Which of the following equations represents a parabola with vertex (5,2) and directrix y=-22 1 A X= id Fly-5)2 +2 B x= 1 16 (y – 5)2 +2 © y= 16 (x - 5)2 +2 D y 1o (x - 5)2 +2 16

Answers

Answer 1

The correct equation representing a parabola with a vertex (5,2) and directrix y = -22 is:

C) y = 16(x - 5)^2 + 2

A parabola is a symmetrical curve that can be defined as the set of all points in a plane that are equidistant from a fixed point (called the focus) and a fixed line (called the directrix). The shape of a parabola resembles a U or an upside-down U. It is a conic section, which means it is formed by intersecting a cone with a plane.

The basic equation of a parabola is y = ax^2 + bx + c, where a, b, and c are constants. The value of "a" determines whether the parabola opens upward (a > 0) or downward (a < 0). The vertex of the parabola is the point where it reaches its minimum or maximum value, depending on the direction it opens. The axis of symmetry is a vertical line passing through the vertex.

Parabolas have various applications in mathematics, physics, engineering, and other fields. They are often used to model the trajectory of projectiles, the shape of satellite dishes, the paths of light rays in reflecting telescopes, and many other phenomena.

To know more about parabolas, visit the link : https://brainly.com/question/4061870

#SPJ11


Related Questions

5 3 1) Is F(x) = 5 ln(x) + 3V5 x - sin(3x) an antiderivative of f(x) = + cos(3x)? 2vo (EXPLAIN/SHOW why or why not) Answer with a sentence! 2) Find the antiderivative of f(x) = 4Vx 7 x1/3 – ex + 1 (

Answers

Yes,[tex]F(x) = 5 ln(x) + 3V5 x - sin(3x)[/tex] is an antiderivative of[tex]f(x) = + cos(3x).[/tex] To verify this, we can take the derivative of F(x) and check if it matches f(x).

The derivative of [tex]F(x) is f(x) = + cos(3x),[/tex] which confirms that F(x) is an antiderivative of f(x).

To find the antiderivative of f[tex](x) = 4Vx / (7x^(1/3)) - e^x + 1,[/tex] we can apply the power rule for integration and the rule for integrating exponential functions.

The antiderivative of f[tex](x) is F(x) = (12/5)x^(4/3) - e^x + x + C,[/tex]where C is the constant of integration.

learn more about:- antiderivative here

https://brainly.com/question/31396969

#SPJ11

To estimate the height of a building, two students find the angle of elevation from a point (at ground level) down the street from the building to the top of the building is 40°. From a point that is 350 feet closer to the building, the angle of elevation (at ground level) to the top of the building is 53°. If we assume that the street is level, use this information to estimate the height of the building. The height of the building is ____

Answers

To estimate the height of the building, we can use the concept of similar triangles and trigonometry. By setting up equations based on the given angles of elevation, we can solve for the height of the building.

To estimate the height of the building, we use the fact that the angles of elevation from two different points create similar triangles. By setting up equations using the tangent function, we can relate the height of the building to the distances between the points and the building. Solving the resulting system of equations will give us the height of the building.

In the first observation, with an angle of elevation of 40°, we have the equation tan(40°) = h/x, where h is the height of the building and x is the distance from the first point to the building.

In the second observation, with an angle of elevation of 53°, we have the equation tan(53°) = h/(x + 350), where x + 350 is the distance from the second point to the building.

By dividing the second equation by the first equation, we can eliminate h and solve for x. Once we have the value of x, we can substitute it back into either of the original equations to find the height of the building, h.

To learn more about Angle of Elevation

brainly.com/question/29008290

#SPJ11

We have two vectors of magnitudes 10 and 13. Angle between the two vectors is 10° What is the dot product of those two vectors?

Answers

The dot product of two vectors with magnitudes 10 and 13, and an angle of 10° between them, is 119.4.

The dot product of two vectors is calculated as the product of their magnitudes multiplied by the cosine of the angle between them. In this case, the dot product can be found using the formula: dot product = magnitude1 * magnitude2 * cos(angle).

Substituting the given values, we have: dot product = 10 * 13 * cos(10°). Evaluating this expression, we find that the cosine of 10° is approximately 0.9848. Multiplying this by 10 and 13 gives us approximately 127.82.

Therefore, the dot product of the two vectors is approximately 119.4.

Learn more about Dot product click here :brainly.com/question/29097076

#SPJ11


4. The point P(0.5, 0) lies on the curve y = COS TTX. (a) If Q is the point (x, cos TTX), find the slope of the secant line PQ (correct to six decimal places) for the following values of x: (i) 0 (ii) 0.4 (iii) 0.49 (iv) 0.499 (v) 1 (vi) 0.6 (vii) 0.51 (viii) 0.501 (b) Using the results of part (a), guess the value of the slope of the tangent line to the curve at P(0.5, 0). (c) Using the slope from part (b), find an equation of the tangent line to the curve at P(0.5, 0). (d) Sketch the curve, two of the secant lines, and the tangent line.

Answers

(a) The slope of the secant line PQ are:

(i) 0  (ii) 0.19933  (iii) 0.0052  (iv) 0.005  (v) -0.919396  (vi) -0.4023  (vii) -0.0832  (viii) -0.012

(b) The slope of the tangent line to the curve at P(0.5, 0) is approximately 0

(c) The equation of the tangent line is y = 0

(d) Equation of the tangent line is required to sketch the curve

To find the slope of the secant line PQ for different values of x, we need to calculate the difference quotient:

(a)

(i) For x = 0:

Let Q be the point (0, cos(0 * 0)) = (0, 1).

The slope of the secant line PQ is given by:

m = (cos(0) - 1) / (0 - 0.5) = (1 - 1) / (-0.5) = 0 / -0.5 = 0

(ii) For x = 0.4:

Let Q be the point (0.4, cos(0.4 * 0.4)).

The slope of the secant line PQ is given by:

m = (cos(0.4 * 0.4) - 1) / (0.4 - 0.5) ≈ (0.980067 - 1) / (-0.1) ≈ -0.019933 / -0.1 ≈ 0.19933

(iii) For x = 0.49:

Let Q be the point (0.49, cos(0.49 * 0.49)).

The slope of the secant line PQ is given by:

m = (cos(0.49 * 0.49) - 1) / (0.49 - 0.5) ≈ (0.999948 - 1) / (-0.01) ≈ -0.000052 / -0.01 ≈ 0.0052

(iv) For x = 0.499:

Let Q be the point (0.499, cos(0.499 * 0.499)).

The slope of the secant line PQ is given by:

m = (cos(0.499 * 0.499) - 1) / (0.499 - 0.5) ≈ (0.999995 - 1) / (-0.001) ≈ -0.000005 / -0.001 ≈ 0.005

(v) For x = 1:

Let Q be the point (1, cos(1 * 1)) = (1, cos(1)).

