C][/tex]

Simplifying further:

[tex]-1/14 [10(6 - 14r - 4) - (14/2)r^2 + C]\\-1/14 [60 - 140r - 40 - 7r^2 + C]\\-1/14 [-7r^2 - 140r + 20 + C]\\[/tex]

The indefinite integral ∫121° dr, using the given substitution u = 6 - 14r - 4, simplifies to:

[tex]-1/14 (-7r^2 - 140r + 20 + C)[/tex]

Therefore, the indefinite integral evaluates to:

[tex](1/14)(7r^2 + 140r - 20 + C)[/tex]

Note: The constant of integration is represented by C.

More can be learned about integration by substitution at brainly.com/question/13058734

#SPJ4

. Solve for x:
a)
tan2 (x) – 1 = 0
b) 2 cos2 (x) − 1 = 0
c) 2 sin2 (x) + 15 sin(x) + 7 = 0

Answers

We are given three trigonometric equations to solve for x: (a) tan^2(x) - 1 = 0, (b) 2cos^2(x) - 1 = 0, and (c) 2sin^2(x) + 15sin(x) + 7 = 0. By applying trigonometric identities and algebraic manipulations, we can determine the values of x that satisfy each equation.

a) tan^2(x) - 1 = 0:

Using the Pythagorean identity tan^2(x) + 1 = sec^2(x), we can rewrite the equation as sec^2(x) - sec^2(x) = 0. Factoring out sec^2(x), we have sec^2(x)(1 - 1) = 0. Therefore, sec^2(x) = 0, which implies that cos^2(x) = 1. The solutions for this equation occur when x is an odd multiple of π/2.

b) 2cos^2(x) - 1 = 0:

Rearranging the equation, we get 2cos^2(x) = 1. Dividing both sides by 2, we have cos^2(x) = 1/2. Taking the square root of both sides, we find cos(x) = ±1/√2. The solutions for this equation occur when x is π/4 + kπ/2, where k is an integer.

c) 2sin^2(x) + 15sin(x) + 7 = 0:

This equation is a quadratic equation in terms of sin(x). We can solve it by factoring, completing the square, or using the quadratic formula. After finding the solutions for sin(x), we can determine the corresponding values of x using the inverse sine function.

Note: Due to the limitations of text-based communication, I am unable to provide the specific values of x without further information or additional calculations.

To learn more about Pythagorean identity: -brainly.com/question/28032950#SPJ11

Other Questions
Consider the curves y = 72 + 8x and y = --26. a) Determine their points of intersection (1.1) and (x2,82). ordering them such that a 1 Find the antiderivative for the function. (Use C for the constant of integration.) 13 dx |x1 < 6 36 - 82' Employee empowerment refers to a situation in which workers are enthusiastic and immersed in their work to the degree that it improves the performance of their companies.a. Trueb. False Gunner Microchips Incorporated had $16 billion in sales in 2021, Its COGS was $10 billion, and its average inventory balance was $500 million. a) What is Gunner's inventory turnover days? A population has a mean of mu = 80 with sigma = 20.a. If a single score is randomly selected from this population, how much distance, on average, should you find between the score and the population mean?b. If a sample of n = 6 scores is randomly selected from this population, how much distance, on average, should you find between the sample mean and the population mean?c. If a sample of n = 100 scores is randomly selected from this population, how much distance, on average, should you find between the sample mean and the population mean? solve both parts in 30 mints.Thann you . I will give up vote13. (a) Use the Newton-Raphson method to find 5 correct to 3 decimal places. (b) Find the mean value of the function f(x)=x-5 over the interval [0, 10]. (q4) Find the area of the region bounded by the graphs of and x = y - 4. Company A is financed by 18% of debt and the rest of the company is financed by common equity. The companys before-tax cost of debt is 4.5%. Currently the risk-free rate is 1.8%, the market risk premium is 6%, and the stock has a beta of 1.6. If company A faces a marginal tax rate of 30%, its weighted average cost of capital (WACC) should be _____. 1. T/F Marketing is a process that fulfills consumers' needs.2. T/F Financing and risk taking are physical distribution functions of marketing.3. T/F The first step in implementing the marketing concept is to provide a product that satisfies customers.4. T/F Markets are classified as consumer markets or business-to-business markets.5. T/F The marketing mix is composed of product, price, distribution, and promotion. ____ out of every five Americans saw at least one movie per week during the Great Depression. A. One B. Four C. Two D. Three Explain why S is not a basis for R2 S = {(2,8), (1, 0), (0, 1)) A. Sis linearly dependentB. S does not span RC. Osis linearly dependent and does not span R. ZOOM Transport Inc. wishes to invest in one of three transport infrastructure projects X, Y and Z with initial outlays of $780 million, $475 million and $300 million respectively. Projects are expected to produce each year free after-tax cash flows of $280 million for project X, project Y is expected to generate $150 million and project Z $210 million. Each project has depreciable lives of 12 years. The required rate of return is 14%.(i) Use the Net Present Value Technique and determine the most appropriate investment for Delta Corporation. Justify your response. (ii) State two benefits and two disadvantages of using the NPV. (iii) Though the payback method for evaluating capital investments has some serious flaws, it is popular in business practice, showing up on most financial evaluation software packages. Outline three reasons why the payback method is popular in business? (iv) Why would a manager not accept a project that has a positive net present value? (v) What decision criterion would you recommend for:a. Mutually Exclusive Projects and b. Projects being evaluated under capital constraints. determine the open intervals on which the function is increasing, decreasing, or constant. (enter your answers using interval notation. if an answer does not exist, enter dne.)f(x) = x2 6x In nodal analysis, how many equations will need to be solved if the circuit contains five nodes (including the reference node)? A. 3 B. 4 C. 5 D. 6 benjamin is trying to break a combination lock. this particular type of lock has 5 digits from 0 to 9, and benjamin just happens to know that there can be no repeated digits in the code for this type of lock. how many valid codes are there? evaluate own position when dealing with discrimination and human rights violations One year ago, you purchased 400 shares of stock at a cost of $8,650. The stock paid an annualdividend of $1.10 per share. Today, you sold those shares for $23.90 each. What is the capital gainsyield on this investment?A) 9.96 percentB) 10.52 percentC) 12.49 percentD) 13.33 percentE) 14.75 percent With large increases in inflation and the consumer price index, discussions about raising the minimum wage are common. Increases in the minimum wage at either the state or federal level can affect businesses by:Increased turnover and absenteeismShifts in hiring pools and labor marketsPay compression between salaried and hourly workersCalls to renegotiate union agreements Dunn Company incurred the following costs while producing 560 units: direct materials, $9 per unit; direct labor, $21 per unit: variable manufacturing overhead, $13 per unit; total fixed manufacturing overhead costs, $11,200, variable selling and administrative costs, 57 per unit; total fixed selling and administrative costs, $7,280. There are no beginning inventories. What is the unit product cost using variable costing? A $83 per unit B. $50 per unit C. $43 per unit D $63 per unit 14. (4 points each) Evaluate the following indefinite integrals: (a) ) /(2* + 23 (25 + 2x4) dx = + da 2 (b) / dr = = (e) [e? e2 da