The slope of the secant line PQ is given by:

m = (cos(1) - 1) / (1 - 0.5) = (0.540302 - 1) / 0.5 ≈ -0.459698 / 0.5 ≈ -0.919396

(vi) For x = 0.6:

Let Q be the point (0.6, cos(0.6 * 0.6)).

The slope of the secant line PQ is given by:

m = (cos(0.6 * 0.6) - 1) / (0.6 - 0.5) ≈ (0.95977 - 1) / 0.1 ≈ -0.04023 / 0.1 ≈ -0.4023

(vii) For x = 0.51:

Let Q be the point (0.51, cos(0.51 * 0.51)).

The slope of the secant line PQ is given by:

m = (cos(0.51 * 0.51) - 1) / (0.51 - 0.5) ≈ (0.999168 - 1) / 0.01 ≈ -0.000832 / 0.01 ≈ -0.0832

(viii) For x = 0.501:

Let Q be the point (0.501, cos(0.501 * 0.501)).

The slope of the secant line PQ is given by:

m = (cos(0.501 * 0.501) - 1) / (0.501 - 0.5) ≈ (0.999988 - 1) / 0.001 ≈ -0.000012 / 0.001 ≈ -0.012

(b) From the values obtained in part (a), we observe that as x approaches 0.5, the slope of the secant line PQ appears to be approaching 0. Therefore, we can guess that the slope of the tangent line to the curve at P(0.5, 0) is approximately 0.

(c) The equation of a tangent line can be expressed in point-slope form as y - y₁ = m(x - x₁), where (x₁, y₁) is a point on the line, and m is the slope. Using the point P(0.5, 0) and the slope obtained in part (b), the equation of the tangent line is:

y - 0 = 0(x - 0.5)

y = 0

The equation of the tangent line is y = 0, which is the x-axis.

(d) To sketch the curve, secant lines, and the tangent line, the equation of the tangent is required.

To know more about slope, visit the link : https://brainly.com/question/16949303

#SPJ11

Can someone help me with this question? Graph the function using degrees. y = 2 + 3 cos θ

Answers

Answer:

Step-by-step explanation:

work shown please
11. Here are the Consumer and Producer Surplus formulas, and the corresponding graph. Please use the graphs to explain why the results of the formulas are always positive! (5 pts) Consumer's Surplus =

Answers

The Consumer's Surplus and Producer's Surplus formulas are always positive because they represent the economic benefits gained by consumers and producers, respectively, in a market transaction.

The Consumer's Surplus is the difference between what consumers are willing to pay for a product and the actual price they pay. It represents the extra value or utility that consumers receive from a product beyond what they have to pay for it. Graphically, the Consumer's Surplus is represented by the area between the demand curve and the price line. Similarly, the Producer's Surplus is the difference between the price at which producers are willing to supply a product and the actual price they receive. It represents the additional profit or benefit that producers gain from selling their product at a higher price than their production costs. Graphically, the Producer's Surplus is represented by the area between the supply curve and the price line. In both cases, the areas representing the Consumer's Surplus and Producer's Surplus on the graph are always positive because they represent the positive economic benefits that accrue to consumers and producers in a market transaction.

Learn more about Consumer's Surplus here:

https://brainly.com/question/29025001

#SPJ11

A chain, 40 ft long, weighs 5 lb/ft hangs over a building 120 ft high. How much work is done pulling the chain to the top of the building.

Answers

Answer: To calculate the work done in pulling the chain to the top of the building, we need to determine the total weight of the chain and the distance it is lifted.

Given:

Length of the chain (L) = 40 ft

Weight per foot of the chain (w) = 5 lb/ft

Height of the building (h) = 120 ft

First, we calculate the total weight of the chain:

Total weight of the chain = Length of the chain × Weight per foot of the chain

Total weight of the chain = 40 ft × 5 lb/ft

Total weight of the chain = 200 lb

Next, we calculate the work done:

Work = Force × Distance

In this case, the force is the weight of the chain (200 lb), and the distance is the height of the building (120 ft). So we have:

Work = Total weight of the chain × Height of the building

Work = 200 lb × 120 ft

Work = 24,000 ft-lb

Therefore, the work done in pulling the chain to the top of the building is 24,000 foot-pounds (ft-lb).

Step-by-step explanation: :)

10. DETAILS MY NOTES ASK YOUR TEACHER A pencil cup with a capacity of 32 in.3 is to be constructed in the shape of a right circular cylinder with an open top. If the material for the sides costs 13¢/in.² and the material for the base costs 37¢/in.2, what should the radius of the base of the cup be to minimize the construction cost (in ¢)? Letr and h (in in.) be the radius and height of the pencil cup, respectively. r = in. (Round your answer to two decimal places, if necessary.) Complete the following parts. (a) Give a function f in the variabler for the quantity to be optimized. f(r) = cents (b) State the domain of this function. (Enter your answer using interval notation.) (c) Give the formula for h in terms of r. h = (d) To determine the optimal value of the function f, we need the critical numbers of ---Select--- (e) These critical numbers are as follows. (Round your answer(s) to two decimal places, if necessary. If a critical number is an endpoint of the domain, do NOT include it in your answer. Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) r =

Answers

The critical number for f(r) is r = 0.

The cost of the material for the sides is given as 13¢/in.². The surface area of the side of a right circular cylinder is given by the formula A_side = 2πrh.Thus, the cost of the material for the sides can be expressed as:

Cost_sides = 13¢/in.² × A_side

= 13¢/in.² × 2πrh

The cost of the material for the base is given as 37¢/in.². The area of the base of a right circular cylinder is given by the formula A_base = πr². Therefore, the cost of the material for the base can be expressed as:

Cost_base = 37¢/in.² × A_base

= 37¢/in.² × πr²

To find the total construction cost:

f(r) = Cost_sides + Cost_base

= 13¢/in.² × 2πrh + 37¢/in.² × πr²

= 26πrh + 37πr² cents

(b) The domain of this function, in the context of the problem, will be the valid values for the radius r. Since we are dealing with a physical object, the radius cannot be negative, and there is no maximum limit specified.

Therefore, the domain of the function is: Domain: r ≥ 0

(c) The formula for h (the height) in terms of r (the radius) can be obtained from the problem statement, where the pencil cup is a right circular cylinder with an open top. In such a case, the height is equal to the radius, so: h = r

(d) To determine the optimal value of the function f, we need to find the critical numbers of f(r). Critical numbers occur when the derivative of the function is either zero or undefined.

(e) To find the critical numbers, we need to take the derivative of f(r) with respect to r and set it equal to zero:

f'(r) = 26πh + 74πr

26πh + 74πr = 0 (Setting f'(r) = 0)

Since h = r, we can substitute it into the equation:

26πr + 74πr = 0

100πr = 0

r = 0

The critical number is r = 0.

To know more about surface area refer here:

https://brainly.com/question/29101132#

#SPJ11

3. Evaluate the flux F ascross the positively oriented (outward) surface S ST . F.ds, S where F =< 23 +1, y3 +2, 23 +3 > and S is the boundary of x2 + y2 + z2 = 4,2 > 0. =

Answers

The required solution to evaluate the flux across the positively oriented (outward) surface S is  Flux = ∫((23 +1) * (2x) + (y3 +2) * (2y) + (23 +3) * (2z)) * (16π)

1: Evaluate the outward unit normal vector to surface S.

We can use the equation of a sphere (x2 +y2 + z2 = 4) to find the outward unit normal vector to the surface S:

              n = <2x, 2y, 2z>/ x2 +y2 + z2

                 =  <(2x)/√(x2 +y2 + z2), (2y)/√(x2 +y2 + z2), (2z)/√(x2 +y2 + z2)>

2: Calculate the dot product of F and n

                 dot(F, n) = (23 +1) * (2x) + (y3 +2) * (2y) + (23 +3) * (2z))

3: Evaluate the integral

Once we have the dot product of F and n, we can evaluate the flux as an integral:

            Flux = ∫(dot(F, n))dS

                    = ∫(dot(F, n)) * (surface area)

             = ∫((23 +1) * (2x) + (y3 +2) * (2y) + (23 +3) * (2z)) *(surface area)

4: Calculate the surface area

The surface area of a sphere is 4πr2. Since the radius of the sphere is 2, the surface area of S is 16π.

5: Substitute the values in the integral

Substituting the values of dot product of F and n and surface area in the integral:

          Flux = ∫((23 +1) * (2x) + (y3 +2) * (2y) + (23 +3) * (2z)) * (16π)

This is the required solution to evaluate the flux across the positively oriented (outward) surface S.

To know more about flux refer here:

https://brainly.com/question/14527109#

#SPJ11

I
will give thump up. thank you!
Determine the vertical asymptote(s) of the given function. If none exists, state that fact. f(x) = 7* x X6 O x= 7 O none OX= -6 O x = 6

Answers

The vertical asymptote of the function f(x) = [tex]7x^6[/tex] is none.

A vertical asymptote occurs when the value of x approaches a certain value, and the function approaches positive or negative infinity. In the case of the function f(x) =[tex]7x^6,[/tex] there are no vertical asymptotes. As x approaches any value, the function does not approach infinity nor does it have any restrictions. Therefore, there are no vertical asymptotes for this function. The graph of the function will not have any vertical lines that it approaches or intersects.

learn more about asymptote here

brainly.com/question/29051912

#SPJ11

5. (8 pts) For solid E in the first octant bounded by the plane 6x +12y+2== 24, set up an integral to find the mass of Elf its density is given by S(x, y, z)=-3x+y - kg/m.

Answers

To find the mass of solid E, which is bounded by the plane equation 6x + 12y + 2 = 24 in the first octant, we need to set up an integral. The density function of E is given by S(x, y, z) = -3x + y - kg/m.

To calculate the mass of solid E, we need to integrate the density function S(x, y, z) over the region bounded by the given plane equation. Since the solid is in the first octant, the limits of integration for x, y, and z will be determined by the region enclosed by the plane and the coordinate axes.

The plane equation 6x + 12y + 2 = 24 can be rewritten as 6x + 12y = 22. Solving for x, we get x = (22 - 12y) / 6. Since the solid is in the first octant, the limits for y will be from 0 to (24 - 2) / 12, which is 1.

Now, we can set up the integral to calculate the mass. The integral will be ∫∫∫E S(x, y, z) dV, where E represents the region bounded by the plane and the coordinate axes. The limits of integration will be: 0 ≤ x ≤ (22 - 12y) / 6, 0 ≤ y ≤ 1, and 0 ≤ z ≤ (24 - 6x - 12y) / 2.

After evaluating the integral, we can find the final answer for the mass of solid E. Further calculations and substitutions are required to obtain the numerical result

Learn more about integral here:

https://brainly.com/question/31433890

#SPJ11

Write out the first three terms and the last term of the arithmetic sequence. - 1) (31 - 1) i=1 O 2 + 5 + 8 + ... + 41 2 + 8 + 26 + + 125 O -1 + 2 + 5+ + 41 0 -1- 2 + 5 - + 41

Answers

The arithmetic sequence given is -1, 2, 5, ..., 41. The first three terms of the sequence are -1, 2, and 5, while the last term is 41.

An arithmetic sequence is a sequence of numbers in which the difference between consecutive terms is constant. In this case, the common difference is 3, as each term is obtained by adding 3 to the previous term.

To find the first three terms, we start with the initial term, which is -1. Then we add the common difference of 3 to get the second term, which is 2. Continuing this pattern, we add 3 to the second term to find the third term, which is 5.

The last term of the sequence can be found by determining the number of terms in the sequence. In this case, the sequence goes up to 41, so 41 is the last term.

In summary, the first three terms of the arithmetic sequence -1, 2, 5, ..., 41 are -1, 2, and 5, while the last term is 41.

To learn more about arithmetic sequence  : brainly.com/question/28882428

#SPJ11

10 An isosceles triangle is such that the verti- cal angle is 4 times the size of the base an- gle. What is the size of a base angle?​

Answers

Answer:

30°

Step-by-step explanation:

in an isosceles triangle the base angles are always same

let the base angles be = x

vertical angle = 4x

the sum of angles in a triangle = 180°

thus,

x + x + 4x = 180°

6x = 180°

x = 180/6 = 30°

Sketch the solid whose volume is given by the iterated integral. 1- * - 3 dy dz dx STI 23

Answers

To sketch the solid whose volume is given by the iterated integral ∫∫∫1- * -3 dy dz dx, we can start by analyzing the limits of integration.

The given integral represents a triple integral with the following limits:

- x varies from 1 to 2,

- z varies from -3 to 3, and

- y varies from the lower bound, which is determined by the expression 1 - x, to the upper bound, which is determined by the expression -3.

To visualize the solid, we can imagine building it up layer by layer. Each layer corresponds to a specific value of x, and within that layer, we consider all possible values of y and z.

Starting with x = 1, the solid will extend from the lower bound y = 1 - x to the upper bound y = -3. As we increase x from 1 to 2, the solid expands in the x-direction.

In the z-direction, the solid extends from z = -3 to z = 3. Therefore, the solid spans a height of 6 units in the z-direction.

To sketch the solid, we can draw a rectangular prism with a triangular top and bottom surface, where the base of the triangular surface lies along the x-axis and the height of the triangular surface is given by the difference between the upper and lower bounds of y.

Overall, the solid has a shape similar to a truncated triangular prism, extending in the x-direction from 1 to 2, in the z-direction from -3 to 3, and with varying heights determined by the function 1 - x and the constant value of -3.

To learn more about X-axis - brainly.com/question/2491015

#SPJ11

You plan to apply for a bank loan from Bank of America or Bank of the West. The nominal annual interest rate for the Bank of America loan is 6% percent, compounded monthly and the annual interest rate for Bank of the West is 7% compounded quarterly. In order to not be charged large amounts of interest on your loan which bank should you choose to request a loan from? (Hint: 1.0052 1.0617 and 1.01754 - 1.072)

Answers

In order to not be charged large amounts of interest on your loan you should choose to request a loan from Bank of the West

To determine which bank would be more favorable in terms of interest charges, we need to compare the effective annual interest rates for both loans.

For the Bank of America loan, the nominal annual interest rate is 6% compounded monthly. To calculate the effective annual interest rate, we use the formula:

Effective Annual Interest Rate = (1 + (nominal interest rate / number of compounding periods))^(number of compounding periods)

In this case, the number of compounding periods per year is 12 (monthly compounding), and the nominal interest rate is 6% (or 0.06 as a decimal). Plugging these values into the formula, we get:

Effective Annual Interest Rate (Bank of America) = (1 + 0.06/12)^12 ≈ 1.0617

For the Bank of the West loan, the nominal annual interest rate is 7% compounded quarterly. Using the same formula, but with a compounding period of 4 (quarterly compounding), we have:

Effective Annual Interest Rate (Bank of the West) = (1 + 0.07/4)^4 ≈ 1.0175

Comparing the effective annual interest rates, we can see that the Bank of America loan has an effective annual interest rate of approximately 1.0617, while the Bank of the West loan has an effective annual interest rate of approximately 1.0175.

Therefore, in terms of interest charges, it would be more favorable to request a loan from Bank of the West, as it has a lower effective annual interest rate compared to Bank of America.

Learn more about interest rate here

brainly.com/question/13324776

#SPJ11







Evaluate the following in de finite integrals: * 9 dix 4

Answers

The value of the definite integral ∫(9 * dx) from 0 to 4 is 36.

What is the result of definite integral 9 with respect to x from 0 to 4?

When evaluating the definite integral ∫(9 * dx) from 0 to 4, we are essentially finding the area under the curve of the constant function f(x) = 9 between the limits of x = 0 and x = 4.

Since the integrand is a constant (9), integrating it with respect to x simply yields the product of the constant and the interval of integration.

Integrating a constant results in a linear function, where the coefficient of x represents the value of the constant. In this case, integrating 9 with respect to x gives us 9x.

To find the value of the definite integral, we substitute the upper limit (4) into the antiderivative and subtract the result obtained by substituting the lower limit (0).

Therefore, we have:

∫(9 * dx) from 0 to 4 = [9x] evaluated from 0 to 4

                     = 9(4) - 9(0)

                     = 36.

Thus, the value of the definite integral ∫(9 * dx) from 0 to 4 is 36.

Learn more about definite integral

brainly.com/question/30760284

#SPJ11

Suppose that f(5) = 3 and f'(5) = -2. Find h'(5). Round your answer to two decimal places. (a) () h(x) = (5x2 + 4in (2x)) ? = h'(5) = (b) 60f(x) h(x) = 2x e + 5 h' (5) = (c) h(x) = f(x) sin(51 x) = h'

Answers

To find h'(5), we need to use the chain rule of differentiation while supposing that f(5) = 3 and f'(5) = -2.

(a) The value of the expression h(x) = 5x^2 + 4i√(2x) is approximately 50 + 1.27i.

The first expression is : h(x) = 5x^2 + 4i√(2x)

Rewrite this as h(x) = u(x) + v(x), where u(x) = 5x^2 and v(x) = 4i√(2x).

h'(x) = u'(x) + v'(x)

where u'(x) = 10x and v'(x) = 4i/√(2x)

So, at x = 5, we have:

u'(5) = 10(5) = 50

v'(5) = 4i/√(2(5)) = 4i/√10

h'(5) = u'(5) + v'(5) = 50 + 4i/√10 ≈ 50 + 1.27i

(b) The value of the expression h(x) = 60f(x)e^(2x) + 5 is approximately 240.13.

The second expression is : h(x) = 60f(x)e^(2x) + 5

h'(x) = 60[f'(x)e^(2x) + f(x)(2e^(2x))] = 120f(x)e^(2x) + 60f'(x)e^(2x)

So, at x = 5, we have:

h'(5) = 120f(5)e^(10) + 60f'(5)e^(10)

Since f(5) = 3 and f'(5) = -2:

h'(5) = 120(3)e^(10) + 60(-2)e^(10)

h'(5) = 360e^(10) - 120e^(10) ≈ 240.13

(c) The value of the expression h(x) = f(x)sin(51x) is approximately 155.65.

The third expression is : h(x) = f(x)sin(51x)

h'(x) = f'(x)sin(51x) + f(x)(51cos(51x))

Supposing, x = 5, we have:

h'(5) = f'(5)sin(255) + f(5)(51cos(255))

h'(5) = (-2)sin(255) + 3(51cos(255)) ≈ 155.65

To know more about chain rule of differentiation refer here:

https://brainly.com/question/31402308#

#SPJ11

) Find the work done by the Force field F (x,y) = y1 +x? ] moving a particle along C: 7 (t) = (4-1) 1 - 4 ] on ost 52

Answers

the work done by the force field F in moving the particle along the curve C is -403 units of work.

To find the work done by the force field F(x, y) = ⟨y, 1 + x⟩ in moving a particle along the curve C: r(t) = ⟨4t - 1, t^2 - 4⟩, where t ranges from 5 to 2, we can use the line integral formula for work:

W = ∫C F · dr

where F · dr represents the dot product between the force field and the differential vector along the curve.

First, let's find the differential vector dr:

dr = ⟨dx, dy⟩

Since r(t) = ⟨4t - 1, t^2 - 4⟩, we can differentiate it with respect to t to find dx and dy:

dx = d(4t - 1) = 4dt

dy = d(t^2 - 4) = 2t dt

Now, let's substitute the values into the dot product F · dr:

F · dr = ⟨y, 1 + x⟩ · ⟨dx, dy⟩

= ⟨y, 1 + x⟩ · ⟨4dt, 2t dt⟩

= 4y dt + 2xt dt

Since y = t^2 - 4 and x = 4t - 1, we can substitute these values into the equation:

F · dr = 4(t^2 - 4) dt + 2(4t - 1)t dt

= 4t^2 - 16 + 8t^2 - 2t dt

= 12t^2 - 2t - 16 dt

Now, we can integrate this expression over the given range of t from 5 to 2:

W = ∫C F · dr

= ∫5^2 (12t^2 - 2t - 16) dt

= [4t^3 - t^2 - 16t]5^2

Evaluating the integral at the upper and lower limits:

W = [4(2)^3 - (2)^2 - 16(2)] - [4(5)^3 - (5)^2 - 16(5)]

Simplifying the expression:

W = [32 - 4 - 32] - [500 - 25 - 80]

W = -8 - 395

W = -403

To know more about ranges visit:

brainly.com/question/29204101

#SPJ11

A die is tossed 120 times. Use the normal curve approximation to the binomial distribution to find the probability of getting the following result Exactly 19 5's Click here for page 1 of the Areas under the Normal Curve Table Click here for page 2 of the Areas under the Normal Curve Table The probability of getting exactly 19 5's is (Round to 4 decimal places.) urve - page 1 Z Z .00 .01 .02 1.03 .04 .05 .06 А .0000 .0040 .0080 .0120 .0160 .0199 0239 .0279 .0319 .0359 .0398 .0438 .0478 .0517 .0557 0596 1.0636 .0675 .0714 0754 .0793 .0832 .0871 1.0910 .0948 1.0987 .1026 1064 1.48 .49 .50 .51 .52 .53 .54 .55 .56 .57 1.58 .59 .60 .61 .62 .07 .08 .09 .10 .11 .12 .13 .14 .15 16 .17 .18 .19 20 .21 .22 .23 .24 25 .26 A .1844 .1879 .1915 . 1950 .1985 .2019 2054 .2088 .2123 2157 1.2190 2224 .2258 2291 2324 .2357 2389 .2422 .2454 .2486 .2518 2549 2580 2612 .2642 .2673 2704 2734 z .96 .97 .98 .99 1.00 (1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 А z .3315 1.44 .3340 1.45 .3365 1.46 .3389 1.47 .3413 1.48 3438 1.49 .3461 1.50 .3485 1.51 3508 1.52 .3531 1.53 1.3554 1.54 .3577 1.55 .3599 1.56 .3621 1.57 3643 1.58 .36651.59 .3686 1.60 .3708 3729 1.62 .3749 1.63 3770 1.64 .3790 1.65 .3810 1.66 .3830 1.67 .3849 1.68 .3869 1.69 .3888 1.70 3907 1.71 A 4251 .4265 1.4279 .4292 1.4306 4319 .4332 .4345 4357 4370 1.4382 .4394 4406 .4418 4430 1.4441 4452 .4463 .4474 1.4485 1.4495 4505 4515 .4525 4535 4545 4554 .4564 1.63 1.61 .64 1.65 .66 .67 .68 .69 .70 .71 .72 .73 .74 .75 .27 Print Done ine NOI page 2 Z 1.92 1.93 1.94 1.95 1.96 (1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 12.12 2.13 12.14 2.15 12.16 2.17 2.18 2.19 A Z 1.4726 2.42 .4732 2.43 4738 2.44 .4744 2.45 4750 2.46 4756 2.47 .4762 2.48 .4767 2.49 4773 2.50 .4778 2.51 4783 2.52 .4788 2.53 4793 2.54 4798 2.55 1.4803 2.56 4808 2.57 4812 2.58 .4817 2.59 .4821 2.60 4826 2.61 .4830 2.62 .4834 2.63 .4838 2.64 1.4842 2.65 .4846 2.66 4850 2.67 .4854 2.68 4857 2.69 A Z .4922 2.92 .4925 2.93 .4927 2.94 .4929 2.95 .4931 2.96 .4932 2.97 1.4934 2.98 .4936 2.99 .4938 3.00 4940 3.01 .4941 3.02 .4943 3.03 .4945 3.04 4946 3.05 4948 3.06 .4949 13.07 4951 3.08 4952 3.09 1.4953 3.10 4955 3.11 .4956 3.12 .4957 3.13 4959 3.14 .4960 3.15 .4961 3.16 4962 3.17 4963 3.18 .4964 3.19 A Z 1.4983 3.42 .4983 3.43 .4984 3.44 .4984 3.45 .4985 3.46 .4985 3.47 .4986 3.48 1.4986 3.49 1.4987 3.50 1.4987 3.51 .4987 3.52 1.4988 3.53 4988 3.54 1.4989 3.55 .4989 3.56 .4989 3.57 .4990 3.58 4990 3.59 4990 3.60 4991 |3.61 .4991 3.62 4991 3.63 4992 (3.64 .4992 3.65 4992 3.66 .4992 3.67 .4993 3.68 .4993 3.69 A 4997 .4997 1.4997 .4997 1.4997 .4997 1.4998 .4998 .4998 .4998 .4998 4998 4998 .4998 4998 .4998 .4998 .4998 1.4998 ,4999 .4999 4999 1.4999 1.4999 .4999 4999 4999 .4999

Answers

The probability of getting exactly 19 5's is 0.00132

How to find the probability of getting Exactly 19 5's

From the question, we have the following parameters that can be used in our computation:

Number of toss, n = 120

The probability of getting a 5 is

p = 1/6

So, the complement probability is

q = 1 - 1/6

Evaluate

q = 5/6

The probability is then calculated as

P = nCr * p^r * q^(n - r)

Substitute the known values in the above equation, so, we have the following representation

P = 200C19 * (1/6)^19 * (5/6)^(200 - 19)

Evaluate

P = 0.00132

Hence, the probability of getting the following result Exactly 19 5's is 0.00132

Read more about probability at

https://brainly.com/question/31649379

#SPJ1

Use
f(x)=ln(1+x)
and the remainder term to estimate the absolute error in
approximating the following quantity with the​ nth-order Taylor
polynomial centered at 0.Use and the remainder term to
estim
= Homework: Homework Assignment 1 Question 40, 11.1.52 HW Score: 93.62%, 44 of 47 points * Points: 0 of 1 Save Use f(x) = In (1 + x) and the remainder term to estimate the absolute error in approximat

Answers

The absolute error in approximating a quantity using the nth-order Taylor polynomial centered at 0 for the function f(x) = ln(1 + x) can be estimated using the remainder term. The remainder term for a Taylor polynomial provides an upper bound on the absolute error.

The nth-order Taylor polynomial for f(x) = ln(1 + x) centered at 0 is given by[tex]Pn(x) = x - (x^2)/2 + (x^3)/3 - ... + (-1)^(n-1) * (x^n)/n.[/tex]The remainder term Rn(x) is defined as Rn(x) = f(x) - Pn(x), and it represents the difference between the actual function value and the value approximated by the polynomial.

To estimate the absolute error, we can use the remainder term. For example, if we want to estimate the absolute error for approximating f(0.5), we can evaluate the remainder term at x = 0.5. By calculating Rn(0.5), we can obtain an upper bound on the absolute error. The larger the value of n, the more accurate the approximation and the smaller the absolute error.

Learn more about absolute error  here

brainly.com/question/30759250

#SPJ11

Is y = ex + 5e-2x a solution of the differential equation y' + 2y = 2ex? Yes Ο No Is this differential equation pure time, autonomous, or nonautomonous? O pure time autonomous nonautonomous

Answers

The type of differential equation, y' + 2y = 2ex is a nonautonomous differential equation because it depends on the independent variable x.

To determine if y = ex + 5e^(-2x) is a solution of the differential equation y' + 2y = 2ex, we need to substitute y into the differential equation and check if it satisfies the equation.

First, let's find y' by taking the derivative of y with respect to x:

y' = d/dx (ex + 5e^(-2x))

= e^x - 10e^(-2x)

Now, substitute y and y' into the differential equation:

y' + 2y = (e^x - 10e^(-2x)) + 2(ex + 5e^(-2x))

= e^x - 10e^(-2x) + 2ex + 10e^(-2x)

= 3ex

As we can see, the right side of the differential equation is 3ex, which is not equal to the left side of the equation, y' + 2y. Therefore, y = ex + 5e^(-2x) is not a solution of the differential equation y' + 2y = 2ex.

Regarding the type of differential equation, y' + 2y = 2ex is a nonautonomous differential equation because it depends on the independent variable x.

To learn more about “differential equations” refer to the https://brainly.com/question/1164377

#SPJ11

1/₁7 FdS, where F = (3xy², xe², z³), S is the surface of the solid bounded by Calculate the cylinder y² + 2² = 4 and the planes * = 0 and x = 1 24T 25TT 3 16T 3 No correct answer choice present. 16π

Answers

The surface of the solid is bounded by Calculate the cylinder y² + 2² = 4 and the planes is 24π.  Option a is the correct answer.

To calculate the surface integral, we'll use the divergence theorem as mentioned earlier. The divergence of the vector field F is given by:

div(F) = (3y²) + (e²) + (3z²)

Now, we need to evaluate the triple integral of the divergence of F over the volume enclosed by the solid.

The solid is bounded by the cylinder y² + z² = 4 and the planes x = 0 and x = 1. This represents a cylindrical region extending from x = 0 to x = 1, with a radius of 2 in the y-z plane.

Using cylindrical coordinates, we have:

x = ρcos(θ)

y = ρsin(θ)

z = z

The limits of integration are:

ρ: 0 to 2

θ: 0 to 2π

z: -2 to 2

The volume element in cylindrical coordinates is: dV = ρdzdρdθ

Now, we can write the triple integral as follows:

∭ div(F) dV = ∫∫∫ (3y² + e² + 3z²) ρdzdρdθ

Performing the integration, we get:

∫∫∫ (3y² + e² + 3z²) ρdzdρdθ

= ∫₀² ∫₀² ∫₋²² (3(ρsin(θ))² + e² + 3z²) ρdzdρdθ

Simplifying the integrand further:

= ∫₀² ∫₀² ∫₋²² (3ρ²sin²(θ) + e² + 3z²) ρdzdρdθ

Now, let's evaluate the triple integral using these limits and the simplified integrand:

∫₀² ∫₀² ∫₋²² (3ρ²sin²(θ) + e² + 3z²) ρdzdρdθ

= 24π

Therefore, the result of the surface integral is 24π. The correct option is option a.

To know more about Cylinders refer-https://brainly.com/question/16357107#

#SPJ11

Consider the three vectors in $\mathbb{R}^2 . \mathbf{u}=\langle 1,1), \mathbf{v}=\langle 4,2), \mathbf{w}=(1,-3)$. For each of the following vector calculations:
- [P] Perform the vector calculation graphically ${ }^t$, and draw the resulting vector.
- Calculate the vector calculation arithmetically and confirm that it matches your picture.
(a) $3 \mathbf{u}+2 w$
(b) $\mathbf{u}+\frac{1}{2} \mathbf{v}+\mathbf{w}$
(c) $2 \mathrm{v}-\mathrm{w}-7 \mathrm{u}$

Answers

The resulting vector is $\mathbf{u} + \frac{1}{2}\mathbf{v} + \mathbf{w}$

(a) Graphically:

To perform the vector calculation $3\mathbf{u} + 2\mathbf{w}$ graphically, we can start by graphing the vectors $\mathbf{u}$ and $\mathbf{w}$ in the coordinate plane.

Vector $\mathbf{u} = \langle 1,1 \rangle$ starts at the origin and extends to the point (1, 1).

Vector $\mathbf{w} = \langle 1,-3 \rangle$ starts at the origin and extends to the point (1, -3).

To calculate $3\mathbf{u}$ graphically, we multiply the length of vector $\mathbf{u}$ by 3, which results in a vector with the same direction as $\mathbf{u}$ but three times longer.

To calculate $2\mathbf{w}$ graphically, we multiply the length of vector $\mathbf{w}$ by 2, which results in a vector with the same direction as $\mathbf{w}$ but two times longer.

We then add the resulting vectors together geometrically by placing the tail of one vector at the head of the previous vector. The resulting vector is drawn from the origin to the head of the last vector.

(b) Arithmetically:

To calculate $3\mathbf{u} + 2\mathbf{w}$ arithmetically, we perform scalar multiplication and vector addition.

$3\mathbf{u} = 3\langle 1,1 \rangle = \langle 3,3 \rangle$

$2\mathbf{w} = 2\langle 1,-3 \rangle = \langle 2,-6 \rangle$

To add these two vectors, we add their corresponding components:

$3\mathbf{u} + 2\mathbf{w} = \langle 3,3 \rangle + \langle 2,-6 \rangle = \langle 3+2, 3+(-6) \rangle = \langle 5, -3 \rangle$

(c) Arithmetically:

To calculate $\mathbf{u} + \frac{1}{2}\mathbf{v} + \mathbf{w}$ arithmetically, we perform scalar multiplication and vector addition.

$\frac{1}{2}\mathbf{v} = \frac{1}{2}\langle 4,2 \rangle = \langle 2,1 \rangle$

$\mathbf{u} + \frac{1}{2}\mathbf{v} + \mathbf{w} = \langle 1,1 \rangle + \langle 2,1 \rangle + \langle 1,-3 \rangle = \langle 1+2+1, 1+1+(-3) \rangle = \langle 4, -1 \rangle$

(c) Graphically:

To perform the vector calculation $\mathbf{u} + \frac{1}{2}\mathbf{v} + \mathbf{w}$ graphically, we can start by graphing the vectors $\mathbf{u}$, $\mathbf{v}$, and $\mathbf{w}$ in the coordinate plane.

Vector $\mathbf{u} = \langle 1,1 \rangle$ starts at the origin and extends to the point (1, 1).

Vector $\mathbf{v} = \langle 4,2 \rangle$ starts at the origin and extends to the point (4, 2).

Vector $\mathbf{w} = \langle 1,-3 \rangle$ starts at the origin and extends to the point (1, -3).

To calculate $\frac{1}{2}\mathbf{v}$ graphically, we multiply the length of vector $\mathbf{v}$ by 1/2, which results in a vector with the same direction as $\mathbf{v}$ but half the length.

We then add the resulting vectors together geometrically by placing the tail of one vector at the head of the previous vector. The resulting vector is drawn from the origin to the head of the last vector.

learn more about vector here:
https://brainly.com/question/24256726

#SPJ11

A projectile is shot upward from the surface of Earth with an initial velocity of 134 meters per second. Use the position function below for free-falling objects. What is its velocity after 5 seconds? After 15 seconds? (

Answers

A projectile shot upward from the surface of the Earth with an initial velocity of 134 meters per second can be modeled using the position function for free-falling objects. To find its velocity after 5 seconds and after 15 seconds, we can differentiate the position function with respect to time to obtain the velocity function. By substituting the respective time values into the velocity function, we can calculate the velocities.

The position function for a free-falling object can be expressed as s(t) = ut - (1/2)gt², where s(t) represents the position at time t, u is the initial velocity, g is the acceleration due to gravity (approximately 9.8 m/s²), and t is the time.

To find the velocity function, we differentiate the position function with respect to time:

v(t) = u - gt.

Given an initial velocity of 134 m/s, we can substitute u = 134 and g = 9.8 into the velocity function:

v(t) = 134 - 9.8t.

To find the velocity after 5 seconds, we substitute t = 5 into the velocity function:

v(5) = 134 - 9.8(5) = 134 - 49 = 85 m/s.

Similarly, to find the velocity after 15 seconds, we substitute t = 15 into the velocity function:

v(15) = 134 - 9.8(15) = 134 - 147 = -13 m/s.

Therefore, the velocity of the projectile after 5 seconds is 85 m/s, and after 15 seconds is -13 m/s. The negative sign indicates that the object is moving downward.

To learn more about acceleration  : brainly.com/question/12550364

#SPJ11

The number of fish swimming upstream to spawn is approximated by the function given below, where a represents the temperature of the water in degrees Celsius. Find when the number of fish swimming upstream will reach the maximum. P(x)= x³ + 3x² + 360x + 5174 with 5 ≤ x ≤ 18 a) Find P'(x) b) Which of the following are correct? The question has multiple answers. Select all correct choices. The domain is a closed interval. There are two critical points in this problem Compare critical points and end points. b) The maximum number of fish swimming upstream will occur when the water is degrees Celsius (Round to the nearest degree as needed).

Answers

a) To find P'(x), we need to take the derivative of the function P(x).P(x) = x³ + 3x² + 360x + 5174

Taking the derivative using the power rule, we get:

P'(x) = 3x² + 6x + 360

b) Let's analyze the given choices:

1) The domain is a closed interval: This statement is correct since the domain is specified as 5 ≤ x ≤ 18, which includes both endpoints.

2) There are two critical points in this problem: To find the critical points, we set P'(x) = 0 and solve for x:

3x² + 6x + 360 = 0

Using the quadratic formula, we find:

x = (-6 ± √(6² - 4(3)(360))) / (2(3))

x = (-6 ± √(-20)) / 6

Since the discriminant is negative, there are no real solutions to the equation. Therefore, there are no critical points in this problem.

3) Compare critical points and end points: Since there are no critical points, this statement is not applicable.

4) The maximum number of fish swimming upstream will occur when the water is degrees Celsius: To find when the function reaches its maximum, we can examine the concavity of the function. Since there are no critical points, we can determine the maximum value by comparing the values of P(x) at the endpoints of the interval.

P(5) = 5³ + 3(5)² + 360(5) + 5174

    = 625 + 75 + 1800 + 5174

    = 7674

P(18) = 18³ + 3(18)² + 360(18) + 5174

     = 5832 + 972 + 6480 + 5174

     = 18458

From the calculations, we can see that the maximum number of fish swimming upstream occurs when the water temperature is 18 degrees Celsius.

In summary:

a) P'(x) = 3x² + 6x + 360

b) The correct choices are:

- The domain is a closed interval.

- The maximum number of fish swimming upstream will occur when the water is 18 degrees Celsius.

Learn more about derivatives here: brainly.com/question/29144258

#SPJ11

Find the average value of the function f(t)= tcos(t^2) on the
interval [0,10].

Answers

The average value of the function f(t) = tcos([tex]t^2[/tex]) on the interval [0, 10] can be found by evaluating the definite integral of f(t) over that interval and dividing it by the length of the interval.

To find the average value, we calculate the definite integral of f(t) from 0 to 10:

∫[0,10] tcos([tex]t^2[/tex]) dt

Since the antiderivative of cos([tex]t^2[/tex]) cannot be expressed in terms of elementary functions, we need to rely on numerical methods or approximations to find the integral value.

Using numerical methods, we can approximate the value of the integral, and then divide it by the length of the interval:

Average value = (1/10 - 0) ∫[0,10] tcos([tex]t^2[/tex]) dt

By evaluating the integral numerically and dividing by the length of the interval, we can find the average value of the function f(t) = tcos([tex]t^2[/tex]) on the interval [0, 10].

Learn more about antiderivative here:

https://brainly.com/question/31396969

#SPJ11




8) 1 = Find the derivative. 8)y= 4x +2 dy 4 A) dx yx +2 2 C) dy dx V4x +2 dy B) dx = 14x+2 8 C = D) dy dx = N4x +2

Answers

The derivative of the function y = 4x + 2 with respect to x is given by dy/dx = 4.

To find the derivative of y = 4x + 2 with respect to x, we can use the power rule for derivatives. In this case, since the function is a linear equation of the form y = mx + b, where m is the slope, the derivative will be equal to the slope coefficient.

In the given function, the coefficient of x is 4, which represents the slope. Therefore, the derivative dy/dx is equal to 4. This means that for any value of x, the rate of change of y with respect to x is a constant 4. The derivative represents the instantaneous rate of change of y with respect to x at any given point on the graph of the function.

In summary, the derivative of y = 4x + 2 with respect to x is 4, indicating a constant rate of change of 4 as x varies.

To learn more about power rule click here: brainly.com/question/23418174


#SPJ11

Find the tangent plane to the equation z = -2? + 4y² + 2y at the point (-3, -4,47) Z=

Answers

The tangent plane to the equation z = -2x + 4y² + 2y at the point (-3, -4, 47) is given by the equation z - z₀ = fₓ(x - x₀) + fᵧ(y - y₀). The coefficients of x, y, and the constant term determine the orientation and position of the tangent plane.

To find the tangent plane, we first calculate the partial derivatives of the equation:

fₓ = -2
fᵧ = 8y + 2

Substituting the values of the given point into the partial derivatives, we have:

fₓ(-3, -4) = -2
fᵧ(-4) = 8(-4) + 2 = -30

Now we can construct the equation of the tangent plane:

z - 47 = -2(x + 3) - 30(y + 4)

Simplifying, we have:

z - 47 = -2x - 6 - 30y - 120

Rearranging the equation, we obtain the final form of the tangent plane:

2x + 30y + z = -173

Therefore, the equation of the tangent plane to the given equation at the point (-3, -4, 47) is 2x + 30y + z = -173.

To learn more about Partial derivatives, visit:

https://brainly.com/question/2293382

#SPJ11







Does the sequence {a,} converge or diverge? Find the limit if the sequence is convergent. n an = 10 Select the correct choice below and, if necessary, fill in the answer box to complete the choice. O

Answers

The limit of the sequence as n approaches infinity is also 10, as every term in the sequence is 10. Therefore, the sequence {aₙ} converges to 10.

The given sequence {aₙ} is defined as aₙ = 10 for all values of n. In this case, the sequence is constant and does not depend on the value of n.

The sequence {aₙ} is defined as aₙ = 10 for all values of n. Since every term in the sequence is equal to 10, the sequence does not change as n increases. This means that the sequence is constant.

A constant sequence always converges because it approaches a single value that does not change. In this case, the sequence converges to the value of 10.

The limit of the sequence as n approaches infinity is also 10, as every term in the sequence is 10.

In conclusion, the sequence {aₙ} converges to 10.

Learn more about Converges at

brainly.com/question/31756849

#SPJ4

Solve the given differential equation. All solutions should be found. dy/dx = e^6x + 11y y =

Answers

y(x) = (e(6x) - 11)/(66e(6x)) + Ce(-11x) is the generic solution to the differential equation dy/dx = e(6x) + 11y, where C is an arbitrary constant. This is the solution to the given differential equation.

The approach of integrating factors is one option for us to apply in order to find a solution to the differential equation. It is possible to rewrite the differential equation as follows: dy/dx - 11y = e(6x). Take note that the value of the y coefficient, which is 11, remains unchanged throughout the equation.

Multiplying the entire equation by the exponential of the integral of the coefficient of y gives us the integrating factor, which is written as e(-11x) when we do this calculation to determine it. After performing the necessary calculations, we find that e(-11x)dy/dx minus 11e(-11x)y equals e(-5x).

Now, the left-hand side can be rewritten using the product rule as d(e(-11x)y)/dx = e(-5x). This will result in the same answer. After integrating both sides with respect to x, we arrive at the following result: e(-11x)y = -1/6e(-5x) + C, where C is the integration constant.

In order to solve for y, we get the equation y = (e(6x) - 11)/(66e(6x)) + Ce(-11x), where C is a constant that can be chosen at will. This is the overall solution to the differential equation that was shown earlier.

Learn more about differential equation here:

https://brainly.com/question/31492438

#SPJ11

Other Questions
8. (a) Let I = Z 9 1 f(x) dx where f(x) = 2x + 7 q 2x + 7. UseSimpsons rule with four strips to estimate I, given x 1.0 3.0 5.07.0 9.0 f(x) 6.0000 9.3944 12.8769 16.4174 20.0000 (Simpsons Scores on the GRE (Graduate Record Examination) are normally distributed with a mean of 512 and a standard deviation of 73. Use the 68-95-99.7 Rule to find the percentage of people taking the test who score between 439 and 512. The percentage of people taking the test who score between 439 and 512 is %. 8. The radius of a sphere increases at a rate of 3 in/sec. How fast is the surface area increasing when the diameter is 24in. (V = nr?). What was the Selective Service Act and what purpose did it serve? Discuss how financial management practitioners assist managementin fulfilling their roles of planning, organising, leading andmotivating and controlling and monitoring ? A developer obtained a bid of 10000 to tear down her old building and another bid of 90,000 to replace it with a new structure.A. $80,000B. $85,000C. $90,000D. $100,000 in the key player map, there are 6 roles that play in the decision making process. the primary roles are obstructionists, champions, doubters and supporters. there are two other roles who may have significant impact and should be understood. What can be said about the speed ofa particle if the net work done on it is zero? Zeno is training to run a marathon. He decides to follow the following regimen: run one mile during week 1, and then run 1.75 times as far each week. What's the total distance Zeno covered in histraining by the end of week k? 7. Solve for x where 2x + 3 >1. 8. Determine lim (x 7), or show that it does not exist. 1+7 24 1 1 9. Determine lim x=1 x2 1 or show that it does not exist. leaving employees to their own devices in meeting performance standards how would regulators characterize this fi based on the standardized approach leverage ratio zones of basel iii? (the tier 1 capital ratio should be 4% for adequately capitalized banks and 5% for well-capitalized banks). g T/F. the magnitude and polarity of the voltage across a current source is not a function of the network to which it is attached. 10. floor-on, ltd., operates a line that produces self-adhesive tiles. this line consists of single-machine stations and is almost balanced (i.e., station rates are nearly equal). a manufacturing engineer has estimated the bottleneck rate of the line to be 2,000 cases per 16-hour day and the raw process time to be 30 minutes. the line has averaged 1,700 cases per day, and cycle time has averaged 3.5 hours. (a) what would you estimate average wip level to be? (b) how does this performance compare to the practical worst case? 262 part ii factory physics (c) what would happen to the throughput of the line if we increased capacity at a nonbottleneck station and held wip constant at its current level? (d) what would happen to the throughput of the line if we replaced a single-machine station with four machines whose capacity equaled that of the single machine and held the wip constant at its current level? (e) what would happen to the throughput of the line if we began moving cases of tiles between stations in large batches instead of one at a time? Sam operates a small chain of pizza outlets in Fort Collins, Colorado. In November of 2021, Sam decided to attend a two-day management training course in Los Angeles. Sam took an eight-day vacation immediately after the course. Sam reported the following expenditures from the trip: consider a system with the following specifications: 46-bit virtual address space page size of 8 kbytes page table entry size of 4 bytes every page table is required to fit into a single page how many levels of page tables would be required to map the entire virtual address space? 6 Translate from cylindrical to ractangular coordinates. = 2 4 3 3 23 and z = 15 A bond with semi-annual coupon payments is currently trading with a yield-to-maturity of 7.8%. What is the effective annual yield of this bond investment? (Note: Round your answer to 4 decimal places. For example, if your answer is 8.76%, you should write 0.0876 in the answer box. DO NOT write 8.76 in the box as you will be marked wrong). 1. To use a double integral to calculate the surface area of asurface z=f(x,y), what is the integrand to be used (what functiongoes inside the integral)?2. You are asked to evaluate the surface arQuestion 1 0.5 pts To use a double integral to calculate the surface area of a surface z=f(x,y), what is the integrand to be used (what function goes inside the integral)? O f (x, y) 2 o ? (fx)+ (fy)2 What is the critical information we are looking for to break WEP encrypted network?A. IVB. Four-way handshakeC. ESSIDD. BSSID